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OUTLINE
• A (very brief) introduction to River

• Online clustering algorithms:

• Challenges and Solutions

• Approaches

• State-of-the-art algorithms

• Further steps and personal insights 
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https://hoanganhngo610.github.io/river-clustering.kdd.2022/

https://doi.org/10.1145/3534678.3542600
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REQUIREMENTS
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Process one sample at a time, and inspect it only once

Use a limited amount of memory

Work in a limited amount of time

Always ready to predict



LEARNING FROM DATA STREAMS
Supervised learning
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One sample at a time

Limited resources

Predict at any time
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A Python library for stream learning

● Incremental + adaptive methods

○ Supervised learning
Classification, Regression

○ Unsupervised learning
Anomaly detection, Clustering

● Drift detection

● Pipelines / Data transformers

● Evaluation / Metrics

● etc.

Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, 
Jesse Read, Talel Abdessalem, and Albert Bifet. 2021. River: machine learning for streaming data in Python. Journal of Machine Learning 

Research 22 (April 2021), 1–8. http://jmlr.org/papers/v22/20-1380.html

http://jmlr.org/papers/v22/20-1380.html


DESIGN PRINCIPLES
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● Pythonic

● Easy to use (any expertise level)

● Easy to extend
● Intended to work with other tools in the 

Python ecosystem
● Users: researchers and practitioners



AVAILABLE SOFTWARES
FOR ONLINE CLUSTERING

Very few implementations (only most prominent ones) and unified frameworks with 
multiple algorithms co-existing:

• Massive Online Analysis (MOA): Most popular framework, written by Bifet et al. 
(2010) in Java, including the most number (7) of clustering algorithms. 
However, one major disadvantage: only works well when information of data 
streams are previously known. 

• stream package: Written in R by Hahsler et al. (2018), with newer algorithms 
including D-Stream, DBSTREAM and evoStream.
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AVAILABLE SOFTWARES
FOR ONLINE CLUSTERING

Very few implementations (only most prominent ones) and unified frameworks with 
multiple algorithms co-existing:

• Subspace MOA framework: An extension of MOA from Java into R, written by 
Hassani et al. (2016), with extra algorithms including HDDStream and 
PreDeConStream.

• streamDM: Written by Huawei Noah’s Ark Lab (2015) with Spark Streaming, an 
extension of Spark engine. Including CluStream and StreamKM++, but no plans 
for any further implementation
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SOLUTION – RIVER

→ River comes into play, with a neat implementation that allows:

• Works with any arbitrary numerical data stream;

• Well-maintained, documented and includes various algorithms of different types.

Currently, River offers 6 clustering algorithms, including incremental K-Means, 
CluStream, DenStream, DBSTREAM, StreamKMeans (O'Callaghan et al., 2002) and 
evoStream (under a fully functional Pull Request) with a clear plan of further 
implementations.

Includes the most number of clustering algorithms apart from MOA.
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STRATEGY

Basically, finding clustering solutions is an optimization task, with the following 
principle strategies:

• Minimizing intra-cluster distances or radii of clusters (ensuring that objects within 
the same cluster are similar);

• Maximizing inter-cluster distances or heterogeneity (ensuring that objects within 
different clusters are well-separated);

• Maximizing likelihood estimates.

10



ARISING PROBLEMS

• In online clustering, historical data will be discarded and only information of formed 
clusters (cluster centres, number of points, linear sum, sum of squares, etc.) will be 
saved → Clustering algorithms are divided into two phases: ONLINE phase and 
OFFLINE phase.

Two-phase stream clustering with grid-based approach 
(Source: Matthias Carnein et al. 2017. An empirical comparison of stream clustering algorithms.)
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ARISING PROBLEMS

• Through time, the distribution of the stream will change. (also known as drift or 
concept drift) → Models can employ time-window models, which only keeps the 
most few recent data points to avoid bias. This approach can include damped, 
sliding, landmark or pyramidal models.

Two-phase stream clustering with grid-based approach 
(Source: Zhu Y. and Shasha D. 2002. Statstream: statistical monitoring of thousands of data streams in real life

and Silva J. A. et al. 2013. Data stream clustering: a survey.)
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APPROACHES
Matthias Carnein and Heike Trautmann. 2019. Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering 
Algorithms. Business and Information Systems Engineering 61, 3 (2019), 277-297. https://doi.org/10.1007/s12599-019-00576-5

• Distance-based approach: threshold the distance of the new observation to 
existing clusters, either to insert or initialize new clusters, including:

• Clustering Features (CFs), Extended CFs, Time-Fading CFs: BIRCH, CluStream, 
SDStream, ClusTree;

• Centroids, Medoids: StreamKM++ (coreset), STREAM, RepStream (graph of 
nearest neighbors);

• Competitive Learning: DBSTREAM.

• Density-based (Grid-based) approach: capture the density of observation in a grid, 
by separating the data space among all dimension, including:

• One-time or recursive partitioning: DUCStream, D-Stream, Stats-Grid;

• Hybrid Grid-Approach: HDCStream, Mudi-Stream;
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https://doi.org/10.1007/s12599-019-00576-5


APPROACHES

Matthias Carnein and Heike Trautmann. 2019. Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering 
Algorithms. Business and Information Systems Engineering 61, 3 (2019), 277-297. https://doi.org/10.1007/s12599-019-00576-5

• Model-based approach: Summarize the data stream as a statistical model, with a 
common area of research based on the Expectation Maximization (EM) algorithm. 
Others include the use of an incrementally-built classification tree or concepts from 
linear regression. Including CluDisStream, SWEM, COBWEB, Wstream, etc.

• Projected approach: This special approach deals with high dimensional data 
stream, addressing the curse of dimensionality. Including HPStream, HDDStream, 
and PreDeConStream along with their extensions.
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https://doi.org/10.1007/s12599-019-00576-5


MICRO-CLUSTERS

• Cluster Features CF (statistical summary structure)

• Maintained in online phase, input for offline phase

• Data stream x! , d dimensions

• Cluster Features vector includes

• N: number of points

• LS!: sum of values (for dimension j)

• SS!: sum of squared values (for dimension j)

• Easy to update, easy to merge

• Constant space irrespective to the number of 
examples!
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Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In 
SIGMOD’96: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Association for Computing 

Machinery, New York, NY, USA. https://doi.org/10.1145/233269.233324

https://doi.org/10.1145/233269.233324


WELFORD’S ALGORITHM

• Used as an alternative to cluster feature vectors, by calculating the 
variance incrementally

• Less prune to errors with large values and/or large number of 
observations

• Algorithm:

• Intitialize: 𝑥! = 0,M",! = 0. For any n > 1:

• x$ = x$%! +
&! %&!"#

$

• M",$ = M",$%! + (x$ − x$%!)(x$ − x$)

• Variance: '$,!
$%!
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HANDLING ADDITION AND 
SUBTRACTION

• Addition:

• n#$ = n# + n$

• x#$ =
%!&!'%"&"

%!"

• M(,#$ = M(,# +M(,$ +
*#%!%"
%!"

(𝛿 = x$ − x#)
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• Subtraction:

• n# = n#$ − n$

• x#$ =
%!"&!"+%"&"

%!

• M(,# = M(,#$ −M(,$ −
*#%!%"
%!"



EVOLUTION OF ONLINE 
CLUSTERING ALGORITHS
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Matthias Carnein and Heike Trautmann. 2019. Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithm. 
Business & Information Systems Engineering, 61 (2019), 277-297. https://doi.org/10.1007/s12599-019-00576-5.

https://doi.org/10.1007/s12599-019-00576-5


EVOSTREAM

• A fairly new online clustering algorithm.

• evoStream employs an evolutionary algorithm, first introduced by 
Maulik U. and Bandyopadhyay S. (2000), to utilize “idle” time 
efficiently to find better macro-cluster solutions.

• In the evolution algorithm, promising solutions are combined to 
create off-springs which can combine the best attributes of both 
parents.

• Include two phases: Micro-cluster maintenance (online learning 
phase) and evolutionary step of micro-cluster generation (offline 
phase)
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Matthias Carnein and Heike Trautmann. 2018. evoStream – Evolutionary Stream Clustering Utilizing Idle Time. Big Data Research 14 (2018), 
101-111. https://doi.org/10.1016/j.bdr.2018.05.005

https://doi.org/10.1016/j.bdr.2018.05.005


EVOSTREAM
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evoStream algorithm (with both online and offline phase)

Matthias Carnein and Heike Trautmann. 2018. evoStream – Evolutionary Stream Clustering Utilizing Idle Time. Big Data Research 14 (2018), 
101-111. https://doi.org/10.1016/j.bdr.2018.05.005

https://doi.org/10.1016/j.bdr.2018.05.005


EVOSTREAM
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Cleanup phase (after each t#$% time interval)

Matthias Carnein and Heike Trautmann. 2018. evoStream – Evolutionary Stream Clustering Utilizing Idle Time. Big Data Research 14 (2018), 
101-111. https://doi.org/10.1016/j.bdr.2018.05.005

https://doi.org/10.1016/j.bdr.2018.05.005


EVOSTREAM
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Evolution algorithm (during idle time)

Matthias Carnein and Heike Trautmann. 2018. evoStream – Evolutionary Stream Clustering Utilizing Idle Time. Big Data Research 14 (2018), 
101-111. https://doi.org/10.1016/j.bdr.2018.05.005

https://doi.org/10.1016/j.bdr.2018.05.005


EVALUATION
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Holdout an independent test set
● Apply the current model to the test 

set, at regular time intervals
● Unbiased performance estimation
● Popular in batch and stream

learning

Prequential
● Test then train each new instance

○ Order matters!
○ All data is used for training

● Performance is estimated on the 
sequence

● Popular in the stream setting



CLASSICAL STATIC EVALUATION

4 basic internal (validation) metrics include

• Cohesion: The average distance from a point in the dataset to its 
assigned cluster centroid. The smaller the better. 

• SSQ: The sum of squared distances from data points to their 
assigned centroids. Closely related to cohesion. The smaller the 
better. 

• Separation: Average distance from a point to the points assigned 
to other clusters. The larger the better. 

• Silhouette coefficient: the ratio between cohesion and the average 
distances from the points to their second-closest centroid.
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CLASSICAL STATIC EVALUATION

External validation metrics, requiring ground truth values, is mostly based 
on the following concepts

• Accuracy: Fraction of the points assigned to their “correct” cluster.

• Recall: Fraction of the points of a cluster that are in fact assigned to it.

• Precision: Fraction of the points assigned to a cluster that truly belong to 
it. 

• Purity: In a maximally pure clustering, all points in the cluster belong to 
the same ground-truth class or cluster. Formally, purity is 

•
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INTERNAL METRICS: ARE 
THEY REALLY ONLINE?

• In 2020, Leonardo Enzo Brito Da Silva et al. introduced a new 
approach for incremental validity indices. This allows an update to 
a new value from a previous old value.

• However, this approach still has one huge limitation: ALL 
information of each previous data points still have to be available.

• As such, there is a requirement to come up with metrics that are 
truly incremental (facilitating the fashion of learning one sample at 
a time).

*Work to be submitted to PAKDD 2023
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Leonardo Enzo Brito Da Silva, Niklas Max Melton and Donald C. Wunsch. 2022. Incremental Cluster Validity Indices for Online Learning of 
Hard Partitions: Extensions and Comparative Study. IEEE Access, 8 (2020), 22025-22047. https://doi.org/10.1109/ACCESS.2020.2969849.

https://doi.org/10.1109/ACCESS.2020.2969849


HOW TO DESIGN AN INCREMENTAL 
INTERNAL METRIC?

• Save the information that are needed, finite and require low 
computational time/resources:

• Linear sum and/or sum of squares of distances of point x, at 
time t to the nearest cluster center at the same time, i.e 
∑, v-$

, − x,
./(

• Number of points passed (in total and/or within each cluster)

• Centers and centroids of clusters (using incremental means)

• Centers of the whole dataset

• etc.
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INCREMENTAL EVALUATION

With 20 internal metrics and 18 external metrics, River is currently the package 
with the highest number of metrics offered for data stream continuous or 
incremental validation.

• Internal metrics: Cohesion, SSB, SSW, Separation, Silhouette, Ball-Hall, CH, 
Hartigan, WB, Xie-Beni, Xu, (Root) Mean Squared Standard Deviation, R-
Squared, I Index, Davies-Bouldin, Partition Separation, Dunn’s indices 43 
and 53, SD Validation Index, and Bayesian Information Criterion.

• External metrics: Completeness, Homogeneity, VBeta, (Adjusted, Expected, 
Normalized) Mutual Information, Q0 and Q2, Fowlkes-Mallows, Markedness, 
Informedness, Matthews Correlation Coefficient, (Adjusted) Rand Index, 
Purity, Prevalence Threshold, and Sorensen-Dice index.
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EVALUATION
Every metric (both internal and external) in River contains the following 
attributes:

• cm: Confusion matrix;

• update and revert: Allow the metric to be updated with a new observation, 
or reverted to the previous state;

• get: Obtain the exact value of the metric;

• bigger-is-better: Indicate whether the metric has the property of the 
bigger, the better the clustering solution is;

• work_with: Indicate whether the metrics work with algorithms of which type 
(clustering, classification, regression, etc.);
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FURTHER STEPS

• Benchmarking

• Text-specific clustering algorithms (although this 
can currently be done using TFIDF + Any 
clustering model pipeline in River)
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PERSONAL THOUGHTS

• The world of online clustering is still “chaotic”, with a lot of 
papers having no official implementation or 
implementations scattered in different 
frameworks/languages → Hard to evaluate.

• Are we too much dependent on the concept of online and 
offline phase while doing online clustering?

• Online deep clustering (ODC) with the assistance of 
river-torch? (https://arxiv.org/abs/2006.10645)
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https://arxiv.org/abs/2006.10645


Thank you for
your attention!
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