

Count Information in KBs and Text

Shrestha Ghosh Simon Razniewski Gerhard Weikum Talk at DIG group 29.07.2021

About Me

- Databases and Information Systems group in MPI, Informatics
- Saarland Informatics Campus, Saarbrücken

Saarland Informatics Campus, Saarbrücken

• IIEST, Shibpur (India)

SIC Saarland Informatics Campus

max planck institut informatik

SIC Saarland Informatics Campus

max planck institut

What is count information?

Relation between an entity and a set of entities

Saarland University

7

What is count information?

Relation between an entity and a set of entities

Expressed as **entities** or objects in the set

8

What is count information?

Relation between an entity and a set of entities

Why do we need count information?

Only counts

(Saarland_University, employees, ?y)

Gives no insight about the entities

Only entities

(?x, employer, Saarland_University)

May return only a handful of names

Incomplete positives can benefit from complete counts

Counts can benefit from representative entities

Why do we need count information?

KB mixes counts with standard facts

Why do we need count information?

Analysing KB recall

July 2021

- IE of count information for KB curation or recall assessment
- Analysing count information in KB
- Analysing count information for Question Answering task

- IE of count information for KB curation or recall assessment
- Analysing count information in KB
- Analysing count information for Question Answering task

Mirza et al. "Enriching Knowledge Bases with Counting Quantifiers" ISWC 2018 Mirza et al. "Cardinal Virtues: Extracting Relation Cardinalities from Text" ACL 2017

- IE of count information for KB curation or recall assessment
- Analysing count information in KB
- Analysing count information for Question Answering task

Ghosh et al. "Uncovering hidden semantics of set information in knowledge bases" JWS 2020

Ghosh et al. "CounQER: A System for Discovering and Linking Count Information in Knowledge Bases" ESWC 2020

- IE of count information for KB curation or recall assessment
- Analysing count information in KB
- Analysing count information for Question Answering task

- Low entry barrier for creating an automated training dataset
- No need to rely on incomplete KB for gold standard counts
- Consolidate results from multiple text sources

Problem: Answering count queries with explanations

Input:

- A count query *q*
- A set of relevant documents *D*

Task: Determine a consolidated count to the query q with notable instances that instantiate the count

 How many buildings
 were damaged in the Great Fire of London?

 <type>
 <relation>

		——Count Query						
	How many <mark>buildings</mark> were damaged in the Great Fire of Lond	on?						
<u> </u>	<type> <relation> <named-entit< td=""><td>Tasks</td></named-entit<></relation></type>	Tasks						
0	• Consolidation over count distribution from multiple sources.							
0	• Count qualification for subgroups and synonyms.							
0	Notable instances with evidence which instantiate the counts.							

Synonyms houses homes

SIC Saarland Informatics Campus

Existing Paradigms and their limitations

KB QA

- Low KB recall
- Aggregations on list (QAnswer, Diefenbach et al. ESWC 2020)

Textual QA

- Extractive QA (Dense Passage Retrieval, Karpukhin et al. EMNLP 2020; DROP, Dua et al. NAACL 2019)
- Ranked answer spans without any consolidation

KB+Textual QA

- Search Engines have high precision and low recall esp. on tail entities
- Hybrid QA systems

What's Missing?

Answer consolidation

- 1. Expand answer scope to allow multiple correct answers, estimates or ranges for counts.
- 2. Explainability
 - a. instances can be useful to explain counts
 - b. counts themselves are multifaceted synonyms, sub-groups

Approach

Count Inference

Approach

Notable Instances

Approach

NLCounQER

Results

	Generating Instances				Count Inference	
	MAP@10	AR@10	MAP@20	AR@20	P	\mathbf{RP}
Frequent	0.053	0.017	0.055	0.026	-	-
Type-compatible	0.206	0.077	0.177	0.126	-	_
DistilBERT [34]	-	-	-	-	0	0
SpanBERT [18]	-	-	-	-	0.35	0.4

NLCounQER (Span-predicted) 0.157 0.198 0.153 0.231 0.35 0.45

Comparison of NLCounQER with different count inference and instance generation baselines on Stresstest queries and search engine snippets

Demo system: nlcounqer.mpi-inf.mpg.de

Challenges

- Lack of annotated data
 - Training for count contexts
 - Evaluation data
- Extractive QA is a black box
 - Is it really learning to predict count spans?
 - Multi-span prediction is underexplored
- Getting entities from text without linking is difficult
 - Can Wikipedia hyperlinks help?

Possible directions and challenges

- Count information extraction from text
 - evidence of count of islands in hawaii (~140) >> KB entities (22)
 - use count queries and count predicates as starting points for harvesting

Possible directions and challenges

- Count information extraction from text
 - evidence of count of islands in hawaii (~140) >> KB entities (22)
 - use count queries and count predicates as starting points for harvesting
- Estimating KB count recall
 - entity level alignment inconsistencies
 - class level all humans who have *number_of_children* should have *child* and vice-versa

Possible directions and challenges

- Count information extraction from text
 - evidence of count of islands in hawaii (~140) >> KB entities (22)
 - use count queries and count predicates as starting points for harvesting
- Estimating KB count recall
 - entity level alignment inconsistencies
 - class level all humans who have *number_of_children* should have *child* and vice-versa (children in Wikidata, inconsistency vs. incompleteness)
- Extending KB with count information
 - entities not yet present in KB
 - contentious counts collection size of a museum vs visitors per year (examples: entity, query)

Questions?

- Count information is the relation between an entity and a set of entities
 - \circ represented as a count, or
 - \circ as an individual entity from the set
- Count information can help in KB curation and QA tasks
- Count queries can be enhanced using consolidated counts and entities

