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Candidate

François Amat (https://famat.me)
Graduate of Télécom Paris (2019), currently employed at Dassault
Systèmes as a Data scientist. I am passionate about symbolic AI
and knowledge bases.

Academia
Graduate of the M2
Data&Knowledge, Saclay
(2019)
Graduate of the
Engineering degree
Télécom Paris (2019)
Several research internships
in France and abroad.

Industrial
2 years as data scientist at
Dassault Systèmes
Built products with
knowledge extraction from
wikidata
Constructing a joint thesis
proposal with Fabian
Suchanek
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Goal

Understand tabular data
Find patterns that are interesting to humans

Input: Car accidents from
NHTSA (Open data)

Car model Year Death
Pathfinder 1994 0
Pontiac 1993 1

Lexus ES250 1993 0

Desired output:
Deaths are NOT linked
with the Car model.
If the car is 5 years old,
the death rate increases
by 10%.
Deaths are linked with
the part Seat
bealt:front:anchorage.

Issue
Deep learning or other black box models cannot deliver.
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Example: Legal compliance

Use case
Let’s suppose that I am the head of legal.

Input:
Company and open data

Topic Legal code Risk
DOL CIVIL Low
DOL INSURANCE Medium
DOL FISCAL High

Table: Open tabular data from
https://www.legifrance.gouv.fr/

Desired output:
Insights such as :

Arguing DOL is very
risky for Fiscal issues.
From 2010 to 2020
arguing DOL in CIVIL
has increase failure by
21%.
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Example: Drug reimbursement policy

Use case
Let’s suppose that I am working at the FRENCH social
welfare.

Input:
open data

Name Progress %
PRALUENT no 65
FUCIDINE N/A 0
VERZENIOS yes 100

Table: Open tabular data from
https://www.has-sante.fr/

Desired output:
Check if there is evidence for
patterns of interest such as :

Company name → high
reimbursement
lack of progress → high
reimbursement
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Example: Human Resources

Use case
Let’s suppose that I am the head of Human Ressources.

Input:

Name Gender Salary
Greg Male $50,078

Michael Male $276,500
Karen Female $240,000

Table: Open tabular data from https:
//www.salaries.texastribune.org/

Desired output:
Check if there is evidence for
patterns of interest such as :

If candidate age > 50
Then final acceptance
ratio is < 10%.
If candidate ethnicity is
minority Then final
acceptance ratio is
LOWER than other
candidates.
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Related work: Explainable AI (xAI) - Interpretable models

Ethnicity

no
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Hours per week
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40

m
inority

Figure: Decision tree

Classical Interpretable models are
decision trees [8], rule-based
models [13] and linear models
[12].

Limitations :
They cannot find relations across
multiples rows.

Is the data compliant with our
HR policy, in that the director of
an employee is always a
manager?
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Related work : Explainable AI (xAI) - Post-Hoc Models

Black boxdata prediction

Post-Hoc models aim to find limits, outlines of the prediction, or
to map a black-box model to an understandable model.

Limitations :
When they map to an understandable model they have the
same limitations as these understable models (previous slides).
They cannot explain how the outline of one prediction is made.
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Related work: Inductive Logic Programming (ILP)

ILP is the task of learning logical rules from positive and negative
examples. ILP methods find logical rules of the form :

IF relation1(X,Y) and relation2(Y,Z) THEN relation3(X,Z)

Limitations of ILP
Does not scale to millions of facts
Has trouble dealing with negations under the open world
assumption.

10 / 17



Candidate Goal State of the art Objectives and ideas Conclusion

Related work: Rule mining

Rule mining is ILP designed to scale to millions of facts in large
knowledge bases, under the open world assumption.

Limitations of Rule mining
Cannot find numerical correlations.
Cannot use predicates with arity > 2.
Cannot collect rules with existential quantifiers.
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Capabilities XAI Rule mining

Scalable to millions of entities False True
Explanable True True
Work under open world assumption False True
Combine several data points False True
Handle Negations False To improve
Work with tabular data True False
Work with arbitrary pattern False True
Existential quantifiers False False

Figure: State of the art
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Rule mining system, AMIE as a basis
Association rule Mining under Incomplete Evidence (AMIE).

AMIE has been developed at Telecom Paris since 2013.
AMIE is open source 1 and aims to be the reference and leader in
rule mining.
In its third version (2020), AMIE is best in class in terms of rule
mining speed and quality.

1https://github.com/lajus/amie
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PhD objective 1: Handle tabular data

Current rule mining algorithms are limited to knowledge bases, or
tabular data with less than 2 columns.
Idea
Extend the current exploration algorithm of AMIE to explore all
join conditions in parallel.

Expected benefits
Generalization to all kinds of tabular datasets: Nhtsa, Legifrance,
has-sante, texastribune... Being able to mine rules such that:
IF an employee works in texas government as a data
scientist THEN employee’s annual salary increase matchs
inflation rate.
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PhD objective 2: Mine rules with numerical attributes

We want to be able to mine numerical comparisons on data such
as <, >, =. This is challenging because the search space is infinite.

Idea (see vision paper[5])
Starting out with comparisons between attributes of entities.
Binary searches for finding thresholds for numerical attributes.
Bucketing.

Expected benefits
Being able to mine rules such that:
If candidate age > 50 Then final acceptance ratio is < 10%.
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PhD objective 3 : Mine rules with negations

Knowledge bases or tabular data do not contain negative
information. In addition, due to the open world assumption we
cannot infer that absent statements are negative statements.

Idea
Adapt more methods [9] [7] that estimate when an absent
statement is negative. When can we detect that the absence of
information means something specific ?

Expected benefits
Being able to mine rules such that:
IF employee ethnicity is majority THEN there are NO
decrease NOR increase in acceptance ratio.
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PhD proposal François Amat

Goals
Mine rules such as : If candidate age > 50 and job is data scientist in
Europe Then there are no decreases in acceptation ratio.

On tabular data
With numerical attributes
With negations

Numerous applications
AI & Data for Business
Help expert users to understand:

Reasons:
Deaths in car accident are
linked with the part seat belt.
Risk management:
Using the DOL argument
have High risk for fiscal
issues.

AI & Data for Society
Being able to check:

Compliance:
If candidate age > 50 Then
final acceptance ratio is NOT
lower than other candidates.
Dependencies:
Company name does NOT
implies high reimbursement
rate.
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Database Approaches

Key contraints
Example: "Employee id" 1:1 with "Employee name"
Foreing key constraints
Example: the tables Employee_office,Employe are linked.
Association rules
Example: If Salary is over $40k Then employement status is
"Full time"
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Explainable and causation

There is considerable debate about the meanings of the terms
“explainable” and “interpretable”, and what constitutes
"causation" [1] [3] [2] [4] [6].
In our work, we aim at interpretability in the following sense: We
want to provide a meaning for the results of a model in terms that
are understandable to humans [3].
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Tabular to kb (wip)

Employee Gender Race Hours per week Salary
Greg Dannheim Male White 40 $50,078

Greg

blank

...

blank
white

race

male
Gend

er Greg

white

rac
e

$50,078

sa
lar
y

Greg Dannheim

Em
ployee

male

gender
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AMIE performances
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Definitions

Open world assumption
We only know what we have in the database.
Example: If employee.maritalStatus = Null then it does not mean
that the employee is not maried.

Knowledge base

employee

Michael
has first name

Male

has ge
nder

Figure: knowledge base example

They can only store binary
predicate, called relation.
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PhD objective 4: Improve the predictive power

Predict a new statement is not a trivial task, even if we can mine
all rules efficiently. Indeed, rules have to be combined to arrive at
new statements and gauge their probability.

Idea
Use of logical reasoning [11] and probabilistic methods such as
Markov Logic Networks

Expected benefits
Being able to predicting a new statement such as : Michael has a
professional cell phone because he has "director" in his title.
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PhD objective 5: Mine rules with Meta-relations

Current ILP does not take into account statements about
statements.
Idea
Collaboration with the NoRDF project [10].

Expected benefits
Being able to use statements about statements in rule mining
would allow to have better rules. Indeed, this would allow
distinguishing statements that are beliefs, refused, old... For
instance, "In this company, all executives had the same gender
until 2017"
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Black box models are great but not suited for all industries.
We want to allow domain experts to use AI for critical tasks.

Black box models make predictions based on input data.
Examples: Deep Learning models, Random Forests.

Black boxdata prediction

Black box models are great for making accurate predictions, but
their output cannot be explained. Critical tasks in security,
health or justice cannot be operated by black box predictions.
Indeed, due to liabilities, requirements, understanding why a
prediction and therefore why an action is made, must be justified.
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