What is normal, what is strange, and what is missing in a Knowledge Graph: Unified characterization via Inductive Summarization

Tiphaine Viard, DIG seminar

A paper by Belth, Zeng, Vreeken and Koutra, WWW'20 All figures taken from the paper

Goals and overview

Provide a unified solution to KG characterization

Find what is normal, infer what is abnormal

Rules are labeled, rooted graphs

"Books are written by authors, who are born in countries" 🗸 "Authors writes Books" 🗶

Find the rules that **best compress** the KG

Given a KG G, and ideal KG \hat{G} , find a concise model M* of inductive rules that summarize what is normal in both G and \hat{G} .

Rules should be (1) interpretable (= readable in natural language), (2) their exceptions should reveal abnormal information in the KG:

• erroneous $(t \in E : t \notin \hat{E})$,

• missing
$$(t \in \hat{E} : t \notin E)$$
,

• an exception
$$(t \in E : t \in \hat{E})$$
.

A KG $G = (V, E, \mathcal{L}_V, \mathcal{L}_E, \phi)$; also A matrix and L matrix A model M is a set of rules Authors use two-part MDL: for $M \in \mathcal{M}$, minimize $L(M) + L(\mathcal{D}|M)$

Rules and assertions

Rules are **recursive** and **compositional**: $g = (\mathcal{L}_g, \chi_g)$

- *L_g* root (e.g. Book)
- χ_g set of children $\{(p, \delta, \hat{g})\}$

e.g. Book, (writtenBy, \rightarrow , (Author, \emptyset))

Rules and assertions

Assertions a_g are subgraphs asserted by rule g

Obtained by traversal with a start node that has \mathcal{L}_g in its label

A^(g) = A^(g)_c ∪ A^(g)_ξ
 A^(g)_c: all traversals a_g matching g's syntax (correct)
 A^(g)_ξ: all traversals a_g not matching g's syntax (exceptions)

Problem 2 (Inductive KG Summarization with MDL). Given KG G, find the model M* that minimizes the description length of the graph,

 $M* = \operatorname{argmin}_{M \in M} L(G, M) = \operatorname{argmin}_{M \in M} \{L(M) + L(G|M)\}$

- L(M) = cost of model M,
- L(G|M) = cost of encoding G with M.

Cost = cost of transmission (in bits) to reconstruct G

Computing the cost of L(M)

$$L(M) = \log(2 \cdot |\mathcal{L}_V|^2 \cdot \mathcal{L}_E + 1) + \sum_{g \in M} L(g) + L(\mathcal{A}^{(g)})$$

$$\mathcal{L}(\mathcal{L}_g) = \log |\mathcal{L}_V| + \sum_{\ell \in \mathcal{L}_g} - \log rac{n_\ell}{|V|},$$

Computing the cost of L(M)

$$L(M) = \log(2 \cdot |\mathcal{L}_V|^2 \cdot \mathcal{L}_E + 1) + \sum_{g \in M} L(g) + L(\mathcal{A}^{(g)})$$

$$L(\mathcal{A}^{(g)}) = L(\mathcal{A}^{(g)}_{c}) + L(\mathcal{A}^{(g)}_{\xi})$$
$$L(\mathcal{A}^{(g)}_{\xi}) = \log |\mathcal{A}^{(g)}| + \log \binom{|\mathcal{A}^{(g)}|}{|\mathcal{A}^{(g)}_{\xi}|}$$

$$L(\mathcal{A}_c^{(g)}) = \sum_{a_g} L(a_g) = \sum_{\hat{g} \in \chi_g} \log |V| + \log \binom{|V| - 1}{|\mathcal{A}_c^{(\hat{g})}|} + \sum_{a_{\hat{g}}} L(a_{\hat{g}})$$

$$L(M) = log(2 \cdot |\mathcal{L}_V|^2 \cdot \mathcal{L}_E + 1) + \sum_{g \in M} L(g) + L(\mathcal{A}^{(g)})$$

Computing the cost of L(G|M)

L, A: labels matrix, adjacency matrix L_M, A_M : modelled labels, modelled edges $L^- = L - L_M, A^- = A - A_M$

Sending what is not modelled:

- Unrevealed node labels
- Unmodelled edges

$$L(G|M) = L(L^-) + L(A^-)$$

With:

$$L(L^{-}) = log \begin{pmatrix} |\mathcal{L}_{V}| \cdot |V| - |L_{M}| \\ |L-| \end{pmatrix}$$

$$L(A^{-}) = log \begin{pmatrix} |\mathcal{L}_{E}| \cdot |V|^{2} - |A_{M}| \\ |A-| \end{pmatrix}$$

How to find all rules?

Naive approach: enumerate all rules from a set of candidates C

This is terrible! There are $2^{|C|}$ models to choose from

Contrary to support/confidence-based methods, there are no nice properties of the search space

No anti-monotonicity or (known) exploitable structure

Instead, use compositionality of rules

Start with **atomic rules** (assert one thing) and build up Greedy approach is still costly (quadratic in |C|)

$$\Delta L(G|M_0 \cup \{g\}) = L(G|M_0) - L(G|M_0 \cup \{g\})$$

Rank using ΔL , descending

Constant number of passes on C

The KGIST algorithm

Algorithm 1 KGIST

	Input: Knowledge graph G	
	Output: A model M, consisting of a set of rules	
1:	Read G and generate candidate rules $C \rightarrow \S 4$.	1.1
2:	Qualify candidate rules with labels	
3:	Rank all rules $g \in C$ first by $\downarrow \Delta L(G M_0)$ then by $\downarrow \mathcal{A}_c(g) $ and	d↓
	lexicographic \mathcal{L}_q $\triangleright \S 4.1.3$, Eq. (12)
4:	$M \leftarrow \emptyset$	
5:	while not converged do b i.e., more rules can be added to	M
6:	for $g \in C$ do	
7:	if $L(G, M \cup \{g\}) < L(G, M)$ then $\triangleright \S 4$.	2.1
8:	$M \leftarrow M \cup \{g\}$	
9:	$C \leftarrow C \setminus \{g\}$	
10:	Optionally perform refinements \mathbf{Rm} and \mathbf{Rn} \triangleright § 4.	2.2

Complexity: $\mathcal{O}(m\phi_{max}^2 \cdot log(m\phi_{max}^2))$

Evaluation

Goal: answer the questions

- 1. Does KGIST characterize what is normal? How well can KGIST compress KGs?
- 2. Does KGIST identify what is strange? Can it identify and characterize multiple types of errors?
- 3. Does KGIST identify what is missing?
- 4. Is KGIST scalable?

Table 2: Description of KG datasets: number of nodes, edges, node labels, relations, and average / median labels per node, resp.

	$ \mathcal{V} $	$ \mathcal{S} $	$ \mathcal{L}_V $	$ \mathcal{L}_{\mathcal{E}} $	avg $\phi(\upsilon)$	$\mod \phi(\upsilon)$
NELL	46,682	231,634	266	821	1.53	1
DBpedia	976,404	2,862,489	239	504	2.72	3
Yago	6,349,336	12,027,848	629,681	33	3.81	3

[Q1] What is normal?

Setup. Compare compression as compared to an empty model M_0 (i.e. the whole graph is an error)

- Freq: select most often top k rules that apply (instead of MDL),
- Coverage: number of edges explained by the rule
- AMIE+ [Fabian's work] does not compress, so report only # rules

		Horn rules	Rules of the form $g = (\mathcal{L}_g, \chi_g)$				
Dataset	Metric	AMIE+	Freq	Coverage	KGIST	KGIST+m	KGIST+n
NELL	% Bits needed	N/A	191.46%	192.72%	73.88%	73.00%	63.57%
(6,268,200	Edges Explained	N/A	57.33%	50.12%	78.52%	78.52%	74.67%
bits)	# Rules	32,676	top- <i>k</i>	top- <i>k</i>	1,115	647	573
DBpedia	% Bits needed	N/A	674.51%	718.22%	69.88%	69.84%	69.77%
(119,117,468	Edges Explained	N/A	80.64%	71.70%	89.17%	89.17%	88.51%
bits)	# Rules	~6,963 [17]	top- <i>k</i>	top- <i>k</i>	516	505	498
Yago	% Bits needed	N/A	896.33%	947.64%	76.13%	75.98%	75.04%
(793,027,801	Edges Explained	N/A	86.54%	83.44%	88.40%	88.40%	85.20%
bits)	# Rules	failed	top- <i>k</i>	top- <i>k</i>	60,298	34,331	32,670

[Q2] What is strange?

Setup. Missing (A1), superfluous (A2), swapped (A4) labels, erroneous links (A3)

Baselines. KGIST-FREQ, AMIE+, others

		Super	rvised	Unsupervised			
Task	Metric	ComplEx	TransE	SDValidate	AMIE+	KGIST_FREQ	KGIST+m
All anomalies	AUC P@100 R@100 F1@100	$\begin{array}{c} 0.5508 \pm 0.02 \\ 0.4820 \pm 0.05 \\ 0.0087 \pm 0.00 \\ 0.0172 \pm 0.00 \end{array}$	$\begin{array}{c} 0.5779 \pm 0.04 \\ 0.7040 \pm 0.06 \\ 0.0126 \pm 0.00 \\ 0.0247 \pm 0.00 \end{array}$	$\begin{array}{c} 0.4996 \pm 0.00 \\ 0.5100 \pm 0.04 \\ 0.0092 \pm 0.00 \\ 0.0181 \pm 0.00 \end{array}$	$\begin{array}{c} 0.4871 \pm 0.04 \\ 0.3980 \pm 0.07 \\ 0.0072 \pm 0.00 \\ 0.0141 \pm 0.00 \end{array}$	$\begin{array}{c} 0.5739 \pm 0.01 \\ 0.6816 \pm 0.10 \\ 0.0126 \pm 0.00 \\ 0.0247 \pm 0.01 \end{array}$	$\begin{array}{c} 0.6052 \pm 0.03^{*} \\ 0.7419 \pm 0.07^{*} \\ 0.0139 \pm 0.00^{*} \\ 0.0273 \pm 0.01^{*} \end{array}$
A1 missing labels	AUC P@100 R@100 F1@100	$\begin{array}{c} 0.5842 \pm 0.04 \\ 0.2640 \pm 0.05 \\ 0.0119 \pm 0.00 \\ 0.0227 \pm 0.01 \end{array}$	$\begin{array}{c} 0.6021 \pm 0.06 \\ 0.4280 \pm 0.15 \\ 0.0181 \pm 0.01 \\ 0.0346 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4997 \pm 0.00 \\ 0.3040 \pm 0.06 \\ 0.0134 \pm 0.00 \\ 0.0257 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4409 \pm 0.06 \\ 0.1200 \pm 0.05 \\ 0.0057 \pm 0.00 \\ 0.0109 \pm 0.01 \end{array}$	$\begin{array}{c} 0.5149 \pm 0.02 \\ 0.4067 \pm 0.11 \\ 0.0199 \pm 0.01 \\ 0.0377 \pm 0.01 \end{array}$	$\begin{array}{c} 0.6076 \pm 0.03^{*} \\ 0.4759 \pm 0.05^{*} \\ 0.0244 \pm 0.01^{*} \\ 0.0463 \pm 0.02^{*} \end{array}$
A2 superfluous labels	AUC P@100 R@100 F1@100	$\begin{array}{c} 0.5502 \pm 0.02 \\ 0.1780 \pm 0.05 \\ 0.0122 \pm 0.00 \\ 0.0229 \pm 0.00 \end{array}$	$\begin{array}{c} 0.5659 \pm 0.03 \\ 0.3160 \pm 0.16 \\ 0.0219 \pm 0.01 \\ 0.0408 \pm 0.02 \end{array}$	$\begin{array}{c} 0.4989 \pm 0.01 \\ 0.2160 \pm 0.07 \\ 0.0152 \pm 0.00 \\ 0.0283 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4946 \pm 0.03 \\ 0.1040 \pm 0.09 \\ 0.0070 \pm 0.01 \\ 0.0131 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4997 \pm 0.04 \\ 0.2081 \pm 0.06 \\ 0.0169 \pm 0.01 \\ 0.0311 \pm 0.01 \end{array}$	$\begin{array}{c} 0.5115 \pm 0.03 \\ 0.2485 \pm 0.09 \\ 0.0175 \pm 0.01 \\ 0.0326 \pm 0.01 \end{array}$
A3 erroneous links	AUC P@100 R@100 F1@100	$\begin{array}{c} 0.2495 \pm 0.03 \\ 0.1020 \pm 0.04 \\ 0.0374 \pm 0.02 \\ 0.0548 \pm 0.02 \end{array}$	$\begin{array}{c} 0.4126 \pm 0.08 \\ 0.0020 \pm 0.00 \\ 0.0007 \pm 0.00 \\ 0.0011 \pm 0.00 \end{array}$	$\begin{array}{c} 0.4966 \pm 0.01 \\ 0.0480 \pm 0.02 \\ 0.0176 \pm 0.01 \\ 0.0257 \pm 0.01 \end{array}$	$\begin{array}{c} 0.8902 \pm 0.08 \\ 0.1860 \pm 0.08^* \\ 0.0679 \pm 0.03^* \\ 0.0995 \pm 0.05^* \end{array}$	$\begin{array}{c} 0.7383 \pm 0.00 \\ 0.0131 \pm 0.01 \\ 0.0051 \pm 0.01 \\ 0.0074 \pm 0.01 \end{array}$	$\begin{array}{c} 0.8423 \pm 0.00 \\ 0.0137 \pm 0.01 \\ 0.0052 \pm 0.01 \\ 0.0075 \pm 0.01 \end{array}$
A4 swapped labels	AUC P@100 R@100 F1@100	$\begin{array}{c} 0.5369 \pm 0.03 \\ 0.2160 \pm 0.08 \\ 0.0136 \pm 0.00 \\ 0.0256 \pm 0.01 \end{array}$	$\begin{array}{c} 0.5527 \pm 0.02 \\ 0.4200 \pm 0.09 \\ 0.0269 \pm 0.01 \\ 0.0505 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4991 \pm 0.00 \\ 0.2080 \pm 0.08 \\ 0.0128 \pm 0.00 \\ 0.0241 \pm 0.01 \end{array}$	$\begin{array}{c} 0.4891 \pm 0.03 \\ 0.1240 \pm 0.06 \\ 0.0079 \pm 0.00 \\ 0.0148 \pm 0.01 \end{array}$	$\begin{array}{l} 0.6904 \pm 0.01^{*} \\ 0.5360 \pm 0.15^{*} \\ 0.0379 \pm 0.01^{*} \\ 0.0705 \pm 0.01^{*} \end{array}$	$\begin{array}{c} 0.6633 \pm 0.07 \\ 0.4768 \pm 0.10 \\ 0.0320 \pm 0.01 \\ 0.0599 \pm 0.01 \end{array}$
Avg rank		4.10	2.90	4.15	5.00	2.90	1.95

Assume PCA, removes q% nodes from G, identify $\mathcal{A}(^{(g)}_{\xi})$

Baselines.

Metrics.

		S	Supervised	Unsupervised		
Dataset	Metric	LP	AMIE+C [16]	Freq	KGIST	
NELL	R R _L	N/A N/A	0.6587 ± 0.03 N/A	$\begin{array}{c} 0.4589 \pm 0.02 \\ 0.3924 \pm 0.02 \end{array}$	$\begin{array}{c} 0.7598 \pm 0.02 \\ 0.6636 \pm 0.01 \end{array}$	
DBpedia	R R _L	N/A N/A	0.8187 ± 0.01 N/A	$\begin{array}{c} 0.8049 \pm 0.01 \\ 0.7839 \pm 0.01 \end{array}$	$\begin{array}{c} 0.9288 \pm 0.00 \\ 0.9179 \pm 0.00 \end{array}$	

Conclusion and thoughts

In brief:

- MDL-based method for extracting rule sets out of knowledge graphs
- ► Tasks: description, error detection and KG completion tasks
- Data: NELL, DBPedia, YAGO
- Code is online : github.com/GemsLab/KGist

Thoughts:

- Really well written and thorough, easy to follow despite lots of contributions
- Hard for me to evaluate if it is performing well or if well chosen task