Random Histogram Forest for Unsupervised Anomaly Detection

*Andrian Putina, *Mauro Sozio, +Dario Rossi, +José .M. Navarro

*Telecom ParisTech France

+Huawei France

Anomaly Detection

«an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism» *Hawkins*

anomaly detection is the task of identifying data patterns or exceptions that are not inline with what expected

Applications and Characteristics

Applications

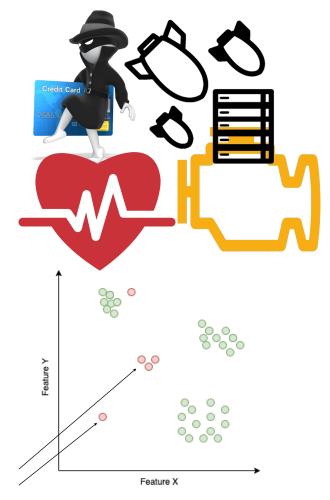
- Intrusion in computer networks
- Frauds in credit card transactions
- Faults in engines
- Cancerous Masses

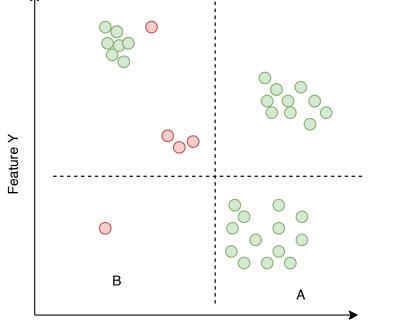
Characteristics

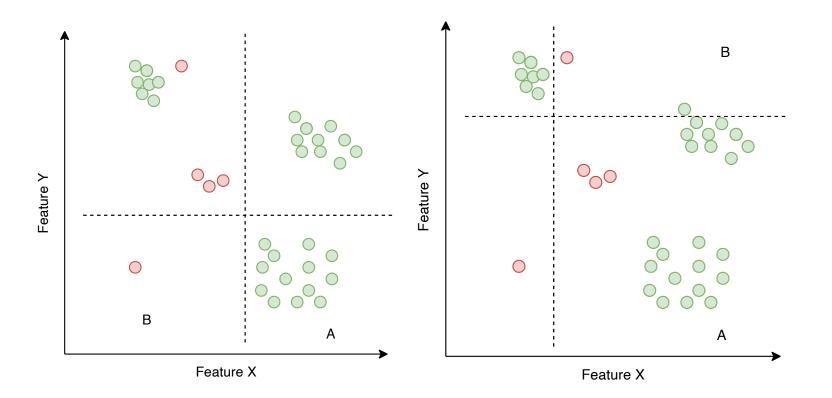
- Rare (only small portion of dataset)
- Different from normal instances

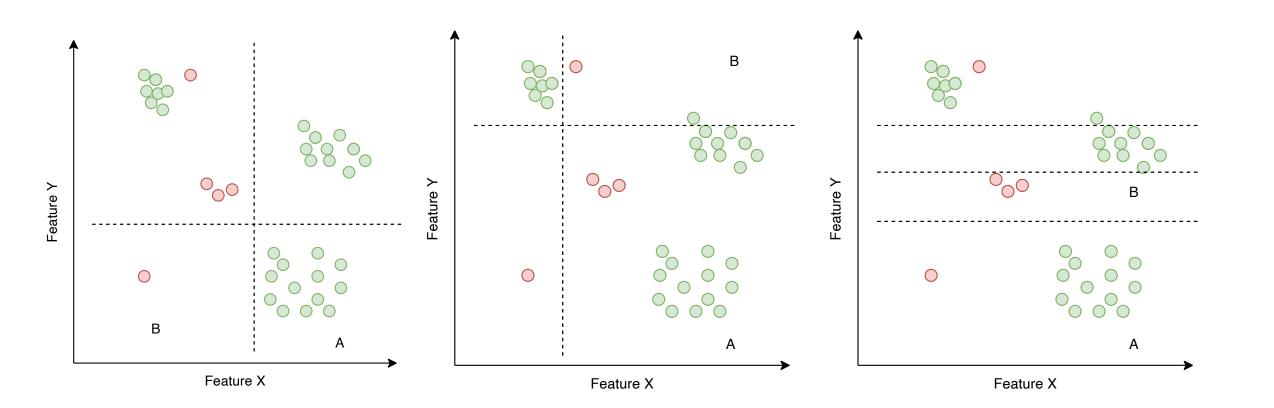
Methods

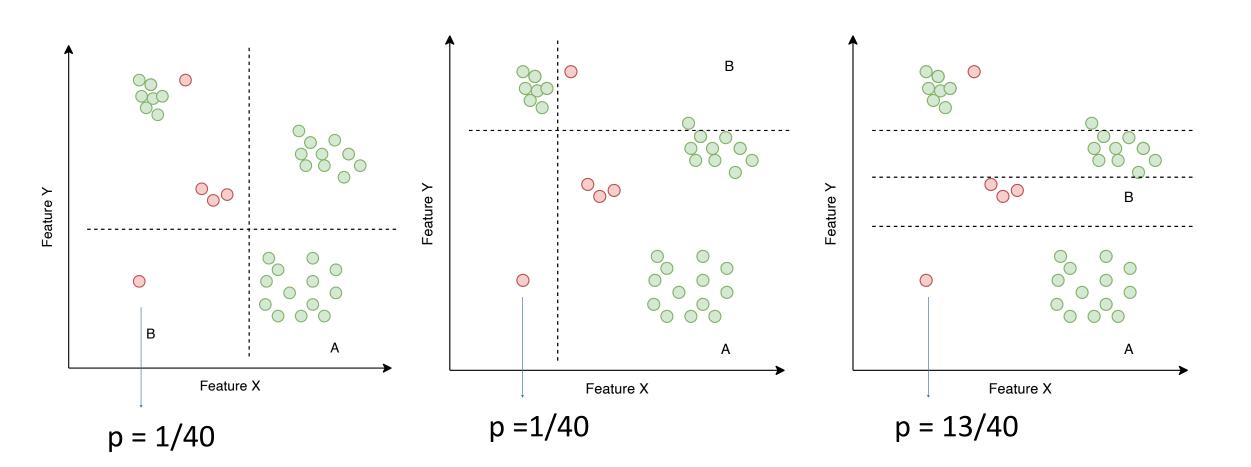
- Probabilistic/Linear (PPCA, OCSVM, etc.)
- Proximity (KNN, LOF, etc.)
- Ensemble (iForest, xStream)

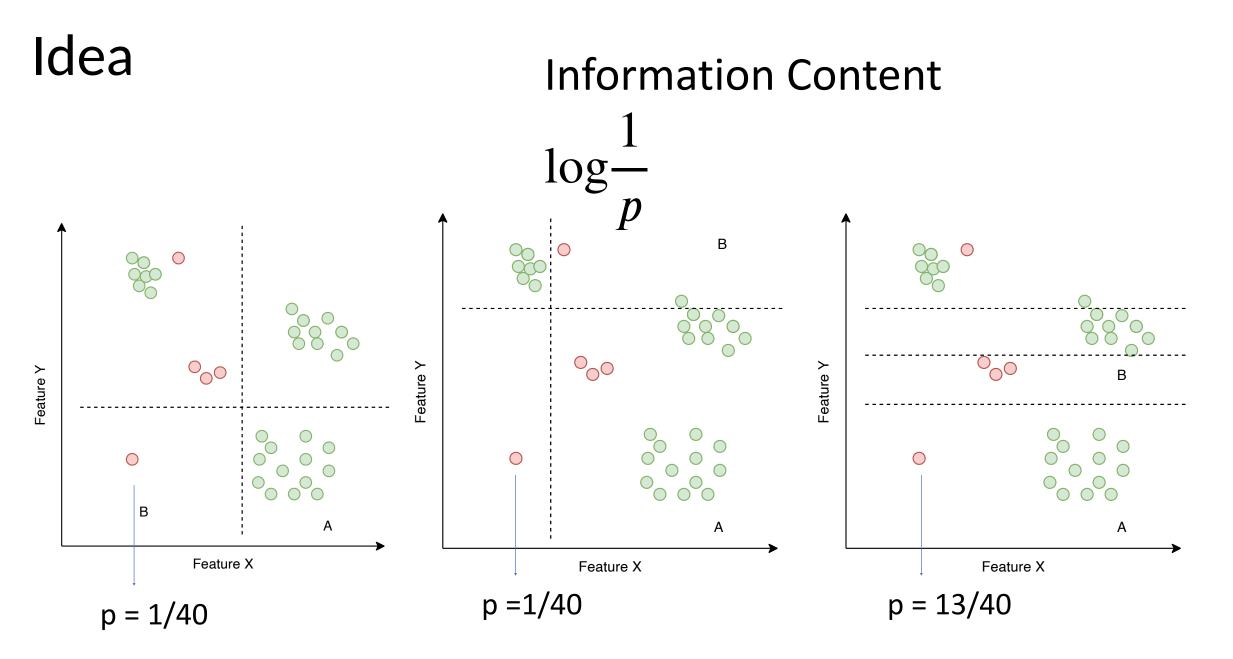








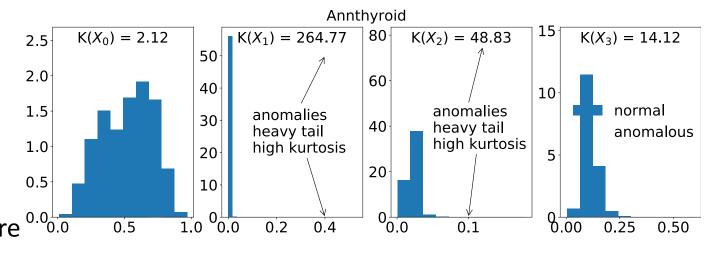




• Kurtosis score (tailedness)

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(rac{X-\mu}{\sigma}
ight)^4
ight] = rac{\operatorname{E}\left[(X-\mu)^4
ight]}{\left(\operatorname{E}[(X-\mu)^2]
ight)^2} = rac{\mu_a}{\sigma^4}$$

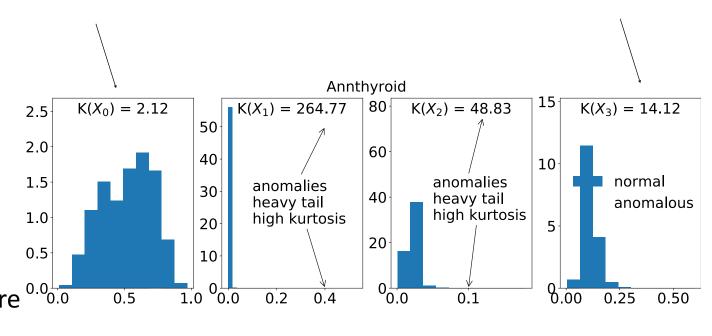
- 4th moment (standardized data raised to the fourth power)
- Only values outside the peak region contribute to the kurtosis score
- Features whose Kurtosis is higher are likely to contain separable anomalies.



• Kurtosis score (tailedness)

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(rac{X-\mu}{\sigma}
ight)^4
ight] = rac{\operatorname{E}\left[(X-\mu)^4
ight]}{\left(\operatorname{E}[(X-\mu)^2]
ight)^2} = rac{\mu}{\sigma}$$

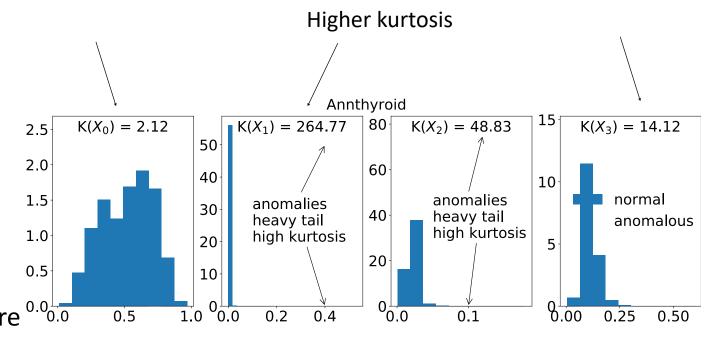
- 4th moment (standardized data raised to the fourth power)
- Only values outside the peak region contribute to the kurtosis score
- Features whose Kurtosis is higher are likely to contain separable anomalies.



• Kurtosis score (tailedness)

$$\mathrm{Kurt}[X] = \mathrm{E}igg[igg(rac{X-\mu}{\sigma}igg)^4igg] = rac{\mathrm{E}igg[(X-\mu)^4igg]}{\left(\mathrm{E}[(X-\mu)^2]
ight)^2} = rac{\mu}{\sigma}$$

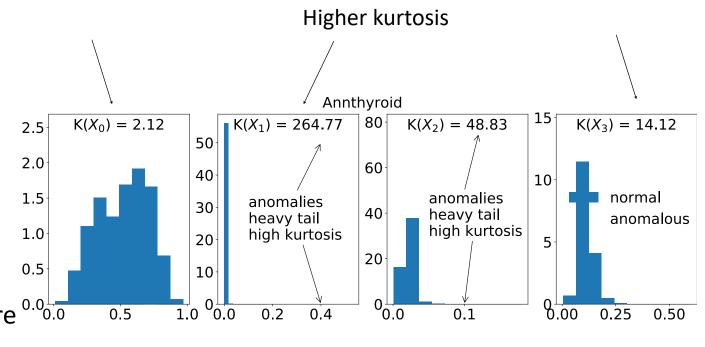
- 4th moment (standardized data raised to the fourth power)
- Only values outside the peak region contribute to the kurtosis score
- Features whose Kurtosis is higher are likely to contain separable anomalies.



• Kurtosis score (tailedness)

$$\mathrm{Kurt}[X] = \mathrm{E}igg[igg(rac{X-\mu}{\sigma}igg)^4igg] = rac{\mathrm{E}igg[(X-\mu)^4igg]}{\left(\mathrm{E}[(X-\mu)^2]
ight)^2} = rac{\mu}{\sigma'}$$

- 4th moment (standardized data raised to the fourth power)
- Only values outside the peak region contribute to the kurtosis score
- Features whose Kurtosis is higher are likely to contain separable anomalies.



Let kurtosis guide our search for anomalies!

RHF: Building a tree

Input: A set of points D, max height h of the tree T

Output: an anomaly score for each data point

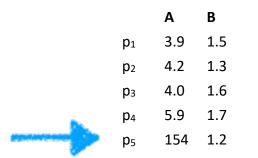
- Compute the kurtosis k(A) of each feature A
- Select a feature A with probability proportional to k(A)
- Let be **a** value u.a.r between the min and max value of A
- Split the data into 2 sets: D_1 with values of A < **a**, D_2 withh values \geq **a**

Recursively apply to D₁ and D₂ until height is **h** or impossible to split anymore

Anomaly Score of p: inversely proportional to # of points in the same leaf in T

Max height **h=2**

ABp13.91.5p24.21.3p34.01.6p45.91.7p51541.2



Max height **h=2**

ABp13.91.5p24.21.3p34.01.6p45.91.7p51541.2

kur(A)=3.25		kur(B)=1.72
	Α	В
p ₁	3.9	1.5
p ₂	4.2	1.3
p 3	4.0	1.6
p ₄	5.9	1.7
p 5	154	1.2

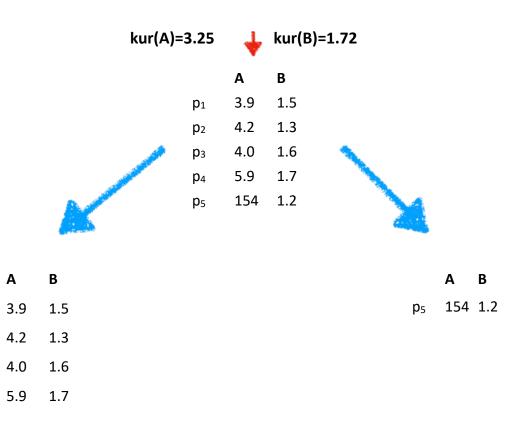
kur(A)=3.25	+	kur(B)=1.72
	Α	В
p1	3.9	1.5
p ₂	4.2	1.3
p ₃	4.0	1.6
p4	5.9	1.7
p 5	154	1.2

 p_1

p₂

p₃

p4



kur(A)=2.28

Α

 p_1

p₂

p₃

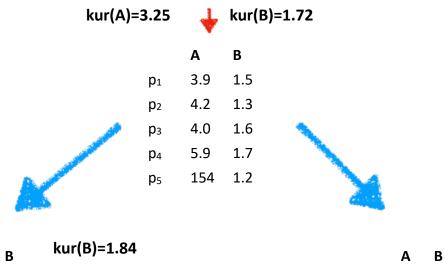
p4

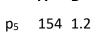
3.9 1.5

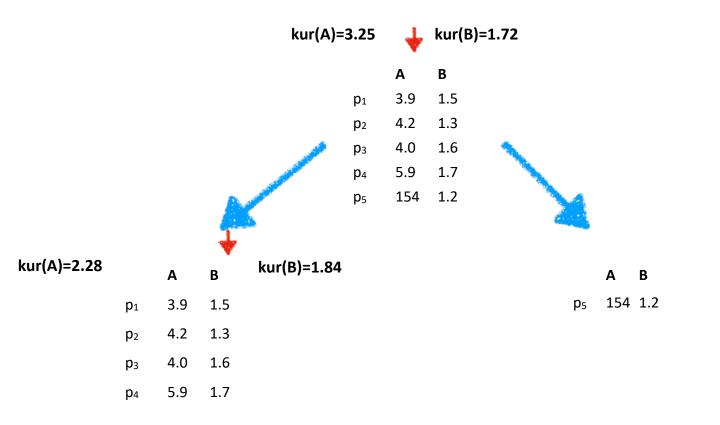
4.2 1.3

4.0 1.6

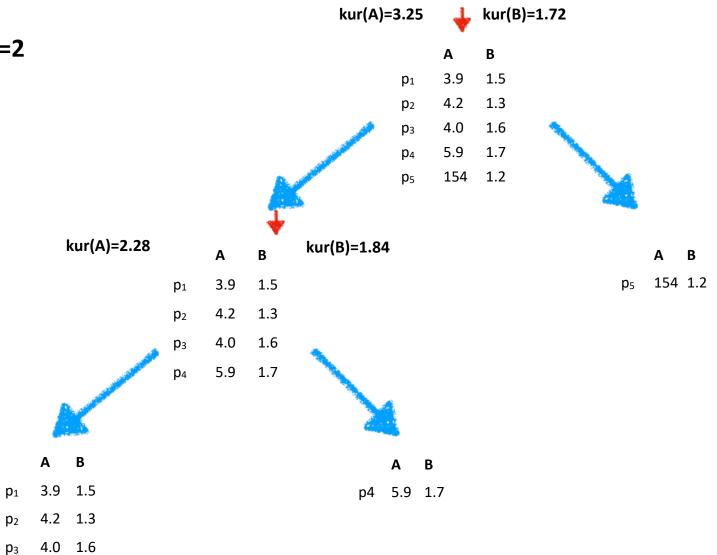
5.9 1.7



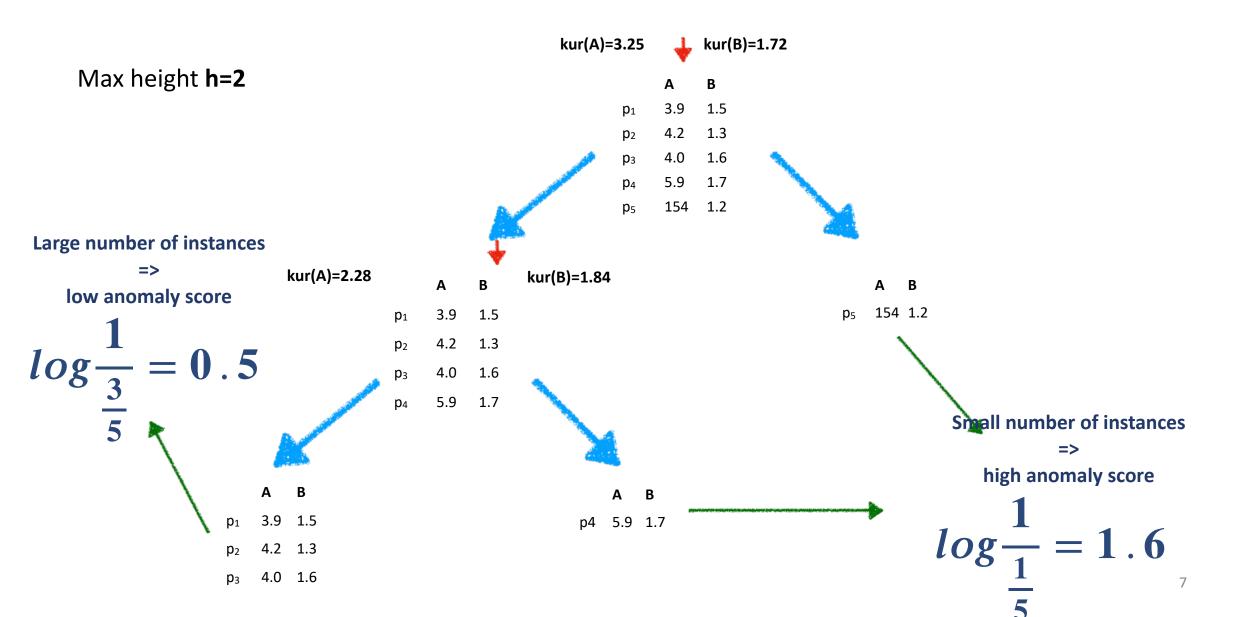




Max height **h=2**



7



RHF: Overview

- Build a forest of **t** trees with max height **h**
- Each tree computes an anomaly score for each point in dataset.
- The Anomaly Score is the Information Content/Shannon Information measuring the level of surprise (rare events more surprising than common ones)
- The final score is aggregated across all the trees

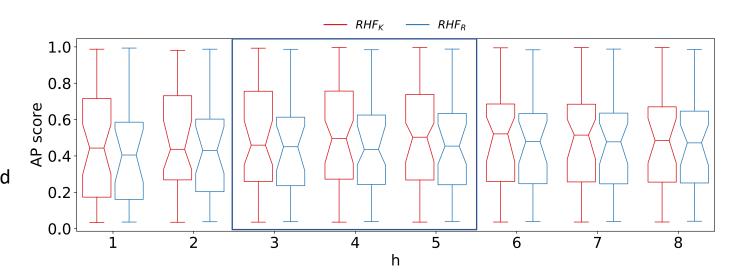
Evaluation - Parameters

- 38 datasets publicly available
 - 240 to 623091 instances
 - 3 to 274 dimensions
 - 0.4% to 10% anomalies
- Average Precision (AP) score:

•
$$AP = \sum_{tp} \left(R_n - R_{n-1} \right) P_n$$

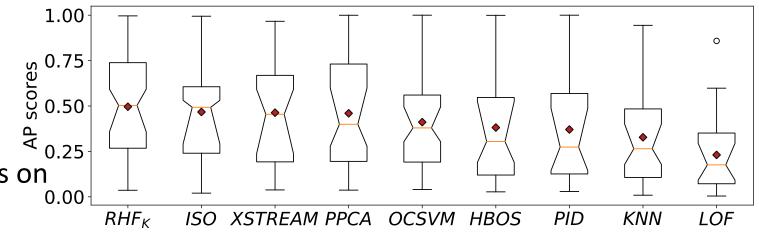
• $P_n = \frac{tp}{tp + fp}$, $R_n = \frac{tp}{tp + fn}$ at nth threshold

- Parameters tuning
 - Kurtosis better than random split
 - Max height h produce consistently good results for different values
 - Max height in line with Sturge's formula k = 1 + log2(N)



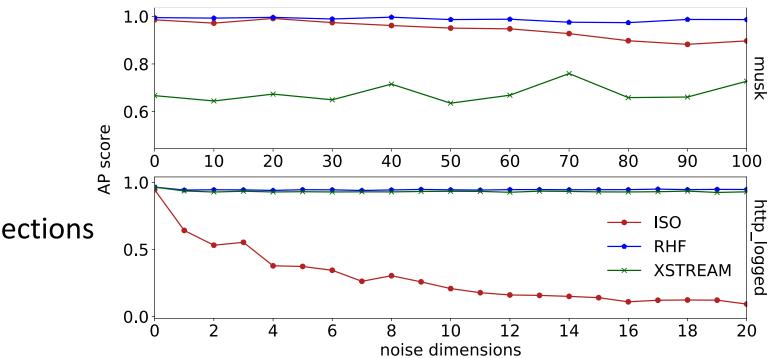
Evaluation - Comparison

- Methods
 - Probabilistic (PPCA, OCSVM, etc.)
 - Proximity (KNN, LOF, etc.)
 - Ensemble (iForest, xStream)
- Top performer
 - xStream = 0.453 ± 0.098
 - $iForest = 0.463 \pm 0.098$
 - $RHF = 0.513 \pm 0.010$
- High discrepancy wrt competitors on some datasets.
 - kdd_http_distinct 0.01 vs 0.74
 - kdd99G 0.53 vs 0.77
 - mulcross 0.56 vs 0.73
 - Musk 0.65 vs 0.99



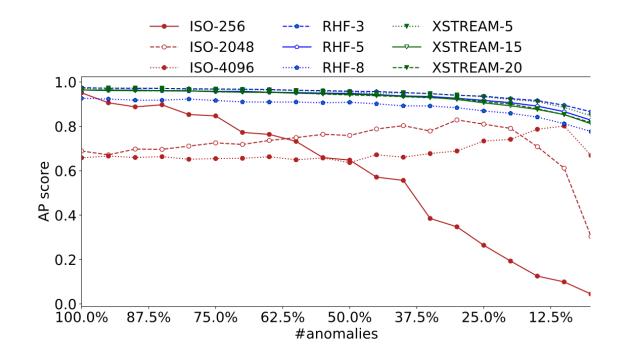
Evaluation – Irrelevant features

- High dimensional data
- Irrelevant dimensions
- Gaussian noise
- Robustness
 - **RHF** = Kurtosis
 - **xStream** = Random Projections

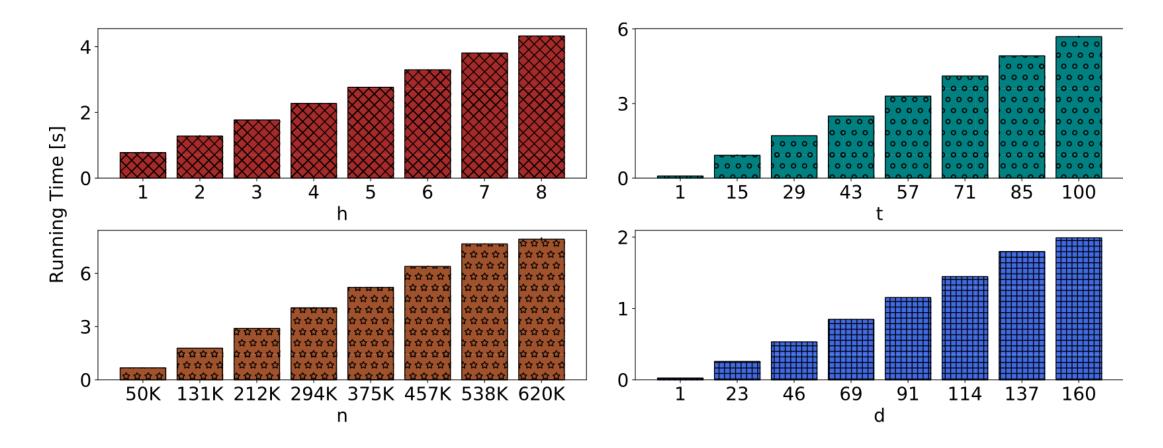


Evaluation – vary #anomalies

- Impact on input parameter
- Vary #anomalies into the dataset
 - 565287 normal instances
 - 2211 anomalous instances (100%)
 - 100 anomalous instances (5%)
- Isolation (2nd best performing) shows overfitting effects in the public benchmark dataset
- RHF (1st) and xStream (2nd) perform well also on private datasets



Running time



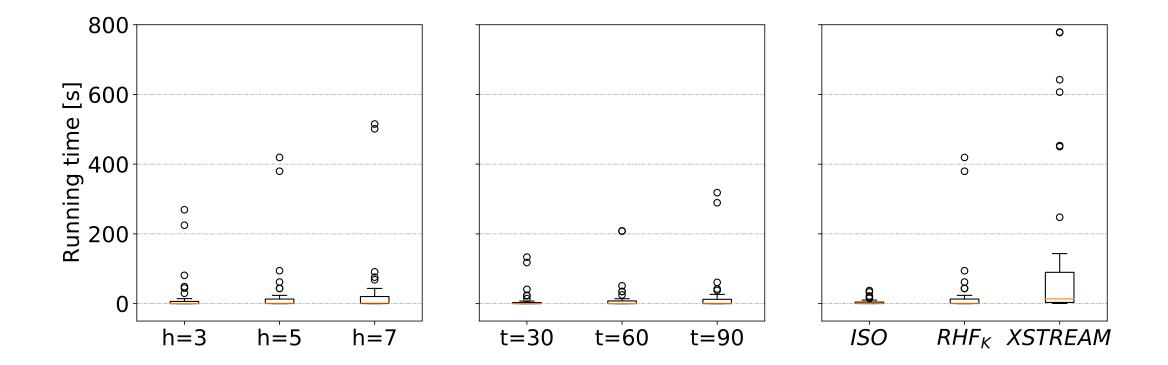
Linearly increasing in n, d, h, t

Conclusions

- Best performing one on 38 datasets
 - 10% better on avg/median
 - Better than a factor of 2 in many datasets
 - Large gap in some datasets (0.75 vs 0.01)
- Robust to inner parameter selection
- Robust to irrelevant features
- Linear running time in input size
- Produces results that are easy to interpret and explain

Backup Slides

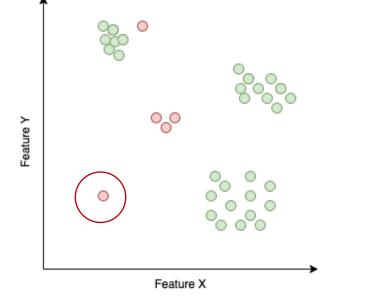
Running Time

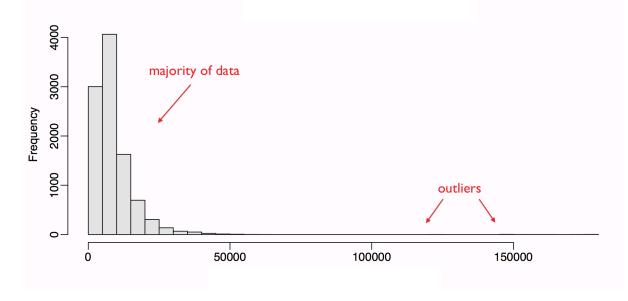


Model characteristics

• Anomalies

- Rare (low probability and high information)
- Different (skewed data distribution)





Kurtosis Split

$$\begin{split} K_s &= \sum_{a=0}^d \log\left[K(X_a) + 1\right] \\ r &= \mathcal{X} \sim U[0, K_s] \\ a_s &= argmin\left(i|\sum_{a=0}^i \log\left[K(X_i) + 1\right] > r\right) \end{split}$$

