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Some challenges for clustering

Heterogeneous datasets

• Datasets with outliers/noise.
• Heavy tailed distributions.
• Different scales/distributions.
• Continuous and discrete data.

Lots of data (n≫)
• high computational cost.
• need of parallelization / batch versions

High dimensional context (m≫)
• ill-posed problems
• data on manifolds
• ⇒ regularization, dimensionality reduction
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Some challenges for clustering

Focus here on:

Heterogeneous datasets

• Datasets with outliers/noise.
• Different scales/distributions.

We address ”not too high dimensions” regimes (say 30-100).
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Outline

1. Classical algorithms

2. Robustness proposals

3. A novel flexible clustering algorithm: F-EM

4. Conclusions and perspectives
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Introduction and State of the art



K-means

Given {xi}ni=1, find Ĉ = {C1, ..., CK} with µk =
1

#(Ck)
∑

x∈Ck x such that

Ĉ = argmin
C={C1,...,CK}

K∑
k=1

∑
x∈Ck

∥x− µk∥22

Plain optimization problem.

Simple idea. 3

Very fast. 3

Works well only when: 7

• round-shaped clusters,
• with similar variance, and
• well-separated.
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Gaussian Mixture Model (GMM)

We model data as a mixture of Gaussian distributions N (µk,Mk):

f(x) =
K∑
k=1

πkfk(x),

with πk the proportion of cluster k and fk the normal p.d.f.

fk(x) =
1

(2π)m/2|Mk|1/2
exp

[
−
(x− µk)

TM−1
k (x− µk)

2

]
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Expectation-Maximization (EM) algorithm

Statistical algorithm to estimate parameters based on a likelihood.

In the GMM case, we would need the labels of the data points to es-
timate the parameters. Labels→ Latent variables

E-STEP

Computation of the membership a
posteriori probabilities

pik = P(Zi = k|Xi = xi) =
πkfk(xi)
K∑
j=1

πjfj(xi)

with fk the Gaussian p.d.f.

M-STEP

Estimation of the parameters

π̂k =
1
n

n∑
i=1

pik

µ̂k =
1
nπ̂k

n∑
i=1

pikxi

M̂k =
1
nπ̂k

n∑
i=1

pik(xi − µ̂k)(xi − µ̂k)
T
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What happens to GMM when the data has some noise or non
Gaussian data?

The GMM has problems to cluster and estimate parameters for data
with noise, different distribution shapes and outliers.

Result with data contaminated:
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What happens to GMM when the data has some noise or is non
Gaussian?

Why?

• The estimators are not robust.
• Mismatch between the model and the data.
• No outlier rejection.

9 / 32



How to address the robustness challenge?

There are mainly two directions to robustify clustering methods in
the literature:

• model generalizations
• Extra uniform cluster [Banfield and Raftery, 1993]
• Model low density areas (RIMLE and OTRIMLE)
[Coretto and Hennig, 2016]

• Mixture of t−distributions (t-EM) [Peel and McLachlan, 2000]

• models that introduce classical robust techniques in the
estimation

• Trimming methods (TCLUST) [García-Escudero et al., 2008]
• k-tau [Gonzalez et al., 2019] and Spatial-EM [Yu et al., 2015]
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Some drawbacks

Some drawbacks of the state of the art robust clustering methods:

• No closed equations on the M-step, reliance on non-linear
optimizers (t-EM).

• Extra parameters difficult to be tuned (RIMLE, TCLUST).
e.g. if we misspecify the proportion of noise in the TCLUST
algorithm [Gonzalez et al., 2019].

• Models are too specific.

Our goal:

• flexibility to very general models
• no extra parameters
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F-EM: Model, derivation and
properties



Model

We consider x1, . . . , xn ∈ Rm independent vectors.

These vectors belong to some clusters C1, . . . , CK.

x1, . . . , xn ARE NOT i.i.d. !

Cluster characterization

xi and xj belong to Ck if they are drawn from a distribution with the
same features

µk and Σk

The location and the scatter matrix are the features that character-
ize the clusters and not a particular distribution as in GMM or t-EM.
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F-EM: A flexible algorithm relying on a very general model

F-EM is based on a model where the x1, . . . , xn independent vectors
are characterized by

Stochastic representation

xi ∈ Ck ⇒ xi d
= µk +

√
Qik

√
τik Ak ui

• µk is the mean of the cluster k.
• Qik is an independent positive random variable.
• τik are scale (nuisance) parameters that increase the flexibility
of the model.

• Ak is such that ATkAk = Σk (the scatter matrix of the cluster k).
• ui is a uniform vector on the unit hyper-sphere.

13 / 32



Elliptical Symmetric family

The stochastic characterization [Cambanis et al., 1981] represents
vectors of the Elliptical Symmetric family [Kelker, 1970].

The density can be written as

fxi(x) = Am|τikΣk|−1/2 gik
(
τ−1ik (x − µk)

TΣk
−1(x − µk)

)
for some function gik called the density generator. We denote it as
x ∼ ES(µk, τikΣk,gik).

gik characterizes Qik and gives the shape of the distributions

This family includes Gaussian, t−distribution, Generalized Gaussian
distribution. Heavier and lighter (than Gaussian) tails.
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Different scenarios

We consider different scenarios based on the nature of the density
generator functions:

gik =



gi,
each point might come from different shaped distributions

BUT shapes do not depend on the cluster

g, the density generator function is
always the same (e.g. Gaussian case)

gk, cluster dependent shapes
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F-EM: A flexible algorithm relying on a very general model

Parameter space

Given {xi}ni=1 ∈ Rm we have to estimate the usual parameters

Θ = {(πk,µk,Σk)}k=1,..,K

AND we now have a lot of (nuisance) parameters τ

Θ̃ = {τik}k=1,..,K
i=1,..,n

MLE
We derive the two-step (E-M) algorithm based on the likelihood of
the model (using the trick of [Ollila and Tyler, 2012]).
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E-step: First Miracle

Proposition
Assume gik = gi, then the membership probabilities MLE are

p̂ik =
π̂k

(
(xi − µ̂k)

TΣ̂
−1
k (xi − µ̂k)

)−m/2
|Σ̂k|−1/2∑K

j=1 π̂j

(
(xi − µ̂j)

TΣ̂
−1
j (xi − µ̂j)

)−m/2
|Σ̂j|−1/2

.

Insensitivity: the expression of the membership does not depend on
the particular density gi that generates each data point
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M-step: Second Miracle

Proposition (Location and scatter matrix estimators)
We almost obtain Tyler’s estimators.

µ̂k =

n∑
i=1

p̂ikxi
(xi − µ̂k)

TΣ̂k−1(xi − µ̂k)

n∑
i=1

p̂ik
(xi − µ̂k)

TΣ̂−1
k (xi − µ̂k)

Σ̂k = m
n∑
i=1

wik(xi − µ̂k)(xi − µ̂k)
T

(xi − µ̂k)
TΣ̂k−1(xi − µ̂k)

, with wik = p̂ik/
∑
i

p̂ik
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And the taus?

Furthermore,

τ̂ik =
(xi − µ̂k)

TΣ̂
−1
k (xi − µ̂k)

aik
,

where aik depends only on gik, for example for the Gaussian case
aik = m.

19 / 32



Estimators intuitively

µ̂k and Σ̂k are like usual sample estimators with small weights for
outlying points

1
n

n∑
i=1

xi =⇒
1
n

n∑
i=1

γixi

1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T =⇒ 1
n

n∑
i=1

γi(xi − µ̂)(xi − µ̂)T

with γi = C p̂ik
(xi−µ̂k)

TΣ̂
−1
k (xi−µ̂k)

Tyler estimators [Tyler, 1987] (classical robust estimator [Maronna, 1976])
fulfill very similar equations. HINT about robustness of the model.
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About F-EM

Properties

• The random vectors that represent the data points are
independent but not necessarily i.i.d.

• Generalizes GMM. (Gaussian ∈ ES)

• If gik = gi, the membership probabilities do not depend on the
shape of the distributions!

• If gik = gk, we can derive extra estimators to be computed on
the M-Step.

• The model leads to estimators that are similar to classical
robust estimators (Tyler) [Ollila and Tyler, 2012].
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If the dimension grows... Some hints

When the dimension grows we can better estimate the parameters
τik.

Convergence of τ̂ when g is the Gaussian density generator
Let x d

= µ+
√
τAq, with q a standard Gaussian. Under some

assumptions, for any a ∈ R, ∀ε > 0 and y ∼ N (τ, 2τ 2/m), then

|P({τ̂ ≤ a})− P(y ≤ a)| < ε, if n and m are large enough

This is in agreement with previous RMT results [Couillet et al., 2014].

We can combine this result with parsimonious restrictions on the
covariance matrix to avoid issues in the case of very large m.
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Implementation details

• The trace of the scatter matrix estimator is fixed.

• Possible centers initialization: quick run of k-means.

• Code available: github.com/violetr/fem
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F-EM: Experimental results



Measuring the performance

We compare our algorithm to

• k-means
• GMM-EM
• Spectral Clustering
• Mixture of Student’s t (t-EM or EMMIX)
• TClust
• RIMLE

Metrics

• Adjusted Mutual Information (AMI),
• Adjusted Rand Index (AR).
• Estimation error of the parameters (only for simulations).
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Some simulation results

Mixtures of t-distributions with different degrees of freedom and
covariance matrix classes, mixtures of more general distributions,
clusters with different gi.
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Some simulation results

Setup 3:
Gaussian +
uniform
noise
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Setup 4:
Elliptical
different gi
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F-EM performs well even in the situations that do not match the
model.

26 / 32



Real data clustering results

MNIST (LeCun, 1998) NORB (LeCun, 2004)

Set k-means GMM t-EM F-EM spectral TCLUST RIMLE
MNIST38 0.2884 0.5716 0.6397 0.6887 0.6866 0.6847 0.2494
MNIST71 0.8486 0.8905 0.9432 0.9360 0.9384 0.6885 0.2493
MNIST386 0.6338 0.7332 0.8262 0.8306 0.8542 0.8366 0.4274
MNIST386+n 0.4475 0.4909 0.5296 0.5548 0.3115 0.6908 0.1498
smallNORB 0.0015 0.0468 0.4223 0.5067 ∼ 0 0.1330 0.1472
20news 0.1883 0.2739 0.4426 0.5114 0.0987 0.2664 0.0026

Table 1: Median AMI
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Real data clustering results - The NORB case

Dataset kmeans GMM-EM t-EM F-EM spectral TCLUST RIMLE
small NORB 0.0015 0.0468 0.4223 0.5067 ∼ 0 0.1330 0.1472

t-SNE embedding of the dataset colored with labels:

real labels F-EM labels GMM-EM labels
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