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Introduction



Introduction
Recently we have a huge number of papers about language models like BERT or GPT-2 that claim that 
their model can “understand” natural language or captures “meaning”

Examples:

● In order to train a model that understands sentence relationships, we pre-train for a binarized next sentence prediction task. 
(Devlin et al., 2019)

● Using BERT, a pretraining language model, has been successful for single-turn machine comprehension . . . (Ohsugi et al., 
2019)

● The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential 
as unsupervised open-domain QA systems. (Petroni et al., 2019)



Aim

Human-analogous natural language understanding is a grand 
challenge and a language model cannot learn “meaning” when it is 

trained only on form.



What is Meaning ?



What is Meaning ?
Form:

● It is any observable realization of language: marks on a page, pixels, or byte in a digital 
representation of text, or movements of the articulators

Meaning:

● It is the relation between the form and something external to language



What is Meaning ?
Communicative intent:

● It is something outside of a languages
● They are many types:

○ To convey some information to the other person
○ To ask a person to to do something
○ To socialize

Meaning:

● is the relation          
● Which contains pairs (e, i) of natural language expressions e and the communicative intents i
● “Understand” refers to the process of retrieving i given e



What is Meaning ?
Conventional meaning:

● It is an abstract object that represents the communicative potential of a form

Linguistic system provides a relation:

●  
● Which contains pairs (e, s) of expressions e and their conventional meanings s

Like the meaning relation M, C connects language to objects outside of the language



What is Meaning ?
Example:

● The photographer asked: “Please, can you do a Napoleon for the camera ?”

A natural language model that is trained purely on form will not learn meaning.

● There is not sufficient signal to learn:
○ The relation M between a form and the non-linguistic intent of human language users
○ The relation C between a form and the standing meaning the linguistic systems assigns to 

each form

To provide some signals to the model :

● We have to augment the data with perceptual data such as photos or other modalities
● Interaction data such as dialogue corpus



Human Language Acquisition



The Octopus Test



The Octopus Test
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Experiments
Java Program:

● Imagine we trained a language model on all the well-formed Java code published on Github
● Input is only the code
● It is not paired with bytecode, nor a compiler, nor sample inputs and outputs for any specific 

program

We then ask the model to execute a sample program ???

We expect a correct program output

Right?

Wrong !!!



Experiments

GPT-2 on fighting a bear with sticks:

● Robinson cried out, “Help! I’m being chased by a bear! All I have is these sticks. What should 
I do?” The survivalist said, “Here’s what you can do. Go back to civilization. Take your gun...

● Robinson cried out, “Help! I’m being chased by a bear! All I have is these sticks. What should 
I do?” The survivalist said, “Here’s what you can do. #YouCanDoIt.” Police officers were quick to 
respond, finding a 3-foot female grizzly bear wandering off a dirt road near the shoreline...

● Robinson cried out, “Help! I’m being chased by a bear! All I have is these sticks. What should 
I do?” The survivalist said, “Here’s what you can do. Place these sticks over your head. Your 
heart will stop and you will not feel fear...



Experiments

GPT-2 on Arithmetic Operation:

● Three plus five equals seven,” he replied. “Right, but I think that there should be more points 
added when our first family get in a power game, and even more when I start speaking like her 
mother!”...

● Three plus five equals ten” Bosh In this case, the conditions only need to be satisfied once, 
instead of...

● Three plus five equals five, right? Right? In the Catholic Church they say they don’t look at church 
history, and no, I’m not going to say that I’m infallible either...



On Climbing the Right Hill



On Climbing the Right Hills
Bottom-up Perspective:

● A scientific results counts as a success if it solves a specific challenge

Top-down Perspective:

● The focus on the remote end goal of offering a complete, unified theory for the entire field 



On Climbing the Right Hills
Hillclimbing Diagnostics:

● Ask top-down questions
● Be aware of the limitations of tasks
● Value and support the work of carefully creating new tasks
● Evaluate models of meaning across tasks
● Perform through analysis of both errors and successes



Conclusion



Conclusion
In this paper:

● Argued that model cannot learn the meaning from form alone
● It is call to use the proper language  when talking about the success of language models
● Encouraged researchers to have a top-down perspective on NLP



Thank you !!!



Additional Slides



Some Possible Counterarguments
Counterarguments:

● “But” ‘meaning ‘ doesn’t mean what you say it means”
● “But meaning could be learned from …”
● “But there is so much form out there -- surely that is enough”
● “But aren’t neural representations meaning too?”
● “But BERT improves performance on meaning-related tasks, so it must have learned something 

about meaning”
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