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Background
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Entity Disambiguation is the task of mapping entity mentions in text

documents to standard entities in a given knowledge base

Paris is the son of King Priam

Paris (mythology), a prince of Troy 

in Greek mythology

Paris, the capital of 

France

?

https://en.wikipedia.org/wiki/Paris_(mythology)
https://en.wikipedia.org/wiki/Paris
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Questions
The field of Entity Disambiguation is very vibrant with many novel work popping

up. However, there are several questions that are underexplored by prior work:

• Can we use a small model to approach the performance of a big model? → Efficiency

• How to develop a single disambiguation system adapted to multiple domains? → Generalizability

• Are existing systems robust to out-of-vocabulary problems? → Robustness

Lihu Chen Gaël Varoquaux Fabian Suchanek
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Biomedical Entity Disambiguation
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In the biomedical domain, entity disambiguation maps mentions of diseases,

drugs, and measures to normalized entities in standard vocabularies



Motivation
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Can we use a small model to approach the performance of a 

big model? 

source

https://hellofuture.orange.com/en/the-gpt-3-language-model-revolution-or-evolution/


Our Lightweight Model
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Model Architecture



Experimental Results
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Our model achieves similar results while is much smaller (4.6M 

VS 110M)



Conclusion
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Paper & Code

• We propose a simple and lightweight neural model for biomedical entity disambiguation

• Our model achieve a performance that is statistically indistinguishable from BERT-based models

• Our model is 23x smaller and 6.4x faster than BERT-based models

Lihu Chen Gaël Varoquaux Fabian Suchanek

Chen, Lihu, Gaël Varoquaux, and Fabian M. Suchanek. "A lightweight neural model for biomedical entity linking." Proceedings of the AAAI 2021.
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Acronym Disambiguation
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This is the product’s first true AI version, and it understands your voice instantly

In the United States, the AI for potassium for adults is 4.7 grams.

An acronym is an abbreviation formed from the initial letters of a longer 

name. Acronym Disambiguation (AD) is the task of mapping a given 

acronym in a given sentence to the intended long form.

Artificial Intelligence

Adequate Intake

An example for the acronym “AI”



Motivation 
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Existing acronym disambiguation benchmarks and tools are 

limited to specific domains, and the size of prior benchmarks is 

rather small



Constructing GLADIS

14

To accelerate the research on acronym disambiguation, we construct a new 

benchmark named GLADIS (a General and Large Acronym DISambiguation benchmark) 

with three components and a pre-trained model named AcroBERT



Data Source
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We use 838GiB data to construct our new acronym dictionary

Schwartz and Hearst, 2002[11]



Constructing Datasets
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We adapt the existing Entity Disambiguation datasets by 

replacing the long form of entity with the acronym

Artificial Intelligence is intelligence demonstrated by machines 

Entity Disambiguation Dataset

AI is intelligence demonstrated by machines 

WikiData

WikilinksNED MedMentions SciAD

General Biomedical Scientific



Components in GLADIS
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Statistics of our GLADIS benchmark



AcroBERT
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AcroBERT is pre-trained by using triplet loss

Currently, there is no other pre-trained model for general disambiguation. Our

approach is the first that capitalizes on large-scale corpora and pre-training



Experimental results 
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AcroBERT significantly outperforms existing systems across 

multiple domains

General Scientific Biomedical
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Chen, Lihu, Gaël Varoquaux, and Fabian M. Suchanek. "GLADIS: A General and Large Acronym Disambiguation Benchmark“  In Proceedings of the EACL 2023.

More often than not, PR is a preemptive process. Celebrity 

publicists are paid lots of money to keep certain stories out of 

the news.

AcroBERT [ (PR, Public Relations) ]

Input Output

Paper GLADIS AcroBERT

•We have presented GLADIS, a challenging and large benchmark for AD

•We have also proposed AcroBERT, the first pre-trained model for general AD
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LOVE
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LOVE

Misspelled words

Rare words

Domain-specific 
word

…… Word embedding

LOVE can generate embeddings for arbitrary words

LOVE means Learning Out-of-Vocabulary Embeddings. 



Motivation
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Minor character perturbations can flip the prediction of a model!

State-of-the-art NLP systems rely on pre-trained language models, but these are

brittle when faced with Out-of-Vocabulary (OOV) words.

BERTaltogether, this is successful as a film Positive

BERTaltogether, this is succesful as a film Negative



Existing Work
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Pretraining word embeddings with morphological features:

FastText [4], CharacterBERT [8], CharBERT [9]

<wh

whe

her

ere

re>

where
Pre-train Sum

Large-scale corpora N-gram characters Word vector



Existing Work
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Mimicking the behavior of pre-trained embeddings using only the surface 

form: MIMICK [5], Bos [6], KVQ-FH [7].



Existing Work
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The limitations of existing mimic-like work

• Remain bound in the trade-off between complexity and 

performance (FastText ~900M, BoS ~500M) 

• Cannot be used with existing pre-trained language models such 

as BERT



A First Glance of  LOVE
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LOVE makes language models more robust with little cost!

FastText: 900M
LOVE: 6.5M



Framework
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LOVE (Learning Out-of-Vocabulary Embeddings) draws on the principles of contrastive 

learning to maximize the similarity between target and generated vectors, and to push 

apart negative pairs. 

Five key components: (1) Mixed Input; (2) PAM encoder; (3) Contrastive Loss; 

(4) Data Augmentation; (5) Hard Negatives 



Input Method 
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Characters cannot yield good word representations

“misspelling” ⟹ {m, i, s, s, p, e, l, l, i, n, g}



Input Method 
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N-Gram Characters are effective while highly redundant 

“misspelling” ⟹ {mis, iss, ssp, spe, pel, ell, lli, lin, ing, miss, issp, sspe, spel, pell, elli, 
llin, ling, missp, isspe, sspel, spell, pelli, ellin, lling}



Input Method
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Subwords are sensitive to typos

“misspelling” ⟹ {miss, ##pel, ##ling}

“mispselling” ⟹ {mi, ##sp, ##sell, ##ing }



Input Method
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“misspelling” ⟹ {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}

LOVE uses both the character sequence and subwords



Encoder
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Encoder
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“misspelling” ⟹ {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}

Encoder

mis ing ……

Local Features

mis+ing

Global Features



Encoder
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“misspelling” ⟹ {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}

❶

❷

❸

Positional Attention Module (PAM) 



Encoder
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“bec0me” ⟹ {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

❷

Position Embeddings P are from the 
original Transformer [10]



Encoder
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“bec0me” ⟹ {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

We use the self-attention 
mechanism in the original 
Transformer [10]

❸
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“bec0me” ⟹ {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

Our Positional Attention Module (PAM) extracts both local and

global information



Loss Function 
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MSE only pulls positive word pairs closer while ignoring negative pairs.



Loss Function 
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MSE only pulls positive word pairs closer while ignoring negative pairs.

anchor

positive

negative

pull



Loss Function 
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LOVE adopts the contrastive loss instead of MSE

anchor

positive

negative

pull

push



Data Augmentation 
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LOVE uses data augmentation to increase the diversity of

training samples



Data Augmentation 
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LOVE uses data augmentation to increase the diversity of

training samples



Hard Negative
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Hard Negative
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misspelling

positive

pull

push

misspelling

dispelling

Hard Sample



Experimental Results
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Performance on the intrinsic tasks

Performance on the extrinsic tasks

LOVE achieves similar or even better performances than prior 

competitors while using fewer parameters



Experimental Results
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LOVE can be used in a plug-and-play fashion to robustify existing 

language models

Robust evaluation



Experimental Results

48

LOVE can produce better word vectors while consuming fewer 

parameters

Visualizations of  word clusters
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We present a simple contrastive learning framework, LOVE, which can make language models 

robust with little cost. There are several advantages of LOVE:

• No need of pre-training

• Small model size

• Plug and Play

paper code

Lihu Chen Gaël Varoquaux Fabian Suchanek

Chen, Lihu, Gael Varoquaux, and Fabian Suchanek. "Imputing Out-of-Vocabulary Embeddings with LOVE Makes LanguageModels Robust with Little 

Cost." Proceedings of ACL 2022.
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