Confident Interpretations of Black Box classifiers

Nedeljko Radulović Albert Bifet Fabian Suchanek

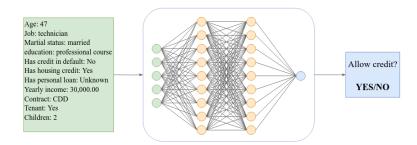
radulovic.nedeljko@telecom-paris.fr Télécom Paris, Institut Polytechnique de Paris

May 20, 2021

Use case scenario

Introduction

Related Work

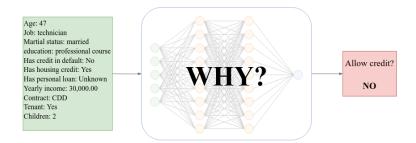

STACI:
Surrogate
Trees for A
posteriori
Confident

interpretations

Experimental

Summary

■ Use Neural Network to answer a loan request

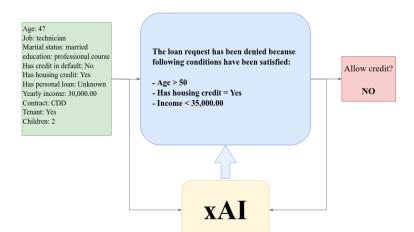

Use case scenario

Introduction

Related Work

STACI:
Surrogate
Trees for A
posteriori
Confident

interpretation


Explainable Artificial Intelligence

Introduction

Related Work

STACI:
Surrogate
Trees for A
posteriori
Confident

Interpretations

Related work

Introductio

Related Work

STACI: Surrogate Trees for A posteriori Confident

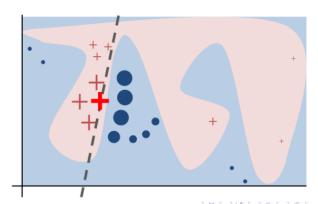
incorpi ceaeions

Experimental

Summary

Building already interpretable models: Decision trees, Rule-based models and linear models

Decision Tree


- If Age > 48, then No,
- else if Has housing credit = Yes, then No,
- else if Children > 3, then No,
- else if Has credit in default = Yes, then No,
- else if Income < 40.000, then No,
- else if Contract = CDD, then No.
- else Yes.

Rule based model

Related work

Post-hoc interpretability: Building surrogate interpretable models

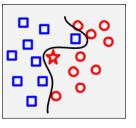
- Local models: LIME [1], Anchors [2], SHAP [3]
- Global models: TREPAN [4], DTExtract [5]

Introduction

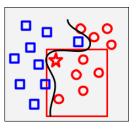
Related Work

STACI:
Surrogate
Trees for A
posteriori
Confident

Experimenta


Approximation using interpretable model

Introduction


Related Wor

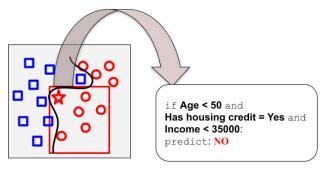
STACI: Surrogate Trees for A posteriori Confident Interpretations

Experimental results

Black box model decision boundary

Interpretable model approximation

Interpretation

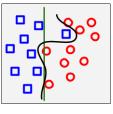

troduction

Related Worl

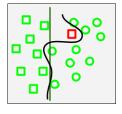
STACI: Surrogate Trees for A posteriori Confident Interpretations

merpretations

results


Interpretation provided by interpretable model

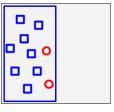
4 Criteria


STACI: Surrogate Trees for A posteriori Confident Interpretations

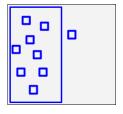
First two criteria are common:

- **Complexity** Length of the interpretation
- Fidelity Interpretable model is faithful to the black box model

Complexity


Fidelity

4 Criteria


STACI: Surrogate Trees for A posteriori Confident Interpretations

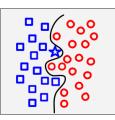
We introduce **two new** criteria:

- Confidence Interpretation applies on data points of the same class
- **Generality** Interpretation applies on multiple data points

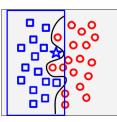
Confidence

Generality

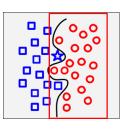
The main idea


Introduction

Related Work

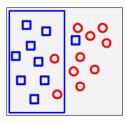

STACI: Surrogate Trees for A posteriori Confident Interpretations

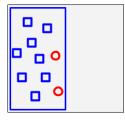
mterpretations

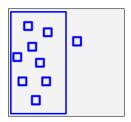

Experimental

Original black box model

Interpretable model for left class


Interpretable model for right class


Training


STACE: Surrogate Trees for A posteriori Confident

Interpretations

- Decision tree as interpretable model
- **Complexity** Define the maximal length of the interpretation
- Fidelity Label training data using the black box model
- Use F1 measure as a metric for deciding a split:
 - Confidence ↔ Precision
 - Generality ↔ Recall

Interpretable model

Confidence

Generality

Fidelity

Introduction

Related Worl

Surrogate
Trees for A
posteriori
Confident

Interpretations

Experimental results

Table: Fidelity (%) with NN as black box model

Dataset	DTE	SBRL	LIME	CART	Staci'	Staci
Heart	87.34	85.88	84.84	80.97	79.68	84.84
Breast	94.93	91.57	87.28	89.65	91.05	93.16
Diabetes	80.58	83.38	71.49	75.19	76.23	84.55
Voting	95.91	94.55	95.34	95.34	94.55	95.00
Sick	97.88	97.25	75.36	96.66	97.79	98.46
Нуро.	96.39	97.88	94.32	98.99	98.45	99.31
Adult	92.35	93.88	87.56	73.53	98.23	99.58
Wine	91.11	N/A	52.78	66.67	86.67	97.78
Derma.	94.86	N/A	82.70	80.28	95.28	96.11
Vehicle	74.47	N/A	54.71	69.06	68.24	86.35

Complexity

roduction

Related Wor

STACI: Surrogate Trees for A posteriori

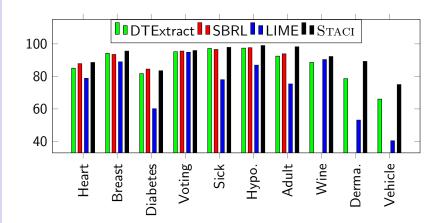
Connuent

Experimental results

Summary

Table: Average Complexity

Dataset	Black	DTE	SBRL	LIME	CART	Staci
Heart	NN	3.15	3.90	3	3	2.89
	RF	3.11	2.29	4	4	3.28
Breast	NN	2.88	4.20	3	3	1.9
Breast	RF	3.18	6.16	4	4	2.88
Diabetes	NN	2.89	5.78	3	3	1.49
Diabetes	RF	2.75	7.21	4	4	1.85
\/-+:	NN	3.11	1.57	3	3	1.58
Voting	RF	3.00	1.63	3	3	1.69
Sick	NN	2.40	3.64	3	3	1.40
SICK	RF	2.25	3.77	3	3	2.07
Ulama	NN	2.58	4.50	3	3	1.20
Нуро.	RF	2.16	4.78	3	3	1.09
Adult	NN	3.25	8.49	4	4	1.87
Adult	RF	2.75	7.22	4	4	1.83
Wine	NN	3.95	N/A	3	3	2.42
vvine	RF	4.29	N/A	4	4	2.93
D	NN	4.91	N/A	3	3	2.24
Derma.	RF	4.85	N/A	4	4	2.36
	NN	3.99	N/A	3	3	2.68
Vehicle	RF	4.50	N/A	4	4	2.91


Confidence

Introduction

Related Worl

STACI:
Surrogate
Trees for A
posteriori
Confident

Experimental results

Generality

ntroduction

Related Wor

STACI: Surrogate Trees for A posteriori Confident

Experimental results

Table: Generality comparison

Dataset	Black	DTE	Staci
Heart	NN	59.21	76.63
neart	RF	58.83	68.35
Breast	NN	80.31	92.59
breast	RF	84.82	88.67
Diabetes	NN	66.92	74.47
Diabetes	RF	64.23	71.51
\/-+:	NN	73.37	95.01
Voting	RF	82.14	95.15
Sick	NN	94.70	94.18
SICK	RF	93.39	94.43
I I	NN	89.62	97.08
Нуро.	RF	96.79	96.62
Adult	NN	92.06	95.53
Adult	RF	92.25	73.84
Wine	NN	77.03	86.67
vvine	RF	79.51	85.12
D	NN	91.74	91.33
Derma.	RF	91.54	91.54
Vehicle	NN	53.98	68.70
venicie	RF	46.16	55.54

Interpretation example

Age

Introduction

Related Wor

STACI: Surrogate Trees for A posteriori Confident

Interpretations

Experimental results

Summary

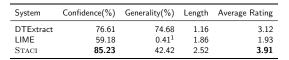
The datapoint	
Pregnancies	5
Glucose	166
Blood pressure	72
Skin thickness	19
Insulin	175
ВМІ	25.8
Diabetes pedigree	0.59

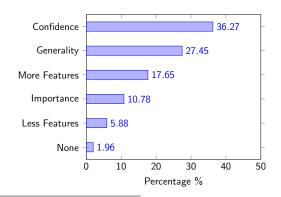
is classified as diabetic. It has these characteristics:

Glucose>154, Insulin>145, Age>30

There are 37 other data points with these characteristics, and 94.59% of them are also classified as diabetic.

51


User study


Introduction

Related Work

STACI:
Surrogate
Trees for A
posteriori
Confident

Experimental results

¹Local Model

STACI: Surrogate Trees for A posteriori Confident Interpretations

Introduction

Related Wor

Surrogate Trees for A posteriori Confident

Experimenta

Summary

Summary:

- lacktriangle Train one decision tree per class using F1 as a metric for a split
- Provide: confident, general and simple interpretations

Future works:

Remove the need for the user defined maximal length

Introduction

Polated Wa

STACI: Surrogate Trees for A posteriori Confident

Confident Interpretations

Experimental results

- M. T. Ribeiro, S. Singh, and C. Guestrin, "Why should i trust you? explaining the predictions of any classifier," in *SIGKDD*, 2016.
- —, "Anchors: High-precision model-agnostic explanations," in *AAAI*, 2018.
- S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," in *Advances in neural information processing systems*, 2017.
- M. Craven and J. W. Shavlik, "Extracting tree-structured representations of trained networks," in *Advances in neural information processing systems*, 1996.

Introduction

Related Worl

STACI: Surrogate Trees for A posteriori Confident

Experimenta

esults results

Summary

O. Bastani, C. Kim, and H. Bastani, "Interpreting blackbox models via model extraction," arXiv preprint arXiv:1705.08504, 2017.