

Towards Efficient, General, and Robust Entity Disambiguation Systems

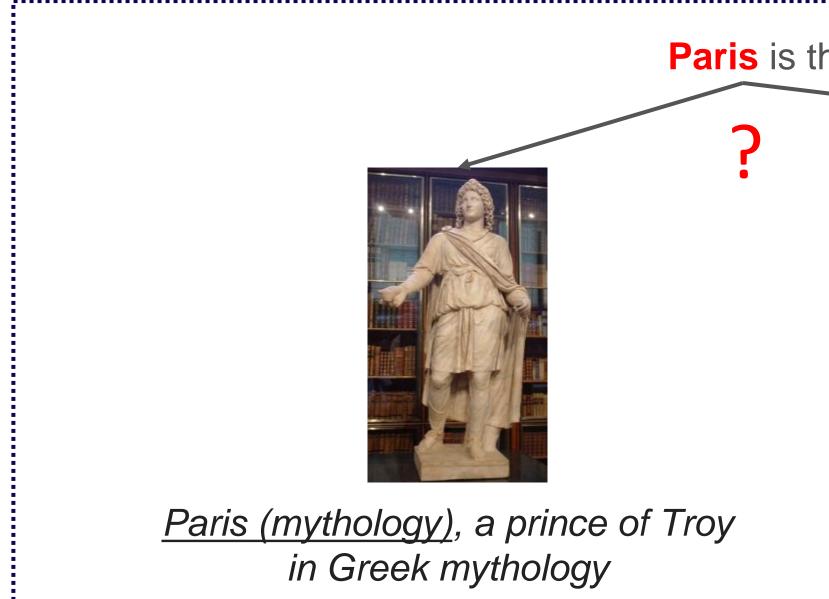
Lihu Chen¹, Gaël Varoquaux² and Fabian M. Suchanek¹

¹ LTCI, Télécom Paris, Institut Polytechnique de Paris, France

² Soda, Inria Saclay, Université Paris-Saclay, France

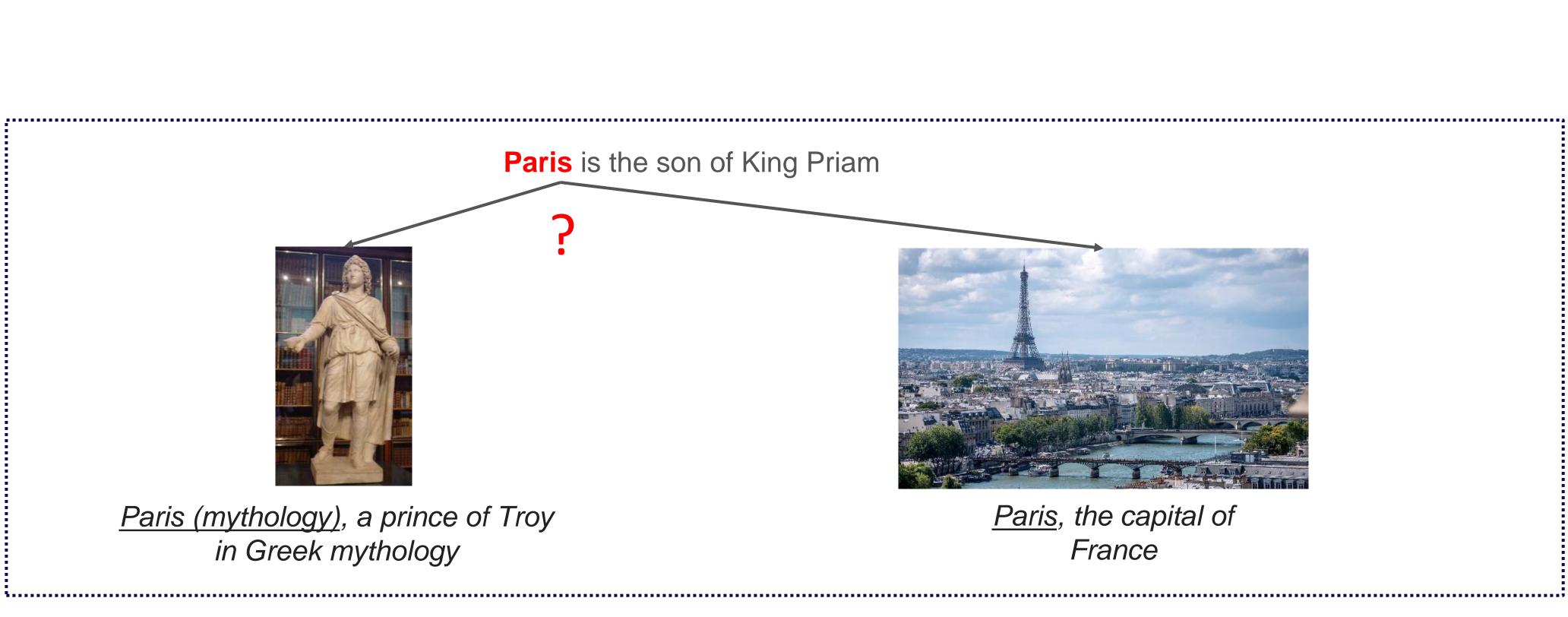
Background

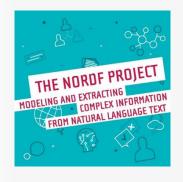
Entity Disambiguation is the task of mapping entity mentions in text documents to standard entities in a given knowledge base



Paris is the son of King Priam

Paris, the capital of France





Background

Questions

Can we use a small model to approach the performance of a big model? \rightarrow Efficiency How to develop a single disambiguation system adapted to multiple domains? \rightarrow Generalizability Are existing systems robust to out-of-vocabulary problems? \rightarrow Robustness

The field of Entity Disambiguation is very vibrant with many novel work popping up. However, there are several questions that are underexplored by prior work:

Lihu Chen

Gaël Varoquaux

Fabian Suchanek

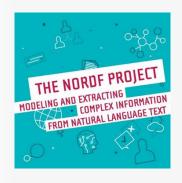


Outline

Q: Can we use a small model to approach the performance of a big model? \rightarrow Efficiency

Q: How to develop a single disambiguation system adapted to multiple domains? — Generalizability

Q: Are existing systems robust to out-of-vocabulary



Outline

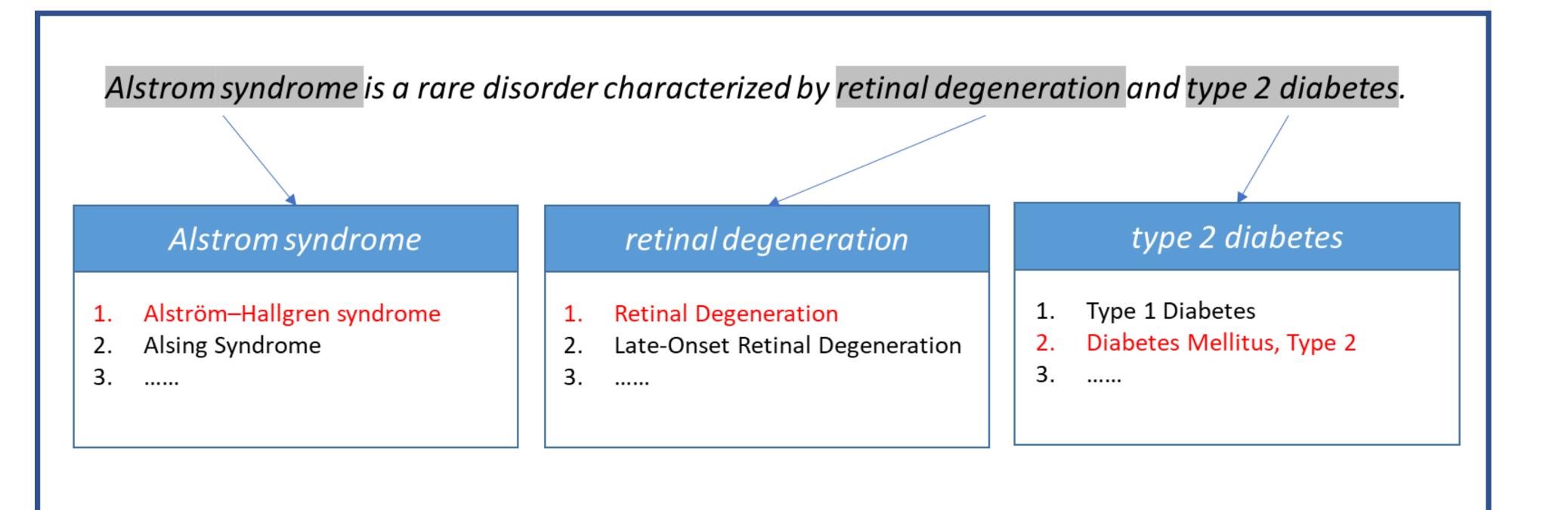
Q: Can we use a small model to approach the performance of a big model? \rightarrow Efficiency

Q: How to develop a single disambiguation system adapted to multiple domains? — Generalizability

Q: Are existing systems robust to out-of-vocabulary problems? → **Robustness**

Biomedical Entity Disambiguation

In the biomedical domain, entit drugs, and measures to normaliz

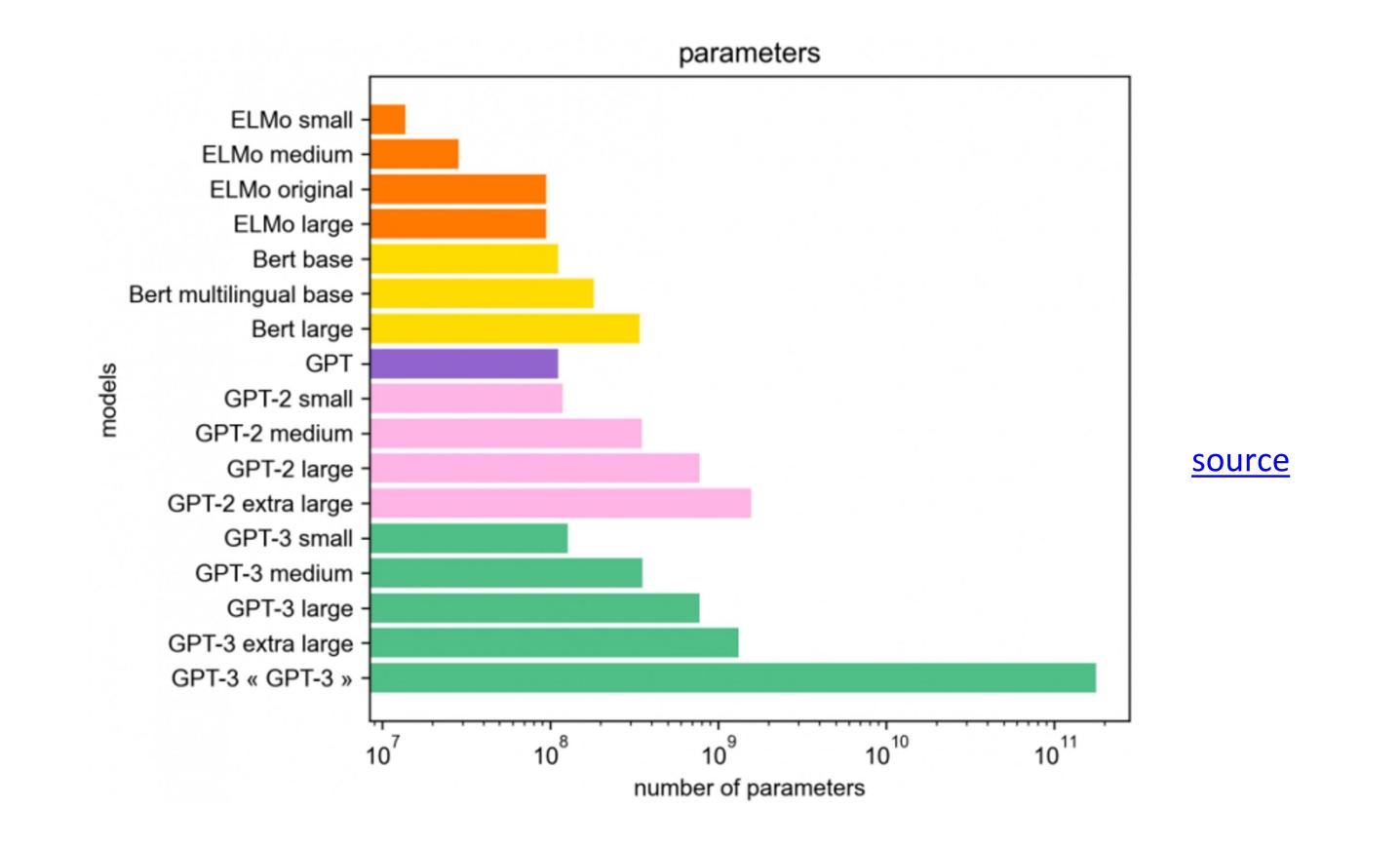


- In the biomedical domain, entity disambiguation maps mentions of diseases,
- drugs, and measures to normalized entities in standard vocabularies

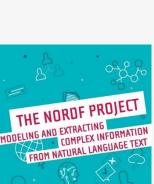
IP PARIS

Soda

Motivation



Can we use a small model to approach the performance of a big model?

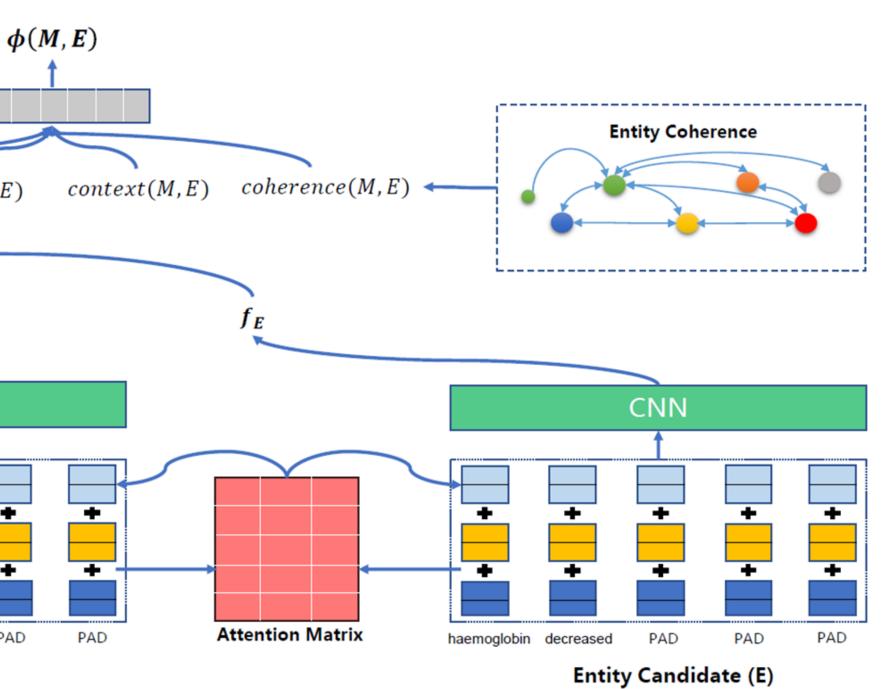


Our Lightweight Model

IP PARIS

output layer prior(M, E)base model extra features base feature Ĵм CNN alignment feature ÷ + + character embedding + ۰. + + word embedding decreases hemoglobin PAD in

Mention (M)



Model Architecture

IP PARIS

Experimental Results

Model

DNorm (Leaman, Islamaj Doğan, and UWM (Ghiasvand and Kate 20) Sieve-based Model (D'Souza and N TaggerOne (Leaman and Lu 20) Learning to Rank (Xu et al. 201 CNN-based Ranking (Li et al. 20 BERT-based Ranking (Ji, Wei, and X Our Base Model Our Base Model + Extra Featur

Model	Parameters	ShARe	/CLEF	NC	CBI	AI	OR	Avg	Speedup
		CPU	GPU	CPU	GPU	CPU	GPU		
BERT (large)	340M	2230s	1551s	353s	285s	2736s	1968s	1521s	12.3x
BERT (base)	110M	1847s	446s	443s	83s	1666s	605s	848s	6.4x
TinyBERT ₆	67M	1618s	255s	344s	42s	2192s	322s	796s	6.0x
MobileBERT (base)	25.3M	1202s	330s	322s	58s	1562s	419s	649s	4.7x
ALBERT (base)	12M	836s	129s	101s	24s	1192s	170s	409s	2.6x
Our Base Model	4.6M	181s	131s	38 s	22s	196s	116s	114s	-

Table 5: Number of model parameters and observed inference time

Our model achieves similar results while is much smaller (4.6M) **VS 110M)**

ShARe/CLEF	NCBI	ADR
-	82.20±3.09	-
$89.50 {\pm} 1.02$	-	-
$90.75 {\pm} 0.96$	$84.65 {\pm} 3.00$	-
-	$88.80{\pm}2.59$	-
-	-	$92.05 {\pm} 0.84$
$90.30{\pm}1.00$	$86.10{\pm}2.79$	-
91.06±0.96	$89.06 {\pm} 2.63$	93.22±0.79
$90.10{\pm}1.00$	$89.07 {\pm} 2.63$	92.63±0.81
$90.43 {\pm} 0.99$	89.59±2.59	$92.74 {\pm} 0.80$
	- 89.50 ± 1.02 90.75 ± 0.96 - 90.30±1.00 91.06±0.96 90.10±1.00	- 82.20 ± 3.09 89.50 ± 1.02 - 90.75 ± 0.96 84.65 ± 3.00 - 88.80 ± 2.59 90.30 ± 1.00 86.10 ± 2.79 91.06 ± 0.96 89.06 ± 2.63 90.10 ± 1.00 89.07 ± 2.63

Conclusion

- Our model is **23x smaller** and **6.4x faster** than BERT-based models

Chen, Lihu, Gaël Varoquaux, and Fabian M. Suchanek. "A lightweight neural model for biomedical entity linking." Proceedings of the AAAI 2021.

• We propose a simple and lightweight neural model for biomedical entity disambiguation • Our model achieve a performance that is statistically indistinguishable from BERT-based models

Gaël Varoquaux

Fabian Suchanek

Outline

Q: Can we use a small model to approach the performance of a big model? — Efficiency

Q: How to develop a single disambiguation system adapted to multiple domains? — Generalizability

Q: Are existing systems robust to out-of-vocabulary

problems? → **Robustness**

Acronym Disambiguation

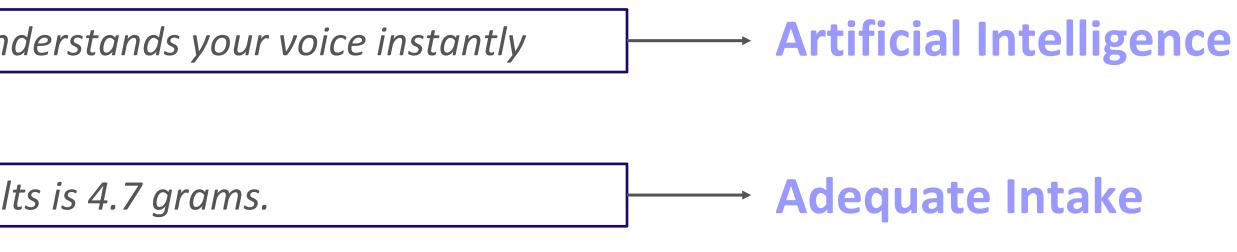
acronym in a given sentence to the intended long form.

This is the product's first true AI version, and it understands your voice instantly

In the United States, the AI for potassium for adults is 4.7 grams.

An example for the acronym "Al"

- An acronym is an abbreviation formed from the initial letters of a longer
- name. Acronym Disambiguation (AD) is the task of mapping a given

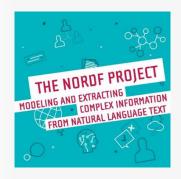


Motivation

TELECOM Paris

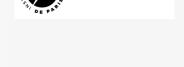
三般翻

IP PARIS

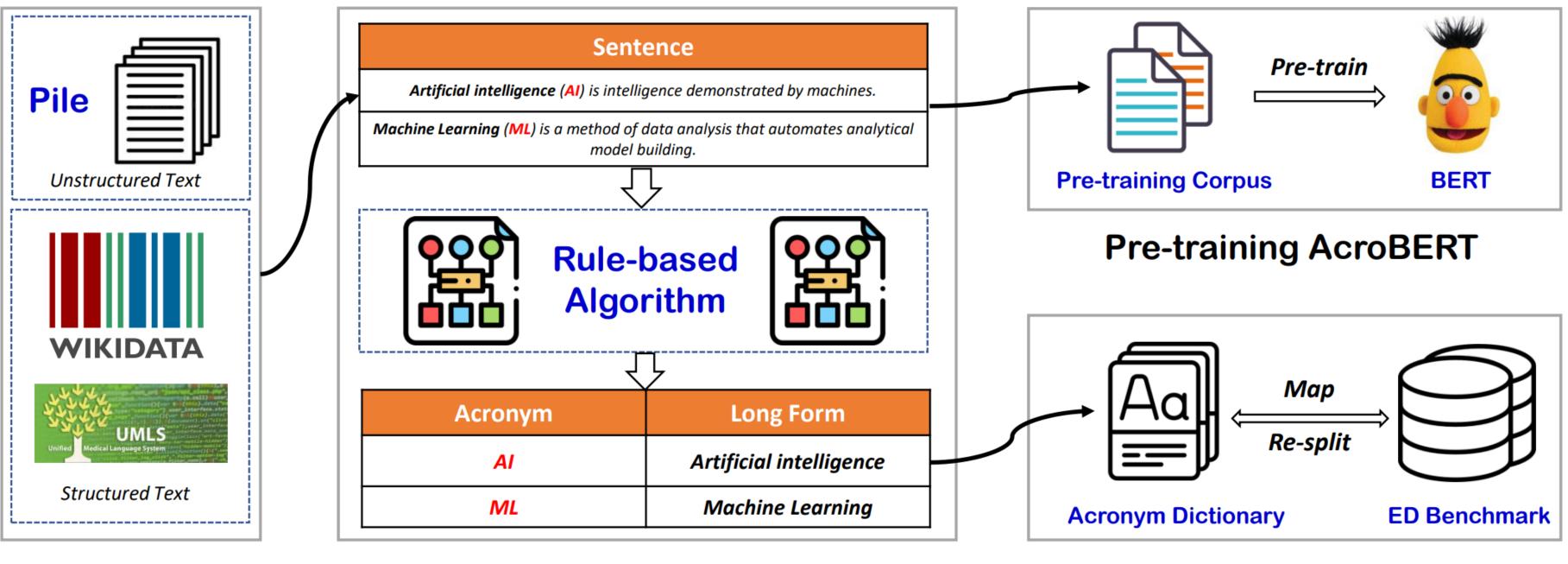


ID	Long Form	Popularity	Domain
1	Artificial Intelligence	****	Computer Science
2	Adequate Intake	$\star \star \star \star$	Food and Nutrition
3	Aromatase Inhibitor	$\star \star \star$	Chemistry
4	Apoptotic Index	$\star \star \star$	Biomedicine
5	Asynchronous Irregular	$\star \star \star$	Neuroscience
6	Amnesty International	$\star\star$	Organization
7	Anterior Insula	$\star\star$	Biomedicine
8	Air India	$\star\star$	Organization
9	Article Influence	$\star\star$	Science
 2243	Agricultural Implement	\star	Agriculture

Existing acronym disambiguation benchmarks and tools are limited to specific domains, and the size of prior benchmarks is rather small



Constructing GLADIS



838 GiB Corpora

Acronym Extraction

- To accelerate the research on acronym disambiguation, we construct a new
- benchmark named GLADIS (a General and Large Acronym DIS ambiguation benchmark)
- with three components and a pre-trained model named AcroBERT

AD Dataset Construction

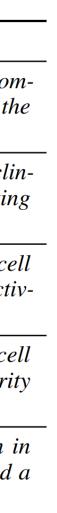
Data Source

Subset	Domain	Size (GiB)
Pile-CC	Web Archive files	227.12
Books3	Books	100.96
Github	Open-source codes	95.16
PubMed Central	Biomedical articles	90.27
OpenWebText2	Reddit submissions	62.77
ArXiv	Research papers	56.21
FreeLaw	Legal proceedings	51.15
Stack Exchange	Question-answer texts	32.20
USPTO Backgrounds	Patents	22.90
PubMed Abstracts	Biomedical abstracts	19.26
OpenSubtitles	Subtitles	12.98
Gutenberg (PG-19)	Western literatures	10.88
DM Mathematics	mathematical problems	7.75
Wikipedia (en)	Wikipedia pages	6.38
BookCorpus2	Books	6.30
Ubuntu IRC	Chatlog data	5.52
EuroParl	Proceedings	4.59
HackerNews	Comments of social news	3.90
YoutubeSubtitles	YouTube subtitles	3.73
PhilPapers	Philosophy publications	2.38
NIH ExPorter	Awarded applications	1.89
Enron Emails	Emails	0.88
Wikidata Alias	Alias Table	11.00
UMLS Concept	Biomedical Vocabulary	1.96
Total	-	838.14

We use 838GiB data to construct our new acronym dictionary

Acronym	Long Form	Provenance
ELEC	Election Law Enforcement Commission	Christie, some legislators and the state Election Law Enforcement Commission (ELEC), have joined the comptroller in voicing support for the elimination of the loophole.
ISR	in-stent restenosis	Although conventional stents are routinely used in clinical procedures, clinical data shows that these stents are not capable of completely preventing in-stent restenosis (ISR) or restenosis caused by intimal hyperplasia.
IL-6	interleukin-6	Consistent blood markers in afflicted patients are normal to low white cell counts and elevated interleukin-6 (IL-6) levels which, among its many activities, signal the liver to increase synthesis and secretion of CRP.
PCP	Planar cell polarity	Establishment of photoreceptor cell polarity and ciliogenesis Planar cell polarity (PCP)-associated Prickle genes (Pk1 and Pk2) are tissue polarity genes necessary for the establishment of PCP in Drosophila.
DEP	dielectrophoretic	They included: a particle counter, trypan blue exclusion (Cedex), an is situ bulk capacitance probe, an off-line fluorescent flow cytometer, and prototype dielectrophoretic (DEP) cytometer.
AQP3	aquaporin3	The laxative effect of bisacodyl is attributable to decreased aquaporin 3 expression in the colon induced by increased PGE2 secretion from macrophages. The purpose of this study was to investigate the role of aqua porin3 (AQP3) in the colon in the laxative effect of bisacodyl.

Schwartz and Hearst, 2002^[11]



Al is intelligence demonstrated by machines

WikilinksNED

General

We adapt the existing Entity Disambiguation datasets by replacing the long form of entity with the acronym

Artificial Intelligence is intelligence demonstrated by machines

Entity Disambiguation Dataset

WikiData

MedMentions SciAD Scientific **Biomedical**

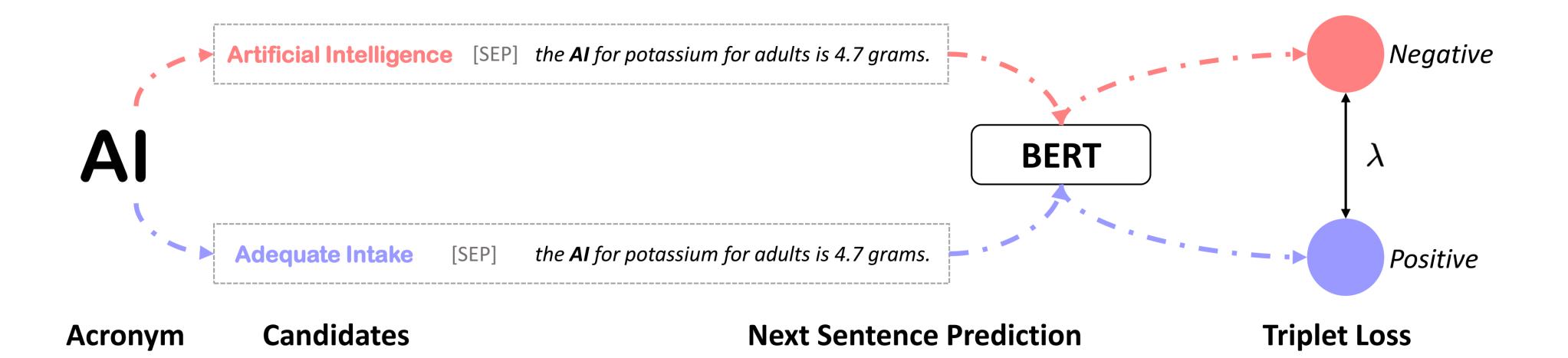
Soda

Components in GLADIS

	Source	Desc
Acronym Dictionary	Pile (MIT license), Wikidata, UMLS	1.6 million acronyms and 6.4 million long forms
Three Datasets	WikilinksNED Unseen, SciAD(CC BY-NC-SA 4.0), Medmentions(CC0 1.0)	three AD datasets that cover general, scientific, biomedical domains
A Pre-training Corpus	Pile (MIT license)	160 million sentences with acronyms
AcroBERT	BERT-based model	the first pre-trained language model for general acronym disambiguation

Statistics of our GLADIS benchmark

AcroBERT



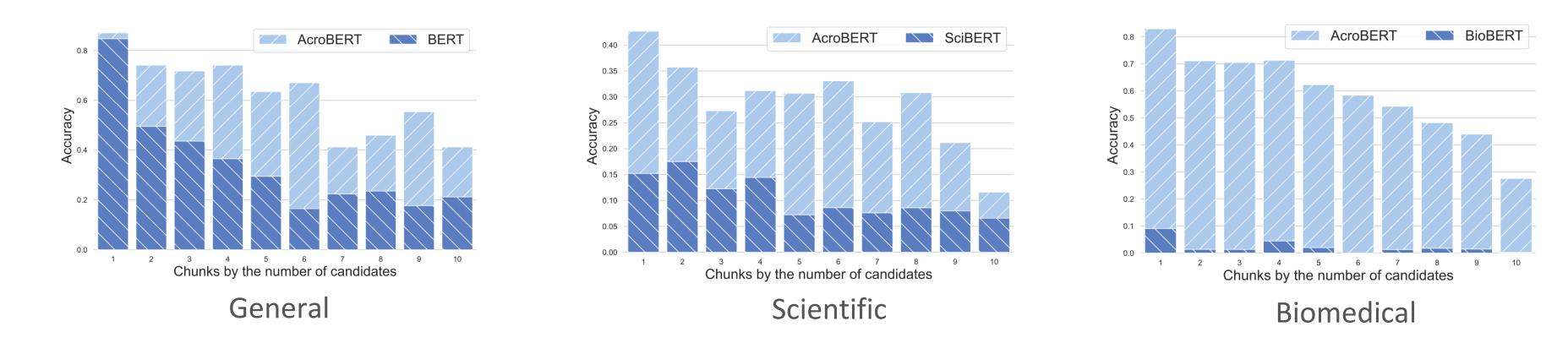
Currently, there is no other pre-trained model for general disambiguation. Our approach is the first that capitalizes on large-scale corpora and pre-training

AcroBERT is pre-trained by using triplet loss

Experimental results

IP PARIS

Model	General			Scientific			Biomedical			Avg				
	D	ev	Te	est	D	ev	Te	est	D	ev	Te	est		
	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc
BM25 (1995)	29.9	32.6	35.5	25.8	14.1	5.4	17.1	10.7	13.1	8.3	17.0	14.3	21.1	16.2
FastText (2017)	11.3	12.9	18.7	12.7	3.3	0.9	5.7	2.5	0.2	0.1	1.3	0.7	6.8	5.0
MadDog (2021)	28.1	11.7	29.9	23.1	17.8	15.5	22.4	17.9	33.8	19.3	41.2	35.9	28.9	20.6
BERT (2018)	32.3	32.5	37.7	28.2	15.1	5.8	17.6	9.3	3.1	1.3	3.5	2.1	18.2	13.2
Popularity-Ours	35.2	39.1	39.0	43.2	5.5	22.9	4.9	12.3	46.0	61.3	49.9	54.0	30.1	38.8
AcroBERT	74.7	78.8	70.0	72.0	26.9	36.6	28.8	27.4	58.4	66.0	59.9	61.4	53.1	57.0



AcroBERT significantly outperforms existing systems across multiple domains

Conclusion

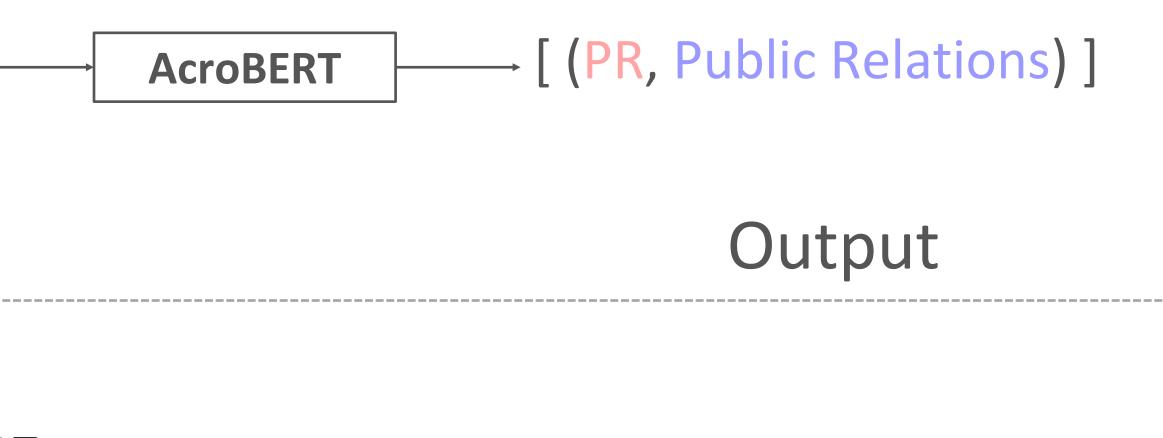
More often than not, PR is a preemptive process. Celebrity publicists are paid lots of money to keep certain stories out of the news.

Input

Paper

AcroBERT

We have presented GLADIS, a challenging and large benchmark for AD • We have also proposed AcroBERT, the first pre-trained model for general AD



Luropear

Chen, Lihu, Gaël Varoquaux, and Fabian M. Suchanek. "GLADIS: A General and Large Acronym Disambiguation Benchmark" In Proceedings of the EACL 2023.

Outline

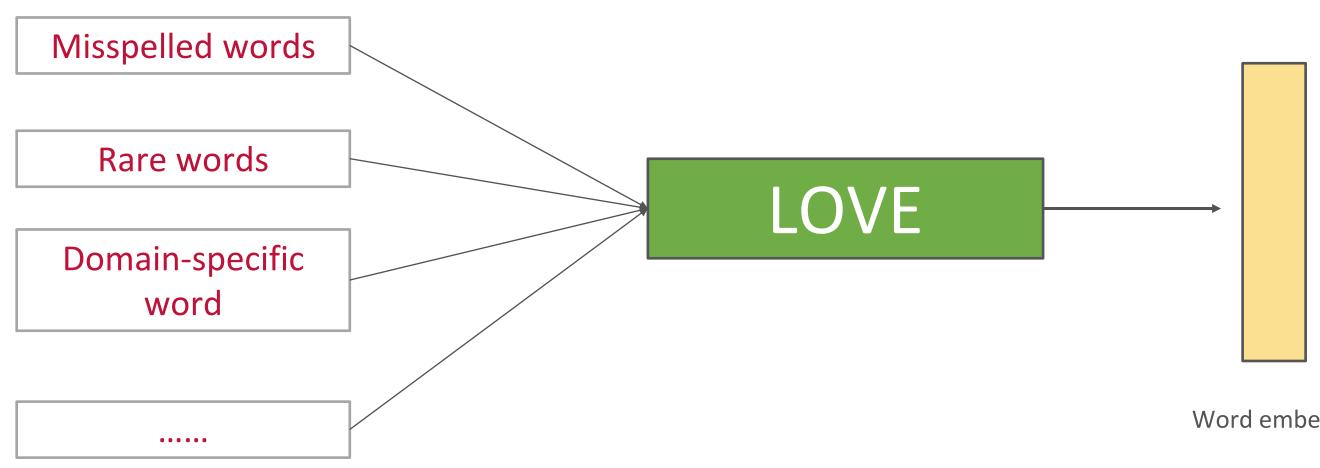
Q: Can we use a small model to approach the performance of a big model? \rightarrow Efficiency

Q: How to develop a single disambiguation system adapted to multiple domains? — Generalizability

Q: Are existing systems robust to out-of-vocabulary

problems? -> Robustness

LOVE means Learning Out-of-Vocabulary Embeddings.



LOVE can generate embeddings for arbitrary words

Word embedding

Motivation

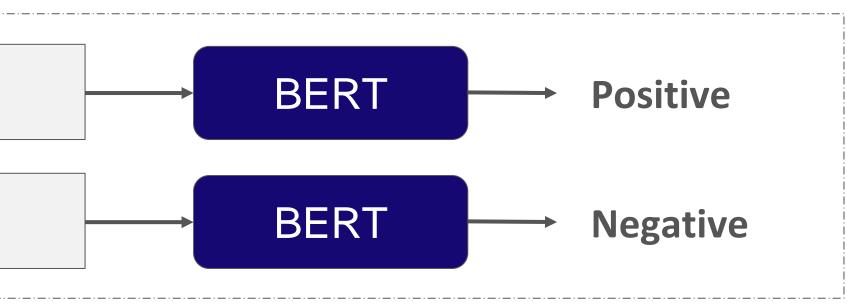
brittle when faced with Out-of-Vocabulary (OOV) words.

altogether, this is successful as a film

altogether, this is succesful as a film

Minor character perturbations can flip the prediction of a model!

State-of-the-art NLP systems rely on pre-trained language models, but these are

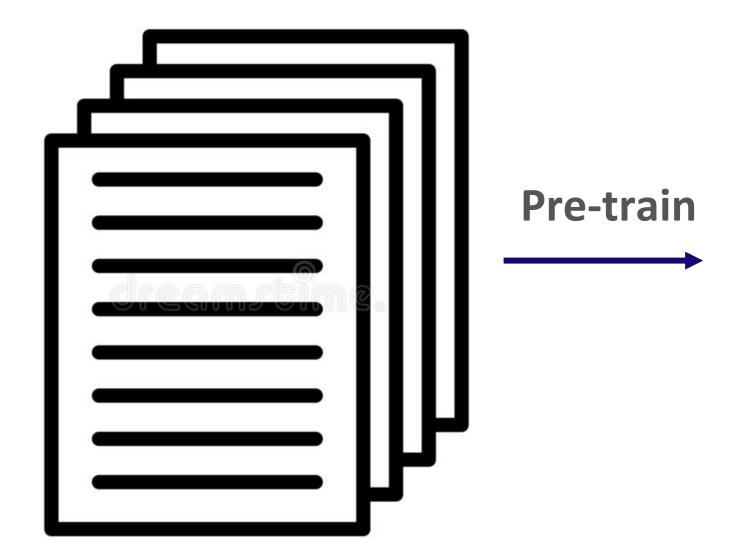


IP PARIS

THE NORDF PROJE

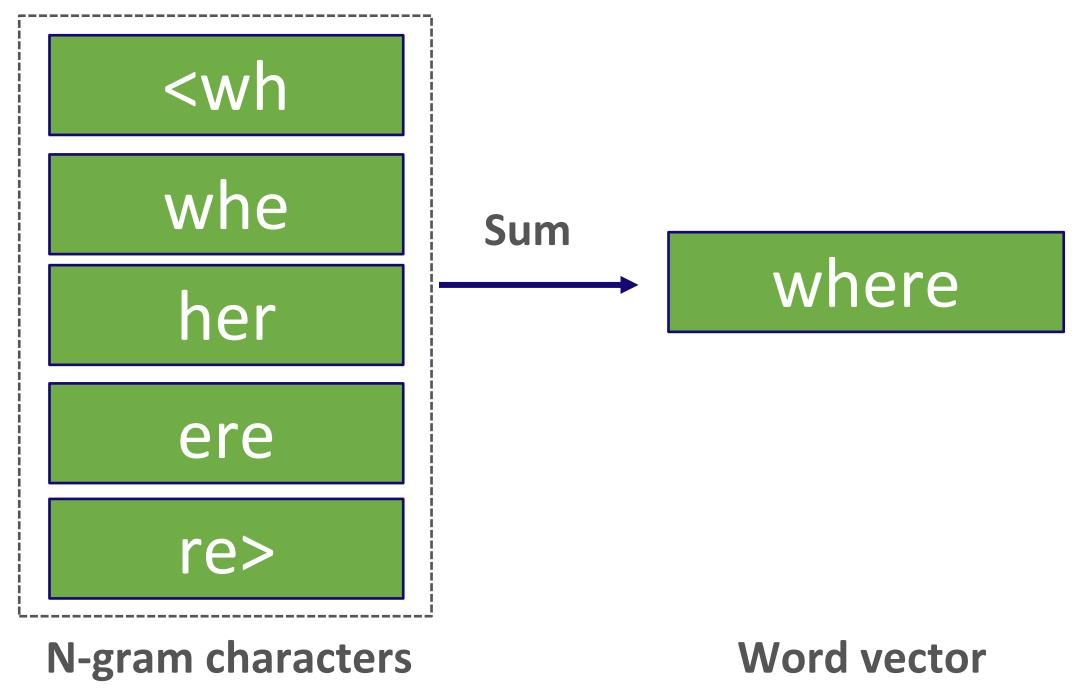
Soda

Existing Work

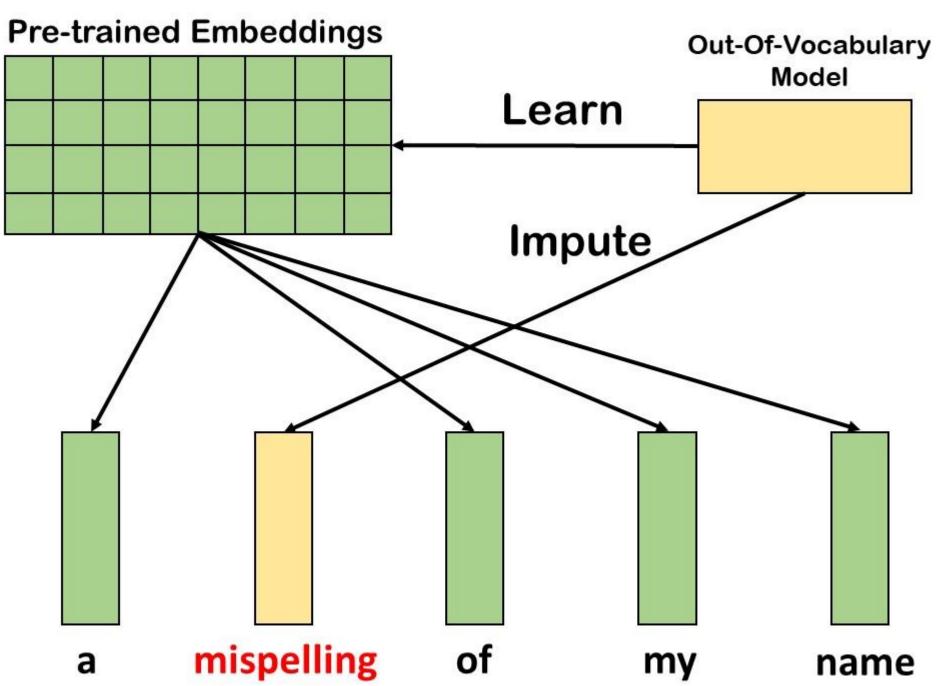


Large-scale corpora

Pretraining word embeddings with morphological features: FastText ^[4], CharacterBERT ^[8], CharBERT ^[9]



Existing Work



Mimicking the behavior of pre-trained embeddings using only the surface form: MIMICK ^{[5],} Bos ^[6], KVQ-FH ^[7].

IP PARIS

	Input	Encoder	Loss
MIMICK (2017)	<pre>character sequence {s,p,e,l,l}</pre>	RNNs	$\mathcal{L}_{ ext{dis}}$
BoS (2018)	<pre>n-gram subword {spe,pel,ell}</pre>	SUM	$\mathcal{L}_{ ext{dis}}$
KVQ-FH (2019)	<pre>adapted n-gram subword {spe,pel,ell}</pre>	Attention	$\mathcal{L}_{ ext{dis}}$

Table 1: Details of different mimick-like models, with the word spell as an example.

Existing Work

The limitations of existing mimic-like work

performance (FastText ~900M, BoS ~500M)

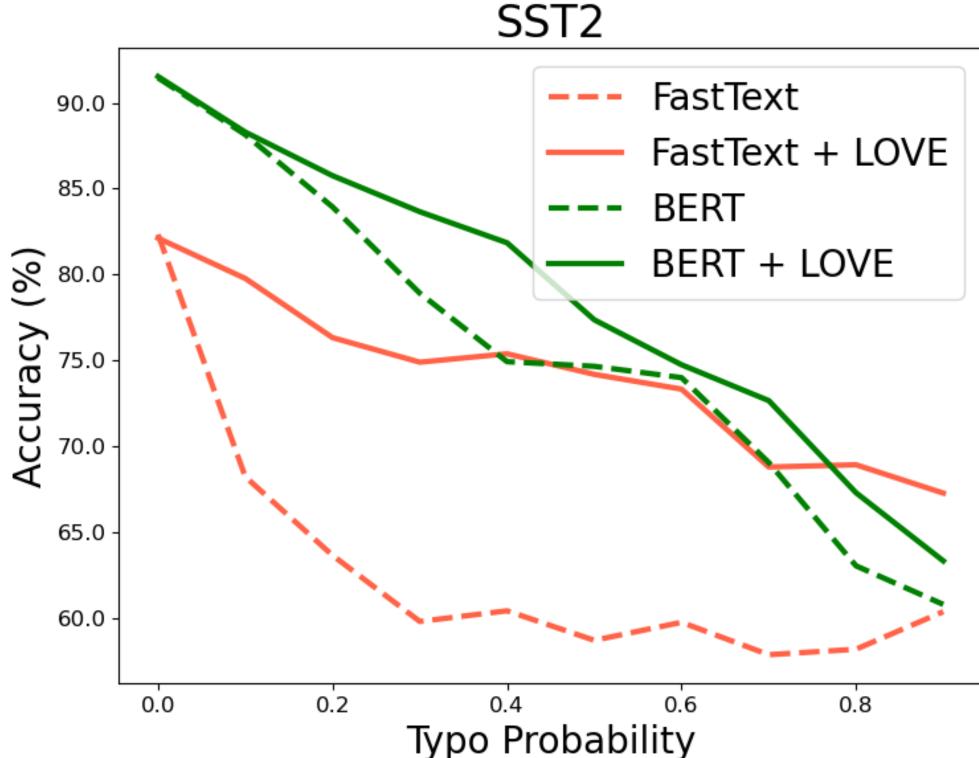
 Cannot be used with existing pre-trained language models such as **BERT**

- Remain bound in the trade-off between complexity and

A First Glance of LOVE

IP PARIS

Soda



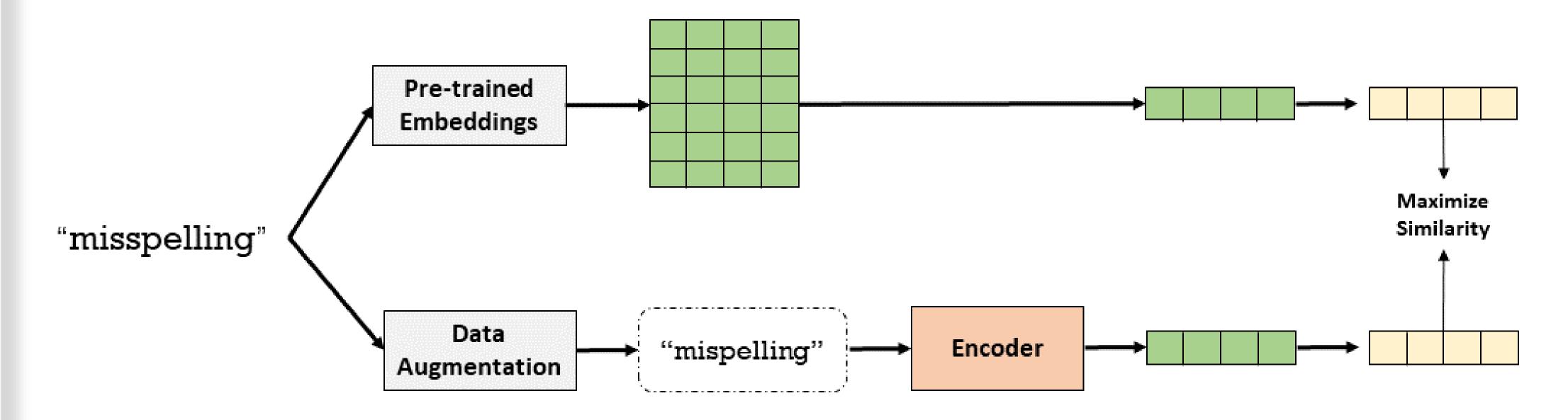
LOVE makes language models more robust with little cost!

FastText: 900M LOVE: 6.5M

Framework

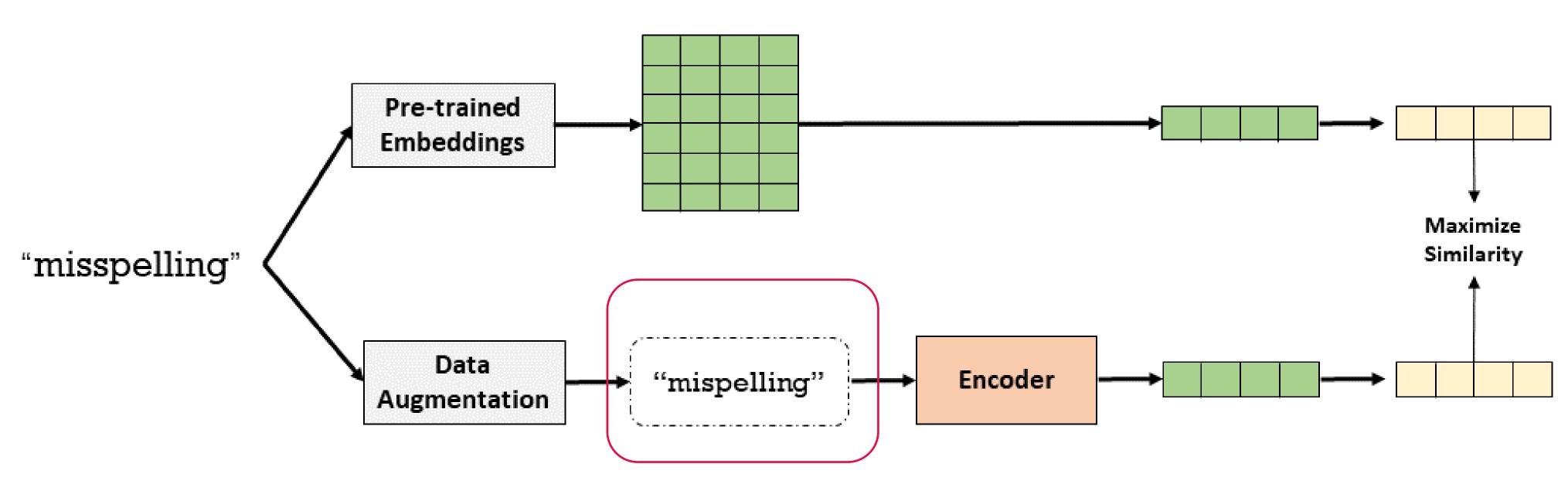
apart negative pairs.

(4) Data Augmentation; (5) Hard Negatives

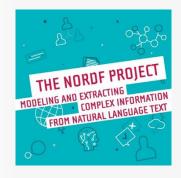


- LOVE (Learning Out-of-Vocabulary Embeddings) draws on the principles of contrastive
- learning to maximize the similarity between target and generated vectors, and to push

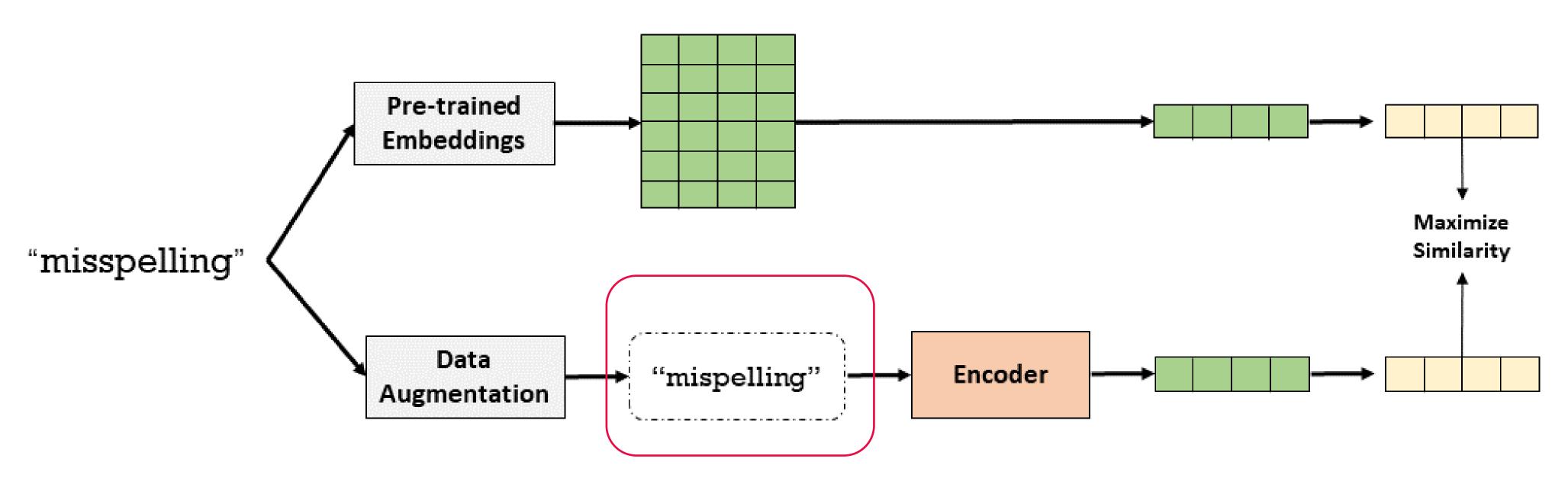
Five key components: (1) Mixed Input; (2) PAM encoder; (3) Contrastive Loss;



Characters cannot yield good word representations



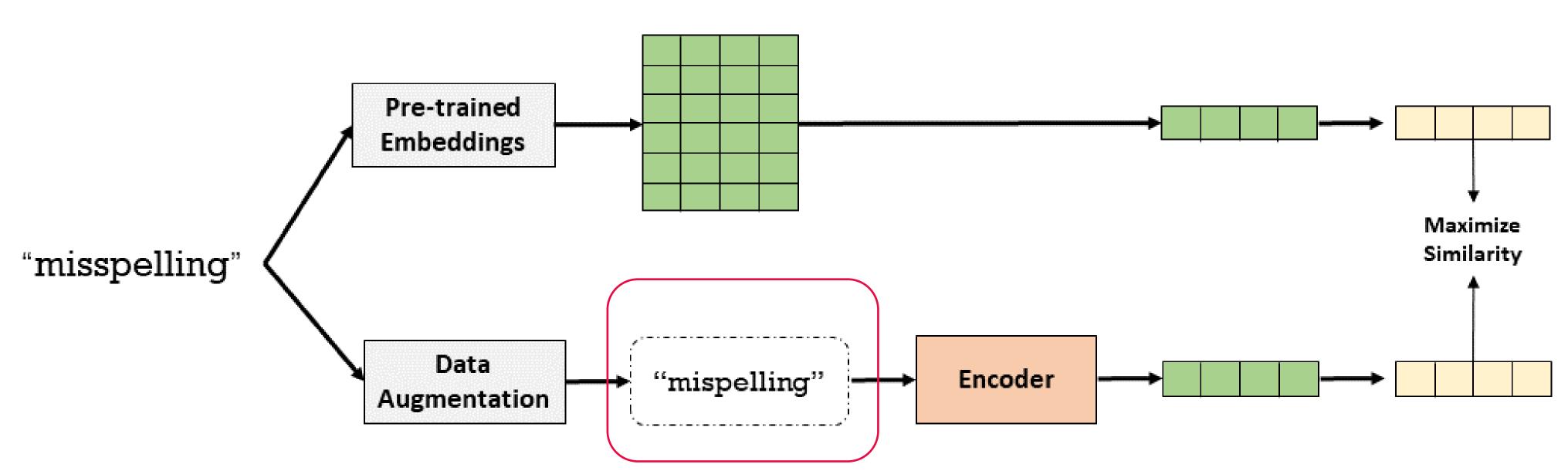
"misspelling" \implies {m, i, s, s, p, e, l, l, i, n, g}



llin, ling, missp, isspe, sspel, spell, pelli, ellin, lling

N-Gram Characters are effective while highly redundant

"misspelling" \Rightarrow {mis, iss, ssp, spe, pel, ell, lli, lin, ing, miss, issp, sspe, spel, pell, elli,



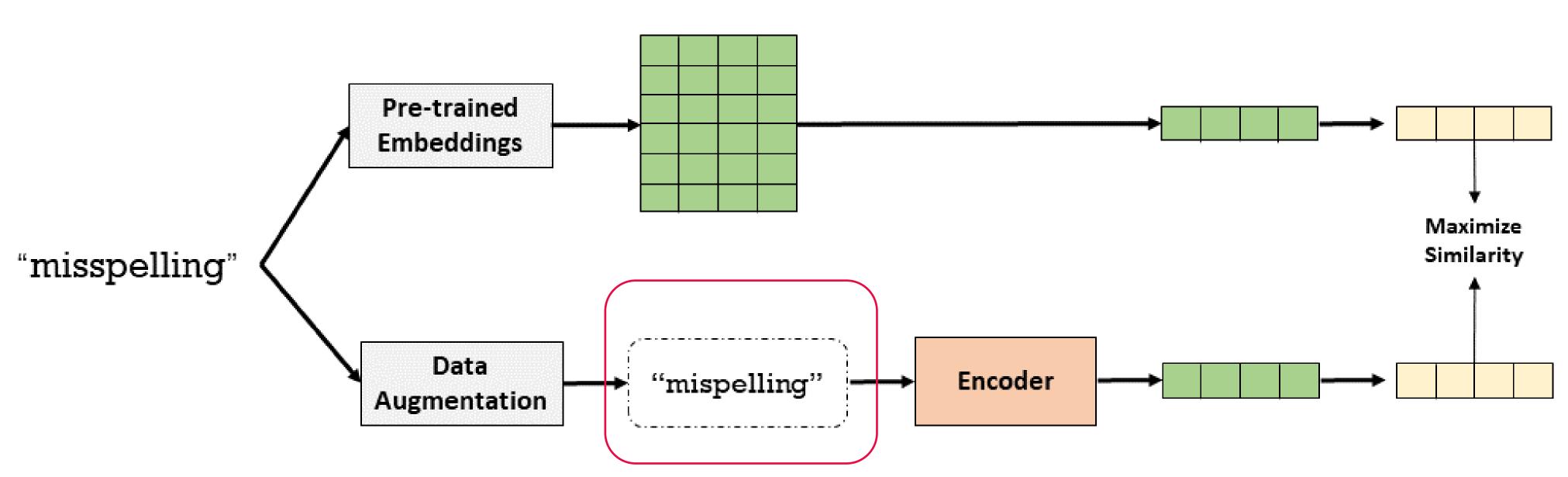
TELECOM Paris **一般**新聞 IP PARIS



Subwords are sensitive to typos

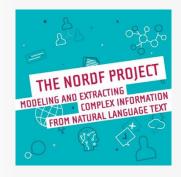
"*misspelling*" \implies {*miss,* ##*pel,* ##ling}

"mispselling" \implies {mi, ##sp, ##sell, ##ing }



"misspelling" \implies {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}

LOVE uses both the character sequence and subwords



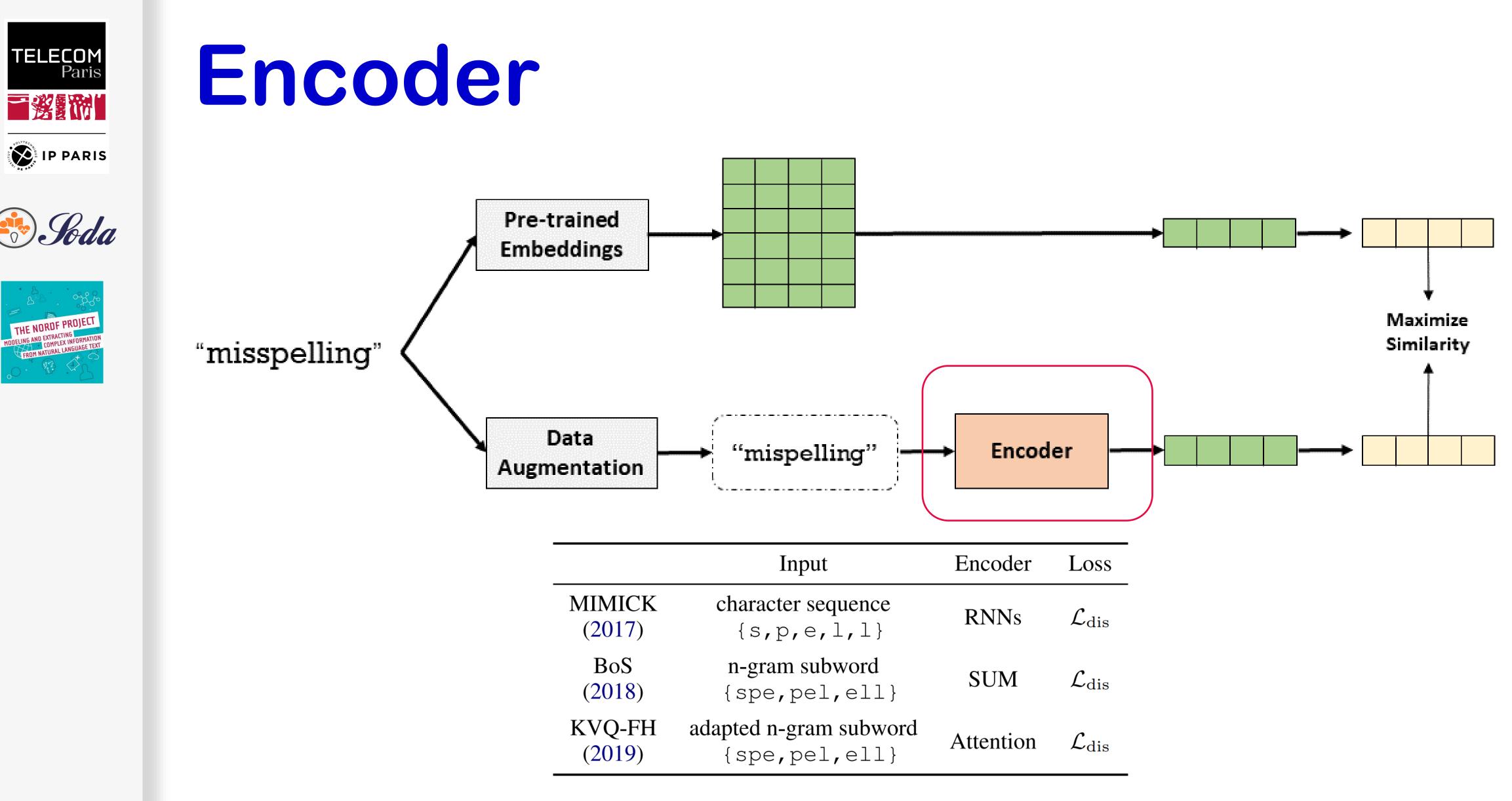
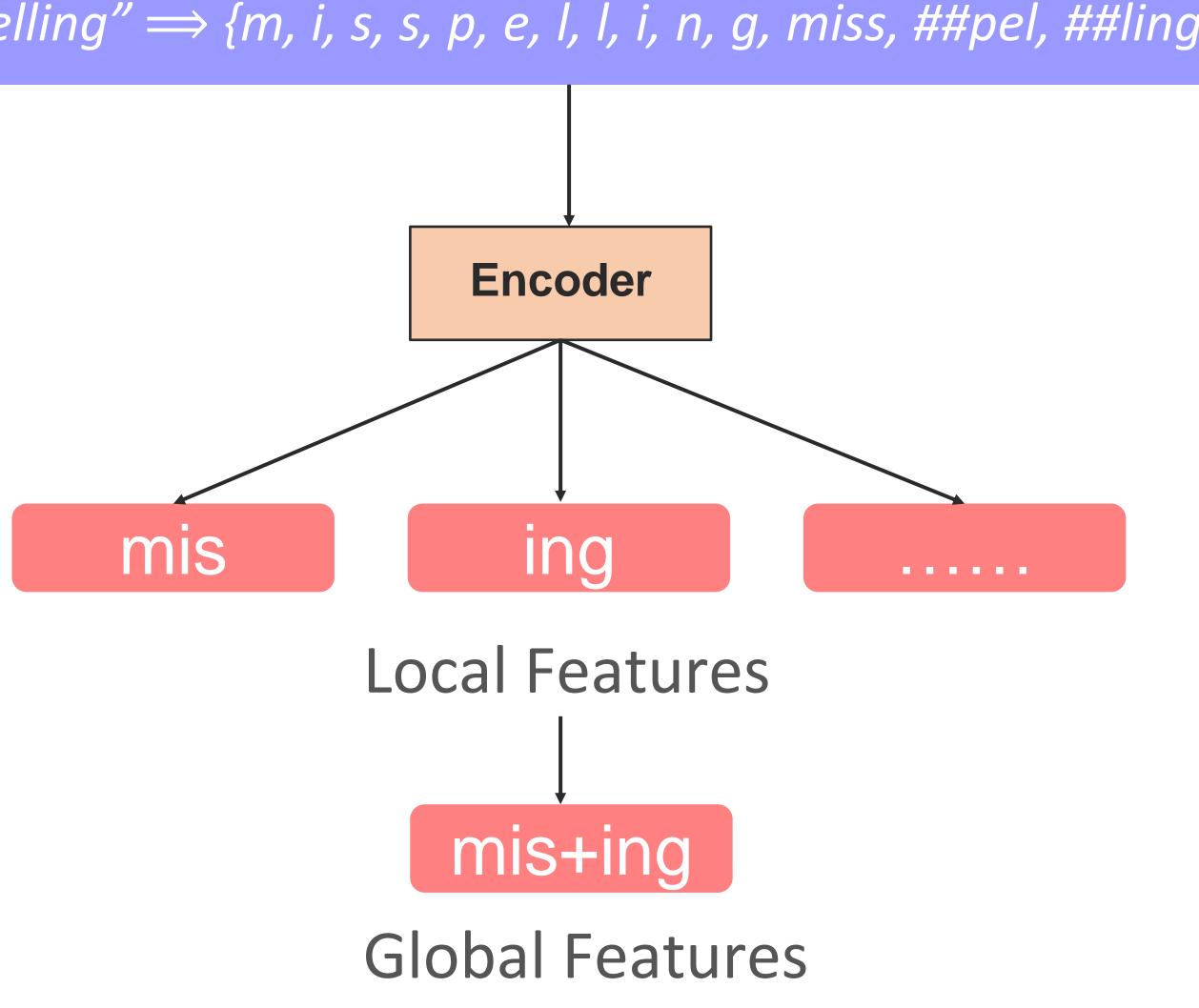


Table 1: Details of different mimick-like models, with the word spell as an example.

Encoder

"misspelling" \implies {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}



Encoder

Positional Attention Module (PAM)

"misspelling" \implies {m, i, s, s, p, e, l, l, i, n, g, miss, ##pel, ##ling}

3 $\bar{\mathbf{X}} = SA(PA(\mathbf{X})) \mathbf{W}^O$

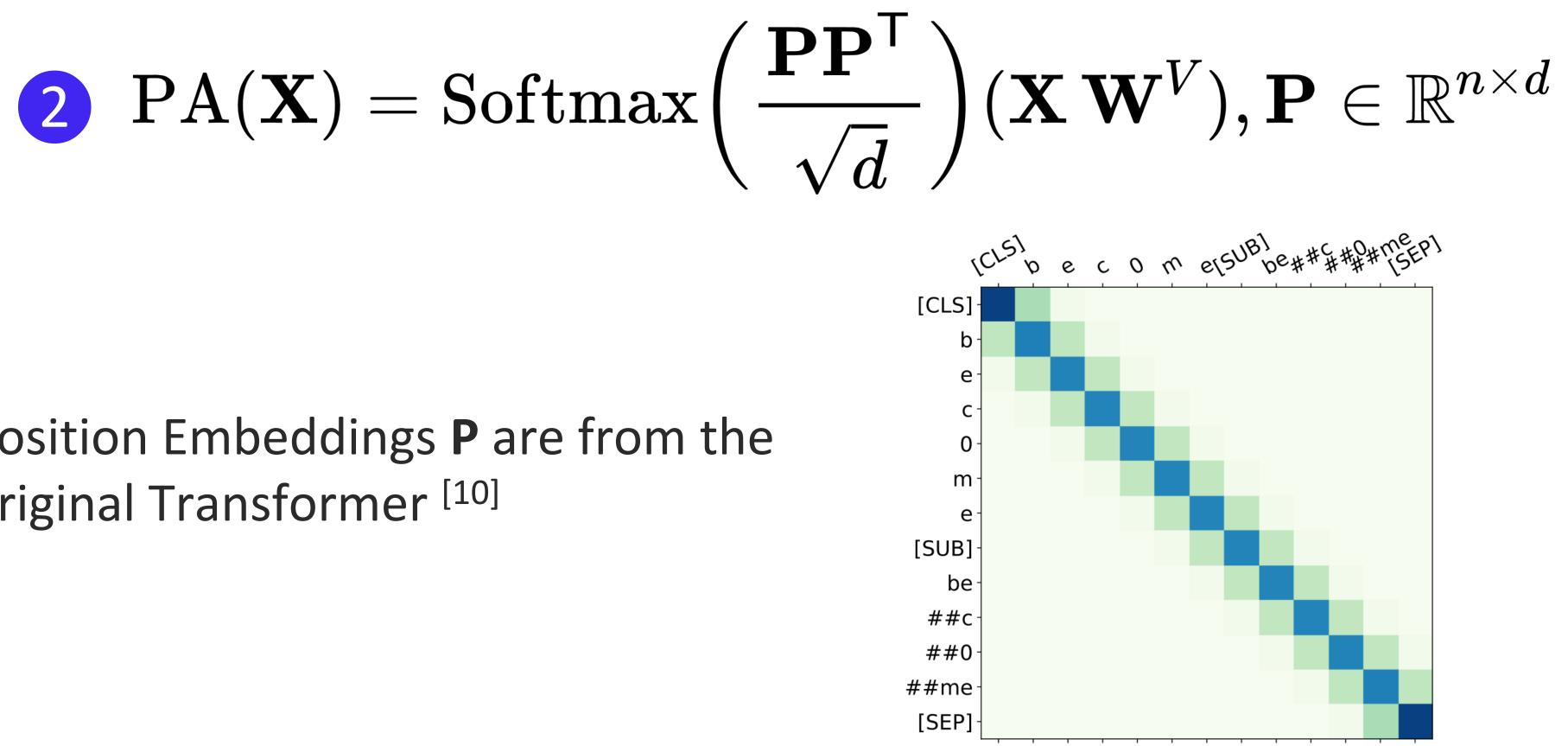
1 $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n imes d}, \mathbf{x}_i \in \mathbf{V} \in \mathbb{R}^{|\mathcal{V}| imes d}$

2 $PA(\mathbf{X}) = Softmax\left(\frac{\mathbf{PP}^{\mathsf{I}}}{\sqrt{d}}\right)(\mathbf{X}\mathbf{W}^{V}), \mathbf{P} \in \mathbb{R}^{n \times d}$

Encoder

"become" \implies {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

Position Embeddings **P** are from the original Transformer^[10]

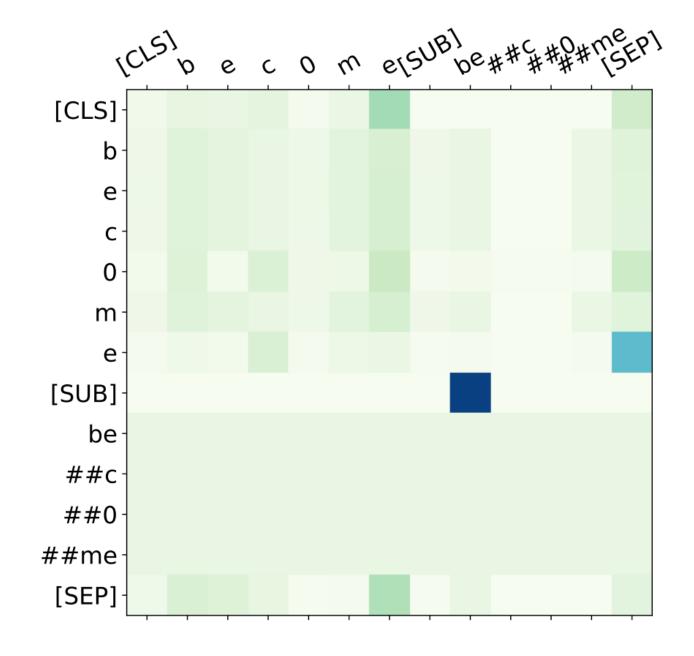


Encoder

"bec0me" ⇒ {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

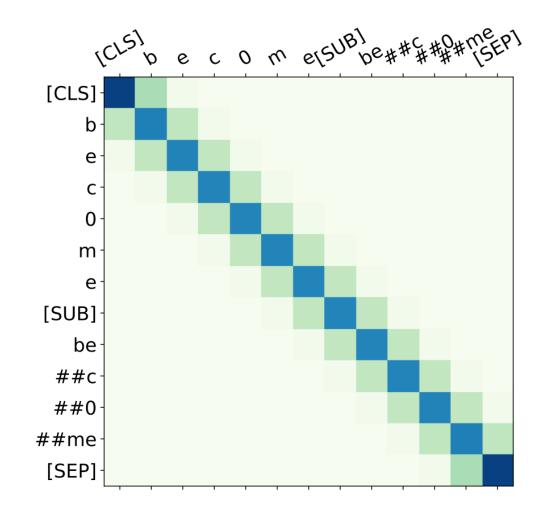
We use the self-attention mechanism in the original Transformer ^[10]

3 $\bar{\mathbf{X}} = \mathrm{SA}(\mathrm{PA}(\mathbf{X})) \mathbf{W}^O$

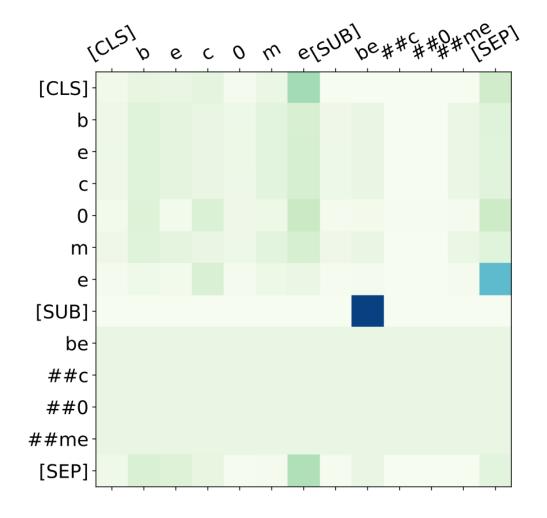


Encoder

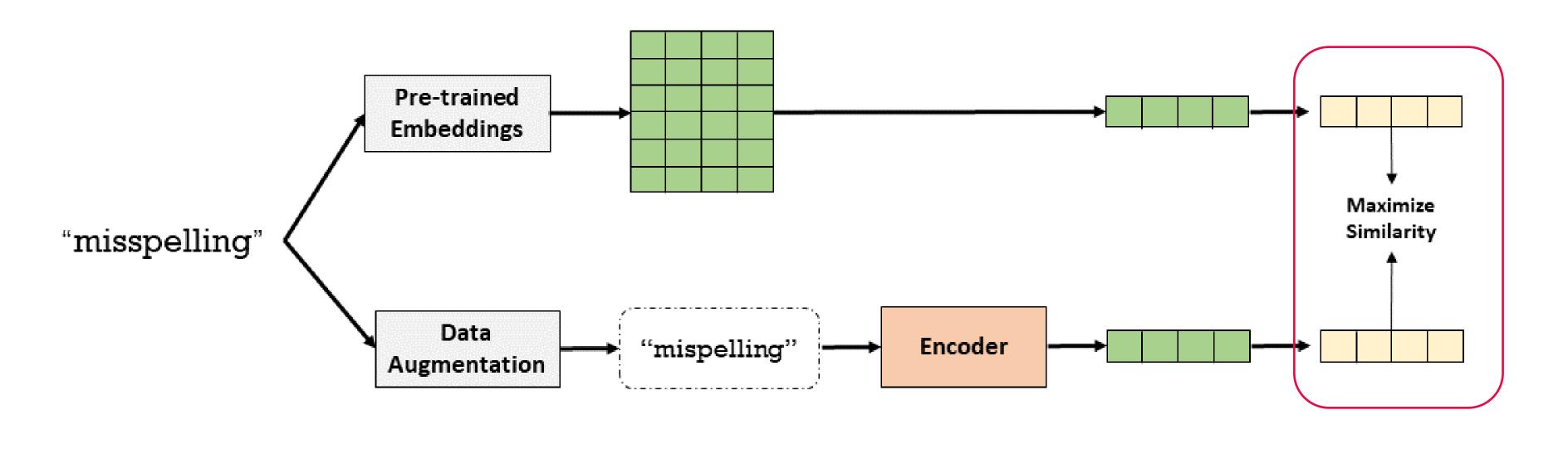
"bec0me" ⇒ {[cls], b, e, c, 0, m, e, [sub], be, ##c, ##0, ##me, [sep]}

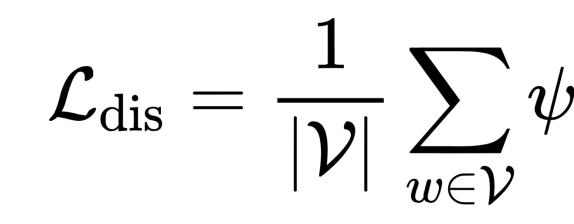


Our Positional Attention Module (PAM) extracts both local and global information



Loss Function



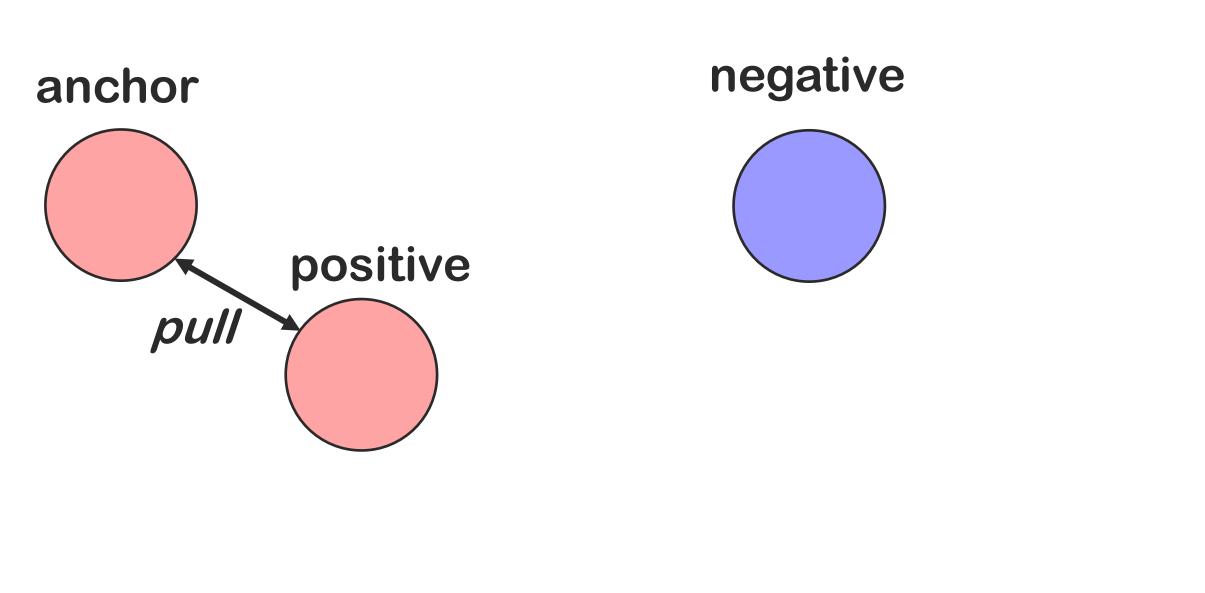


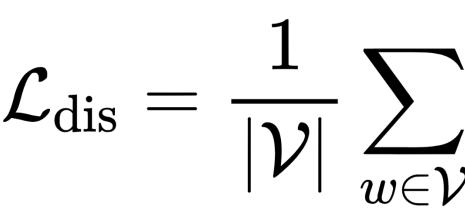
MSE only pulls positive word pairs closer while ignoring negative pairs.

$$\psi(\mathbf{u}_w,\mathbf{v}_w),\mathbf{u}\in\mathbb{R}^m,\mathbf{v}\in\mathbb{R}^m$$

Loss Function

IP PARIS



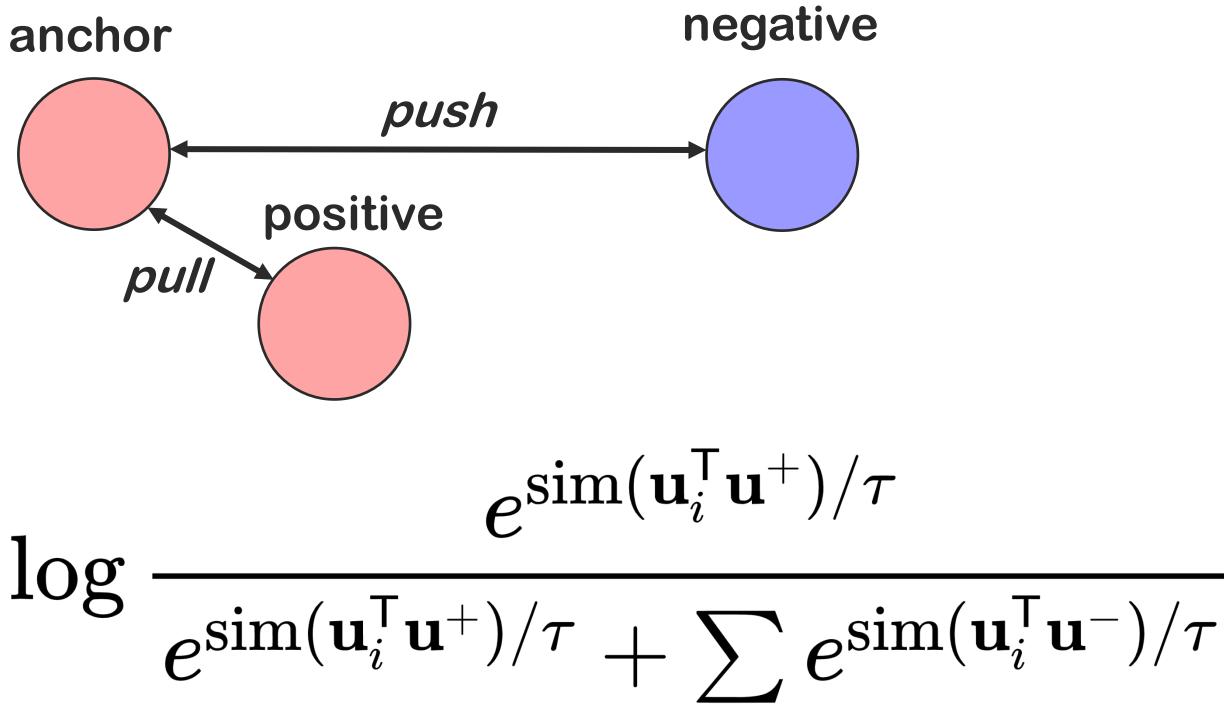


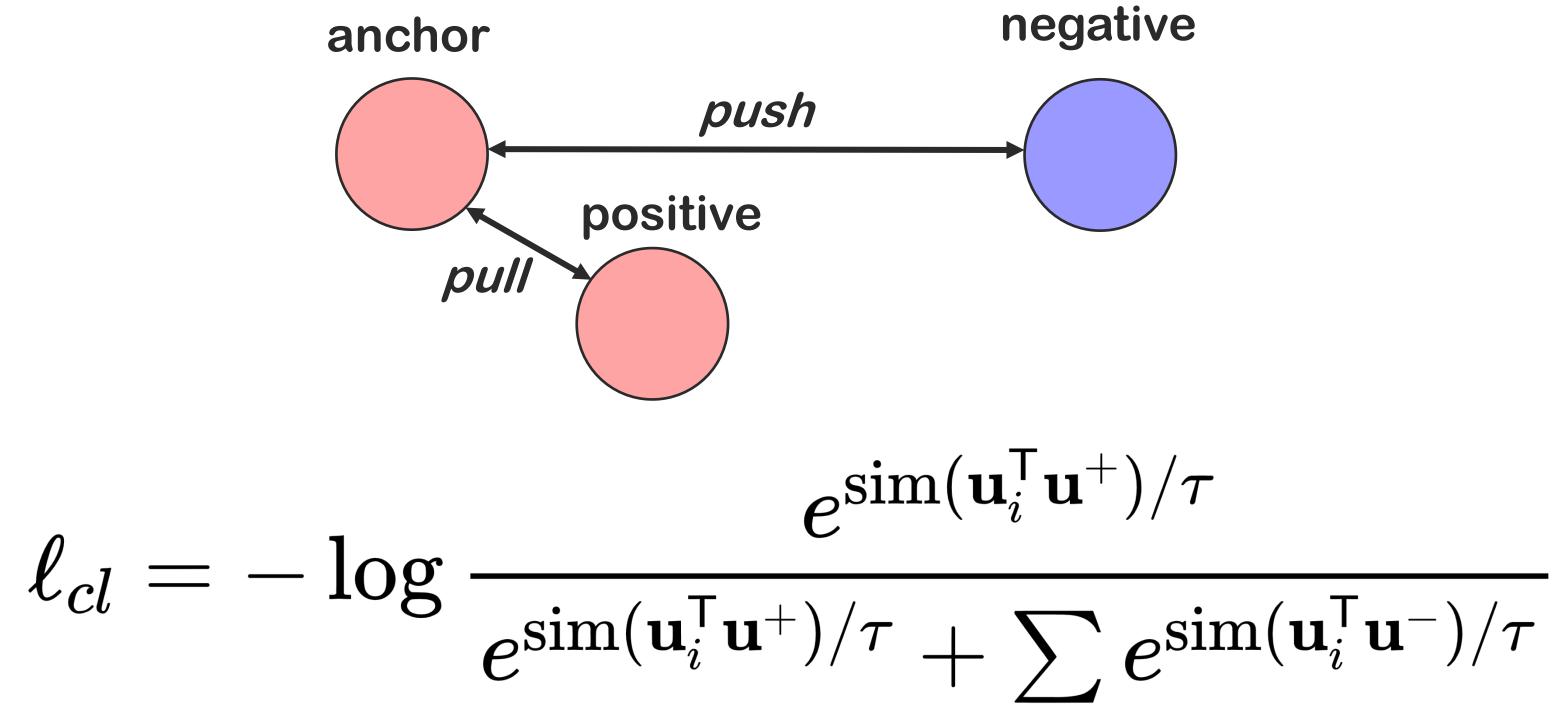
MSE only pulls positive word pairs closer while ignoring negative pairs.

$\mathcal{L}_{ ext{dis}} = rac{1}{|\mathcal{V}|} \sum_{w \in \mathcal{V}} \psi(\mathbf{u}_w, \mathbf{v}_w), \mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^m$

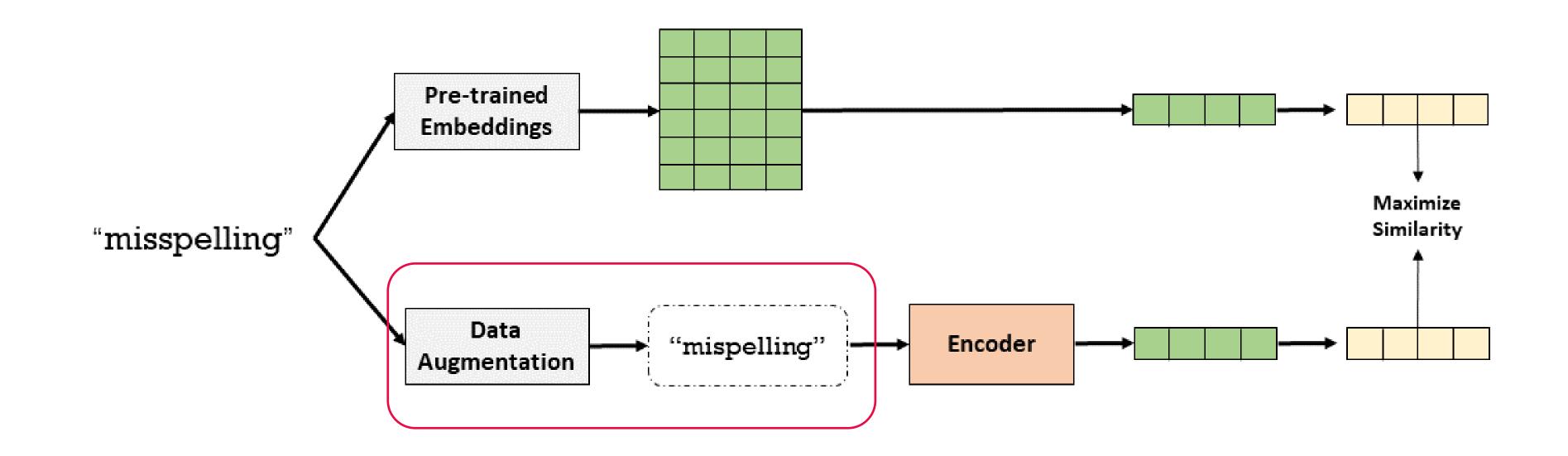
Loss Function

IP PARIS





LOVE adopts the contrastive loss instead of MSE



LOVE uses data augmentation to increase the diversity of training samples

Data Augmentation

IP PARIS

Swap

Keyboard

Synonym

LOVE uses data augmentation to increase the diversity of training samples

misspelling -> misspleling

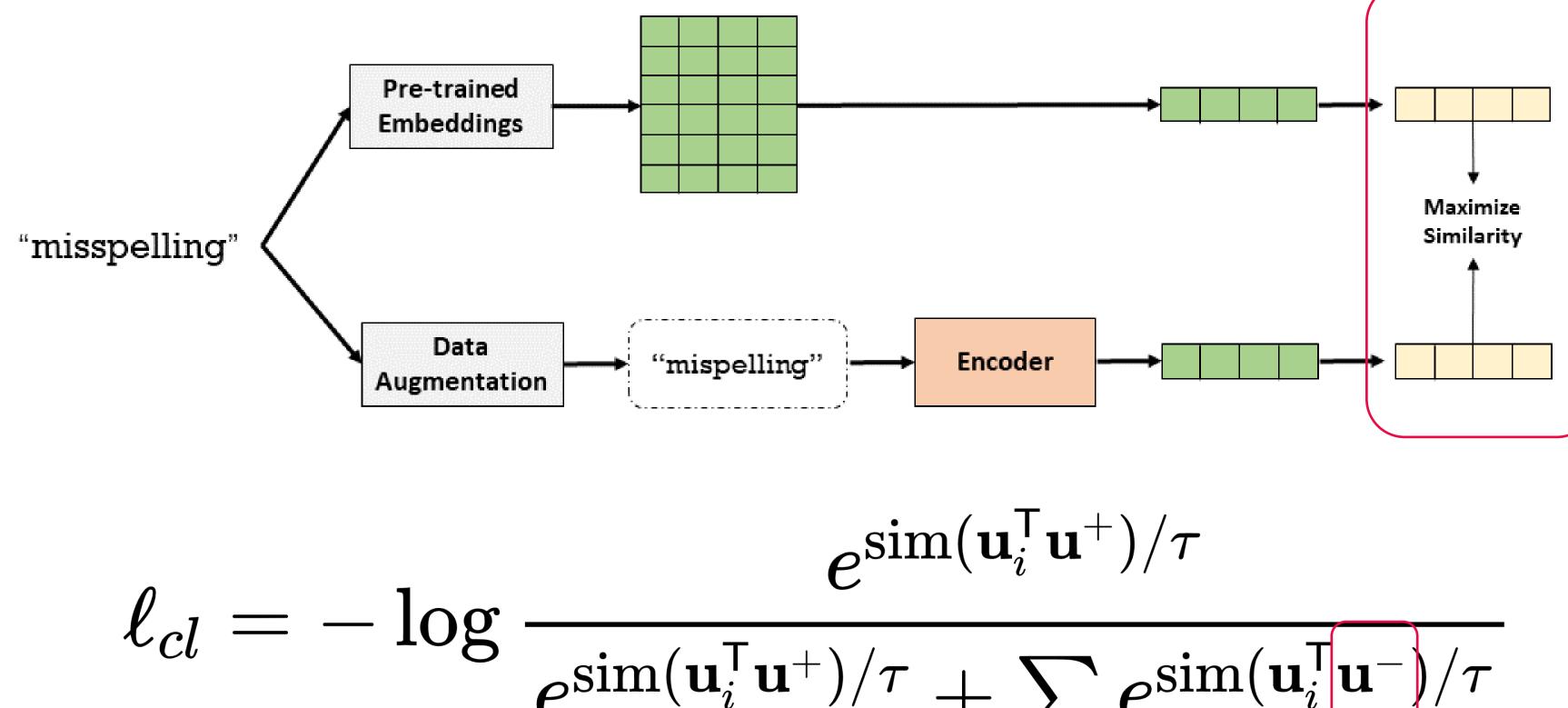
misspelling -> mispelling

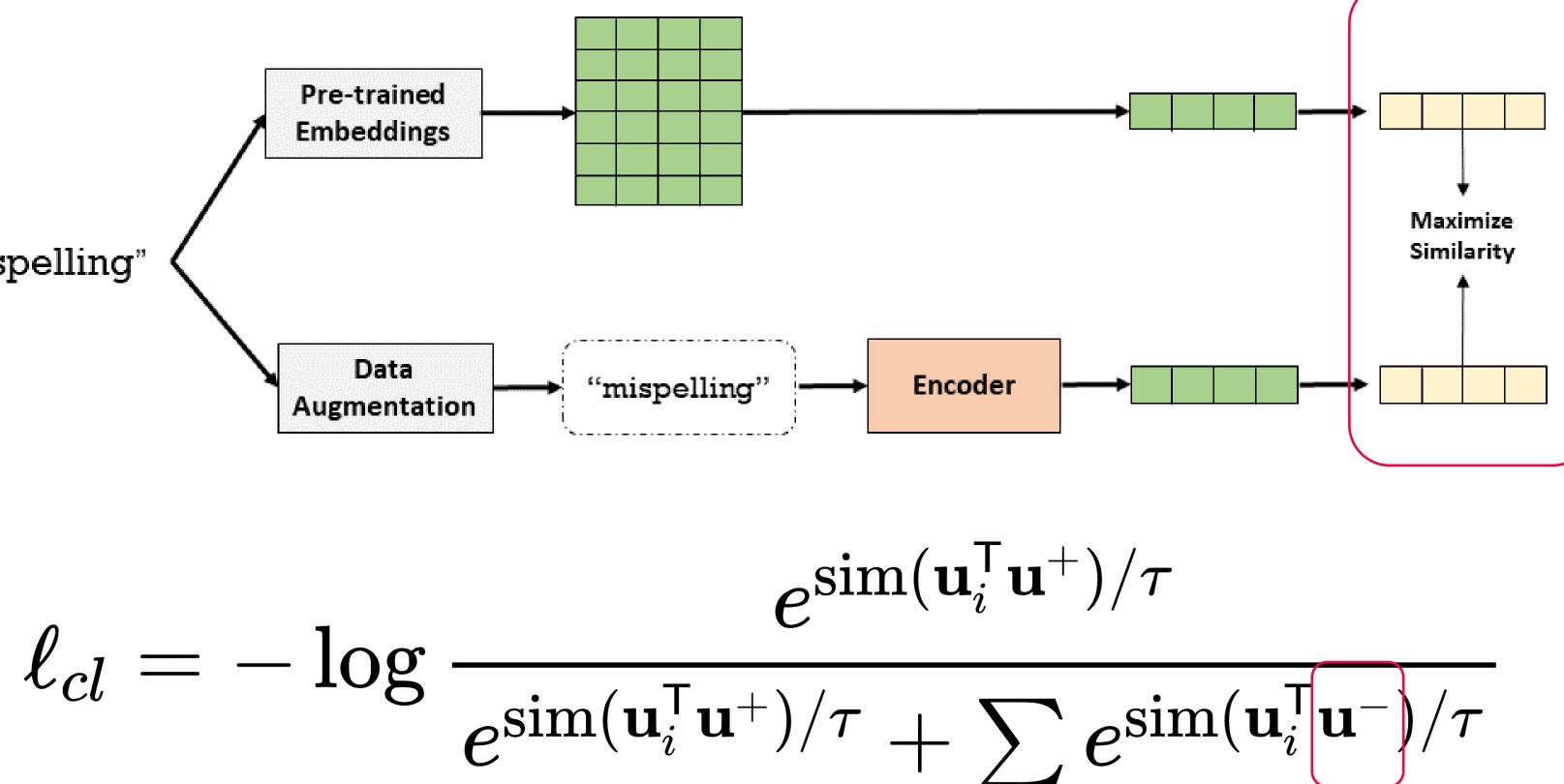
misspelling -> misspelling

misspelling -> mosspelling

misspelling -> heterography

Hard Negative





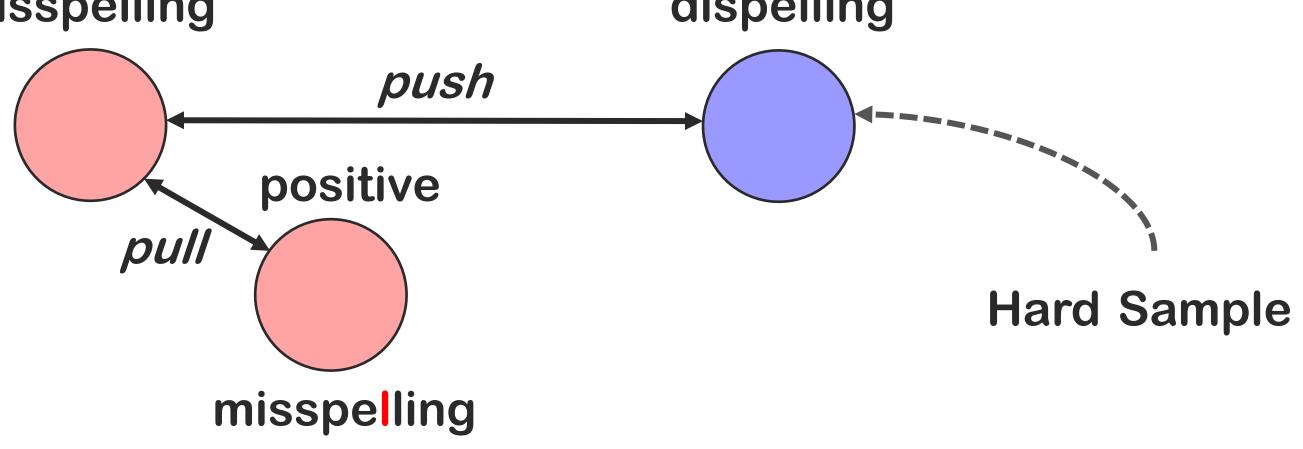
Hard Negative



IP PARIS

 $\ell_{cl} = -\log rac{-\log e^{\sin(r)}}{e^{\sin(r)}}$

misspelling



$$e^{\mathrm{sim}(\mathbf{u}_i^{\mathsf{T}}\mathbf{u}^+)/ au}$$
 $\overline{\mathbf{u}_i^{\mathsf{T}}\mathbf{u}^+)/ au} + \sum e^{\mathrm{sim}(\mathbf{u}_i^{\mathsf{T}}\mathbf{u}^-)/ au}$ dispelling

Performance on the intrinsic tasks

	paramet	ters			Word Si	milarity		Word Cluster			
	embedding	others	RareWord	SimLex	MTurk	MEN	WordSim	SimVerb	AP	BLESS	
FastText (2017)	969M	-	48.1	30.4	66.9	78.1	68.2	25.7	58.0	71.5	55.9
MIMICK (2017)	9M	517K	27.1	15.9	32.5	36.5	15.0	7.5	59.3	72.0	33.2
BoS (2018)	500M	-	44.2	<u>27.4</u>	<u>55.8</u>	<u>65.5</u>	<u>53.8</u>	<u>22.1</u>	41.8	39.0	<u>43.7</u>
KVQ-FH (2019)	12M	-	<u>42.4</u>	20.4	55.2	63.4	53.1	16.4	39.1	42.5	41.6
LOVE	6.3M	200K	42.2	35.0	62.0	68.8	55.1	29.4	<u>53.2</u>	<u>51.5</u>	49.7

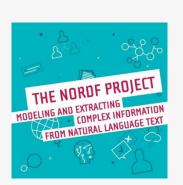
Performance on the extrinsic tasks

	parameters		SST2		MR		CoNLL-03		BC2GM		Avg
	embedding	others	original	+typo	original	+typo	original	+typo	original	+typo	
FastText (2017)	969M	-	82.3	60.5	73.3	62.2	86.4	66.3	71.8	53.4	69.5
Edit Distance	969M	-	-	67.4	-	68.3	-	76.2	-	66.6	-
MIMICK (2018)	9M	517K	69.7	62.3	73.6	61.4	68.0	65.2	56.6	56.7	64.2
BoS (2018)	500M	-	<u>79.7</u>	72.6	<u>73.6</u>	69.5	79.5	68.6	66.4	<u>61.5</u>	<u>71.5</u>
KVQ-FH (2019)	12M	-	77.8	71.4	72.9	66.5	73.1	70.4	46.2	53.5	66.5
LOVE	6.3M	200K	81.4	73.2	74.4	<u>66.7</u>	<u>78.6</u>	<u>69.7</u>	<u>64.7</u>	63.8	71.6

LOVE achieves similar or even better performances than prior competitors while using fewer parameters

	SST2								CoNLL-03							
Typo Probability	original	10%	30%	50%	70%	90%	original	10%	30%	50%	70%	90%	Avg			
Static Embeddings																
FastText FastText + LOVE	82.3 82.1	68.2 79.8	59.8 74.9	56.7 74.2	57.8 68.8	60.3 67.2	86.4 86.3	81.6 84.7	78.9 81.8	73.9 77.5	70.2 73.1	63.4 71.3	70.0 76.8			
Dynamical Embeddings																
BERT BERT + LOVE	91.5 91.5	88.2 88.3	78.9 83.7	74.7 77.4	69.0 72.7	60.1 63.3	91.2 89.9	89.8 88.3	86.2 86.1	83.4 84.3	79.9 80.8	76.5 78.3	80.7 82.1			

LOVE can be used in a plug-and-play fashion to robustify existing language models



TELECOM Paris

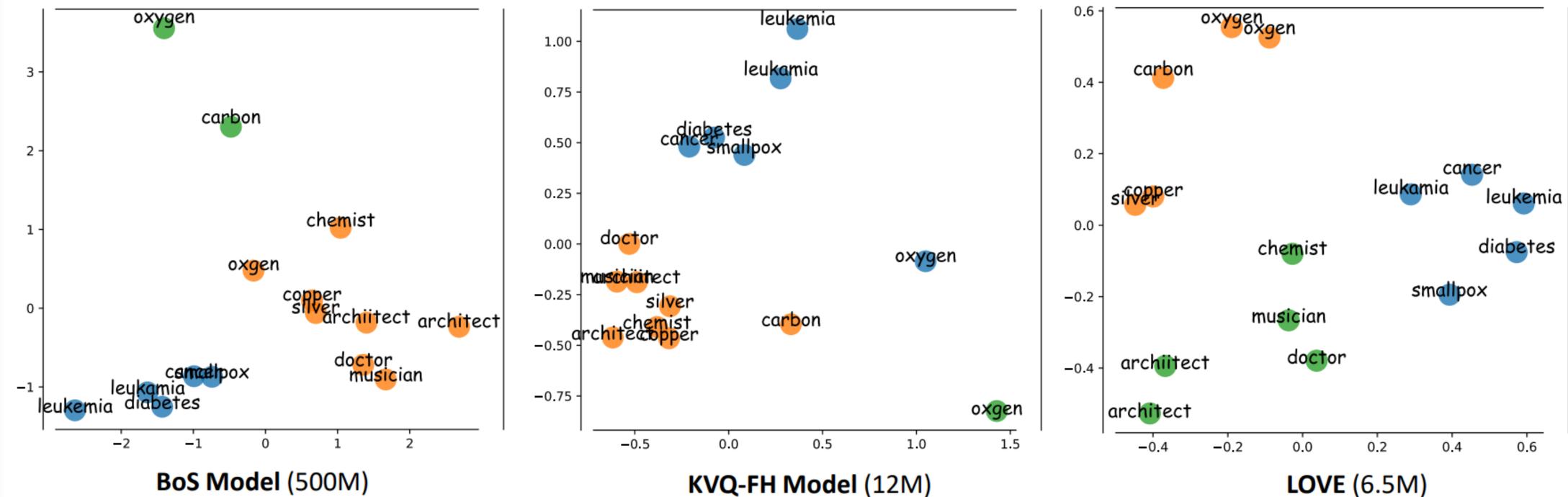
IP PARIS

Soda

Robust evaluation

Experimental Results

Visualizations of word clusters



LOVE can produce better word vectors while consuming fewer parameters

TELECOM Paris



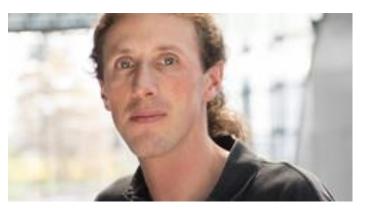
Conclusion

We present a simple contrastive learning framework, LOVE, which can make language models robust with little cost. There are several advantages of LOVE:

- No need of pre-training
- Small model size
- Plug and Play

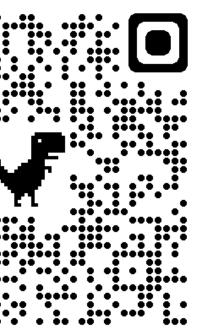
paper

Cost." Proceedings of ACL 2022.



Gaël Varoquaux

Fabian Suchanek



code

Chen, Lihu, Gael Varoquaux, and Fabian Suchanek. "Imputing Out-of-Vocabulary Embeddings with LOVE Makes LanguageModels Robust with Little

References I

[1] Schick, Timo, and Hinrich Schütze. Schick, Timo, and Hinrich Schütze. "Rare words: A major problem for contextualized embeddings and how to fix it by attentive mimicking." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 2020.

[2] Sun, Lichao, et al. "Adv-BERT: BERT is not robust on misspellings! Generating nature adversarial samples on BERT." arXiv. 2020.

[3] El Boukkouri, Hicham, et al. "CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters." International Conference on Computational Linguistics. 2020. [4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146. [5] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking word embeddings using subword rnns. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 102–112. [6] Jinman Zhao, Sidharth Mudgal, and Yingyu Liang. 2018. Generalizing word embeddings using bag of subwords. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 601–606.

References II [7] Shota Sasaki, Jun Suzuki, and Kentaro Inui. 2019. Subword-based compact reconstruction of word embeddings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3498–3508. [8] Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre Zweigenbaum, and Jun'ichi Tsujii. 2020. Characterbert: Reconciling elmo and bert for word-level open-vocabulary representations from characters. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6903–6915. [9] Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin Wang, and Guoping Hu. 2020. Charbert: Characteraware pre-trained language model. In Proceedings of the 28th International Conference on Computational Linguistics, pages 39–50. [10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30. [11] Ariel S Schwartz and Marti A Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. In Biocomputing 2003, pages 451–462. World Scientific.