

Knowledge Graph Completion using Embeddings

Mehwish Alam, Ph.D. Telecom Paris, France September 15, 2022

Č.

Leibniz Institute for Information Infrastructure

Knowledge Graphs

Google Knowledge Graph

Amith Singhal, Introducing the Knowledge Graph: things, not strings, Google Blog, May 16, 2012

Knowledge Graphs

Definition (Knowledge Graph). Given a KG G = (E, R), where

- *E* is the set of entities,
- *R* is the set of relations.
- $< e_h, r, e_t > \in T$, represents a triple belonging to the set of triples T in the KG,
 - $e_h, e_t \in E$ are the head and tail entities,
 - $r \in R$ represents relation between them.

Timeline of Knowledge Graphs

Knowledge Graph Embeddings

 Automatic, supervised learning of embeddings, i.e. projections of entities and relations into a continuous low-dimensional space

Q. Wang, Z. Mao, B. Wang, L. Guo. Knowledge graph embedding: A survey of approaches and applications. *IEEE Transactions on Knowledge and Data Engineering (TKDE), 2017.*

Knowledge Graph Completion Tasks

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Multimodal Knowledge Graphs

MADLINK: Attentive Multihop and Entity Descriptions for Link Prediction in Knowledge Graphs

Extracting Entity Context

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Extracting Entity Context

Random Walks:

(Depth = 3): dbr:The_Whole_Truth \rightarrow dbo:writer \rightarrow dbr:Philip_Mackie \rightarrow dbo:almaMater \rightarrow dbr:University_College_London \rightarrow dbo:city \rightarrow dbr:London

Predicate Frequency – Inverse Triple Fequency

- Predicates are selected at each hop using PF-ITF
- Predicate Frequency (pf) $pf_o^e(r,G) = \underbrace{\varepsilon_o(e)}_{\varepsilon_o(e)}$ * # of outgoing edges from e w.r.t. relation r• Inverse Triple Frequency (itf) $itf(r,G) = log \underbrace{\varepsilon_o | \pi(r)}_{\varepsilon_o | \pi(r)}$ * total # of triples • pf - itf
 - $pfitf_e(r,G) = pf_e \times itf$
- Triples are then ranked based on pf-itf, top-n predicates are selected at each hop.

MADLINK – Overall Architecture

R. Biswas, H. Sack, **M. Alam**, MADLINK: Attentive Multihop and Entity Descriptions for Link Prediction in Knowledge Graphs, *Semantic Web Journal, 2022* (Accepted)

Comparison with other Text-based Models

Datasets	Models	MRR	Hits@1	Hits@3	Hits@10	
FB15k-237	DKRL	0.19	0.11	0.167	0.215	
	Jointly (ALSTM)	0.21	0.19	0.21	0.258	
	MADLINK	0.347	0.252	0.38	0.529	
WN18RR	DKRL	0.112	0.05	0.146	0.288	
	Jointly (ALSTM)	0.21	0.112	0.156	0.31	
	MADLINK	0.477	0.438	0.479	0.549	Representation Lear
FB15k	DKRL	0.311	0.192	0.359	0.548	Knowledge Graphs v Descriptions R. Xie, 2 Luan, M. Sun, AAAI 2
	Jointly (ALSTM)	0.345	0.21	0.412	0.65	
	MADLINK	0.712	0.722	0.788	0.81	
WN18	DKRL	0.51	0.31	0.542	0.61	with Jointly Structura
	Jointly (ALSTM)	0.588	0.388	0.596	0.77	Huang, IJCAI 2017
	MADLINK	0.95	0.898	0.911	0.96	
YAGO3-10	DKRL	0.19	0.119	0.234	0.321	
	Jointly (ALSTM)	0.22	0.296	0.331	0.41	
	MADLINK	0.538	0.457	0.580	0.68	

rning of with Entity Z. Liu, J. Jia, H. 2016

Representation al and Textual Chen, X. Qiu, X.

Impact of Textual Descriptions and Paths

FB15k-237

YAGO3-10

Existing Datasets for KG Completion

- Freebase Extracts:
 - FB15K and FB15K-237 are widely used.
 - FB15K-237 was designed by removing inverse-duplicates.
 - FB15K-237 contains many triples with skewed relations towards either some head or tail entities.
- WordNet Extracts:
 - WN18 and WNRR are most widely used.
 - They do not contain numeric literals.
- Wikidata & Wikipedia Extracts:
 - Not include any numeric attribute
 - If extracted from Wikidata, only limited number of entities contain numeric attributes

LiterallyWikidata - A Benchmark for KG Completion using Literals

Overall Workflow for Generating Literally Wikidata

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Creating dataset 1:

- Seeding entities:
 - Top N entities with the highest number of datatype properties. (N = 200,000)
- Extracting triples
 - Getting triples where the seed entities occur either as a head or as a tail,
 - i.e., extending the entities with their **1-hop** neighbours.

Where **e** is a seed entity and **p** is an object property.

- Seeding the entities
- Extracting triples based on seed entities
- Creating k-core subgraphs
- Further filtering

Filtering

the triples

Seeding the entities

based on seed entities

Extracting triples

• Creating k-core sub-

• Further filtering

3

•

•

graphs

Creating dataset 1:

- Seeding entities
- Extracting triples
- Generating k-core
 - A k-core is a maximal subgraphs G' of a given graph G such that every node in G' has a degree of at least k.
 - K=6

Creating dataset 2:

- Seeding entities:
 - N = 50,000
 - K = 15
- Extracting triples
 - Getting triples considering the seed entities both **one-hop** and **2-hop** neighbours.

Where **e** is a seed entity and **p** and **q** are object properties.

Filtering the triples

3

- Seeding the entities
- Extracting triples based on seed entities
- Creating k-core subgraphs
- Further filtering

Creating dataset 3:

- Seeding entities: N = 200,000
- Extracting triples: 1-hop
- Generating k-core: k=15

- Seeding the entities
- Extracting triples based on seed entities

Filtering

the triples

3

- Creating k-core subgraphs
- Further filtering

LiterallyWikidata Statistics

	LitWD1K	LitWD19K	LitWD48K
#Entities	1533	18986	47998
#Relations	47	182	257
#Attributes	81	151	291
#StruTriples	29017	288933	336745
#AttrTriples	10988	63951	324418
#Train	26115	260039	303117
#Test	1451	14447	16838
#Valid	1451	14447	16838
Connectivity	Yes	Yes	No
Diameter	5	7	8
Density	0.01235	0.0008	0.00014

Textual Information

- Textual information includes
 - Wikidata labels, aliases, descriptions of entities, relations, and attributes.
- Multi-linguality
 - For each entity summary part extracted from Wikipedia
 - Languages targeted: English, German, Russian, and Chinese.

	Wikipedia Summary			
	en	de	ru	zh
LitWD1K	100	78	72	66
LitWD19K	100	80	65	39
LitWD48K	100	88	75	29

Experimentation on Link Prediction

Dataset	Model	MRR	HITS@1	HIT@10
LitWD1K	DistMult	0.419	0.283	0.679
	ComplEX	0.413	0.28	0.673
	DistMultLiteral	0.431	0.297	0.703
LitWD19K	DistMult	0.195	0.138	0.308
	ComplEX	0.181	0.122	0.296
	DistMultLiteral	0.245	0.168	0.399
LitWD48K	DistMult	0.261	0.195	0.4
	ComplEX	0.277	0.207	0.428
	DistMultLiteral	0.279	0.204	0.434

FB15K-237	DistMult	0.343	0.250	0.531
	ComplEX	0.348	0.253	0.536
CoDEx-M	ComplEX	0.337	0.262	0.476

G. A. Gesese, **M. Alam**, H. Sack, LiterallyWikidata - A Benchmark for Knowledge Graph Completion using Literals, International Semantic Web Conference, 2021.

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Application of Knowledge Graph Embeddings

Author Name Disambiguation

Cutaneous squamous-cell carcinoma

M Alam, D Ratner - New England Journal of Medicine, 2001 - Mass Medical Soc Nonmelanoma skin cancer is the most common cancer in the United States, with over 1.3 million cases expected to occur in the year 2001. Approximately 80 percent of nonmelanoma ... Save 55 Cite Cited by 1485 Related articles. All 9 versions

Are these the same people?

Framester: A wide coverage linguistic linked data hub <u>A Gangemi, M Alam, L Asprino, V Presutti</u>... - European knowledge ..., 2016 - Springer Semantic web applications leveraging NLP can benefit from easy access to expressive lexical resources such as FrameNet. However, the usefulness of FrameNet is affected by its ... \overleftrightarrow Save \mathfrak{D} Cite Cited by 76 Related articles All 8 versions

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Overall Architecture of LAND

Literally Author Name Disambiguation (LAND)

C. Santini, G. A. Gesese, S. Peroni, A. Gangemi, H. Sack, M. Alam,

A Knowledge Graph Embeddings based Approach for Author Name Disambiguation using Literals (Accepted), Scientometrics Journal, 2022.

Knowledge Graph Completion using Embeddings, Dr. M. Alam, September 15, 2022.

Entity Typing in Knowledge Graphs using Wikipedia Categories

Wikipedia Categories

Category:Machine learning

From Wikipedia, the free encyclopedia

Machine learning is a branch of statistics and computer science, which studies algorithms and architectures that learn from observed facts.

The main article for this category is Machine learning.

See also the categories data mining, artificial intelligence, decision theory, and Statistical classification

Contents Top • 0–9 • A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Subcategories

This category has the following 35 subcategories, out of 35 total.

A

- Applied machine learning (1 C, 65 P)
- Artificial neural networks (2 C, 170 P)

В

- Bayesian networks (13 P)
- Blockmodeling (14 P)

С

D

- Classification algorithms (3 C, 86 P)
- Cluster analysis (2 C, 20 P)
- Computational learning theory (21 P)
- Artificial intelligence conferences (22 P)
- Signal processing conferences (5 P)

Е

- Ensemble learning (13 P)
- Evolutionary algorithms (4 C, 44 P, 2 F)

G

- Genetic programming (13 P)
- Inductive logic programming (5 P)

Κ

Kernel methods for machine learning (1 C, 17 P)

L

- Latent variable models (2 C, 26 P)
- Learning in computer vision (5 P)
- Log-linear models (2 P)

- Machine learning algorithms (1 C, 69 P)
- Machine learning task (9 P)
- Markov models (2 C, 54 P)

0

Ontology learning (computer science) (2 P)

R

- Reinforcement learning (7 P)
- Machine learning researchers (132 P)
- Natural language processing researchers (114 P)

S

- Semisupervised learning (2 P)
- Statistical natural language processing (1 C, 35 P)
- Structured prediction (1 C, 4 P)
- Supervised learning (4 P)

Overall Architecture

Entity Classification

- Multi-class Classification
 - Fully Connected Neural Networks (FCNN) with two dense layers
 - **ReLU** as activation function
 - A **softmax classifier** with **cross-entropy loss function** is used in the last layer to calculate the probability of the entities belonging to different classes.

- Multi-label classification
 - a sigmoid function with binary cross-entropy loss is used in the last layer which sets up a binary classification problem for each class in C_T .

$$CE_{loss} = -\sum_{i}^{C_{T}} t_{i} \log(f(s_{i})) - (1 - t_{i})\log(1 - f(s_{i}))$$

Summary

- Knowledge Graph (KG) Embedding Algorithm using textual description
 - Entity Context using random walks
 - Language Models
- Benchmark dataset for numeric information and textual description
- Application of KG Embedding algorithms with textual and numeric information on **Author Name Disambiguation**
- Entity Type prediction based on Wikipedia Category Embeddings
- Other Related Studies:
 - Entity Type Prediction using different walk strategies

Thank you very much for your attention!

<u>.</u>

