
A Dichotomy for Homomorphism-Closed Queries
on Probabilistic Graphs

Antoine Amarilli
October 29, 2020

Télécom Paris

1/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

2/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/29

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data 3/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries

“Is there some person x employed in an
institution who is part of a consortium z?”

Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%

5/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries
“Is there some person x employed in an

institution who is part of a consortium z?”

Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%

5/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries
“Is there some person x employed in an

institution who is part of a consortium z?”
Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%

5/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries
“Is there some person x employed in an

institution who is part of a consortium z?”
Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%

5/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries
“Is there some person x employed in an

institution who is part of a consortium z?”
Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%

5/29

Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries
“Is there some person x employed in an

institution who is part of a consortium z?”
Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech 72%
A. IP Paris 99.1%
A. Paris-Saclay 9%
B. IP Paris 20%
B. Paris-Saclay 36%
B. CESAER 80%

5/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph

→ From now on, all queries are YES/NO queries,
so we have just one YES/NO answer to compute, or just one probability

6/29

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability
6/29

Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z

→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)
→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
()∗

7/29

Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)
→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
()∗

7/29

Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)

→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
()∗

7/29

Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)
→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
()∗

7/29

Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)
→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
()∗

7/29

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

8/29

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

8/29

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:

• Formally:
∑

W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

8/29

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

8/29

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)
8/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:

(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)

× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)

× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x

• There is no match of the query i�
every red edge is not kept

• These choices are independent, so x is:
(1− 80%)× (1− 10%)× (1− 40%)×
(1− 80%)× (1− 100%)

• This gives x = 0%, so the query has
probability 100%

• This process is in polynomial time

9/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1−

(1−80%)× (1− (

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)×

(1− (

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1−

(

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)

×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1−

(1− 50%)× (1− 90%))

)

×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1− (1− 50%)× (1− 90%)))

×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1− (1− 50%)× (1− 90%)))

×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1− (1− 50%)× (1− 90%)))×
(1− 80%× (1− (1− 90%)× (1− 90%))),

i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1− (1− 50%)× (1− 90%)))×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

PQE: a more complicated example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (1− (1− 10%)× (1−
40%))× (1− (1− 50%)× (1− 90%)))×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time

10/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes

11/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

12/29

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P

• #P: counting class of problems expressible as the number of accepting paths
of a nondeterministic polynomial-time Turing Machine

→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., ∃x y x y or ∃x y z x y z

13/29

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., ∃x y x y or ∃x y z x y z

13/29

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME

→ e.g., ∃x y x y or ∃x y z x y z

13/29

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., ∃x y x y or ∃x y z x y z

13/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q :

x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:

• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

14/29

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q 14/29

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

15/29

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

15/29

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

15/29

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)
15/29

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts

16/29

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts

16/29

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts

16/29

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts

16/29

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts 16/29

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

17/29

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

17/29

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work

18/29

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
18/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

19/29

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

20/29

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

20/29

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

20/29

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

21/29

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

21/29

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

21/29

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

21/29

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

21/29

Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

22/29

Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

22/29

Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

22/29

Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N

• Hence, PQE(Q) is #P-hard

22/29

Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

22/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

23/29

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

24/29

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

24/29

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

24/29

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

24/29

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

24/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

25/29

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

26/29

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

26/29

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

26/29

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)
26/29

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

27/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits

• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data

• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

28/29

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates
28/29

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!

29/29

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!

29/29

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!29/29

www.tcs4f.org
www.nofreeviewnoreview.org

Bibliography i

Amarilli, Antoine, Pierre Bourhis, and Pierre Senellart (2015). “Provenance Circuits for
Trees and Treelike Instances”. In: ICALP.

— (2016). “Tractable Lineages on Treelike Instances: Limits and Extensions”. In: PODS.
Amarilli, Antoine and Ismail Ilkan Ceylan (2020). “A Dichotomy for

Homomorphism-Closed Queries on Probabilistic Graphs”. In: ICDT.
Amarilli, Antoine and Benny Kimelfeld (2020). “Uniform Reliability of Self-Join-Free

Conjunctive Queries”. Preprint: https://arxiv.org/abs/1908.07093.
Dalvi, Nilesh and Dan Suciu (2007). “The dichotomy of conjunctive queries on

probabilistic structures”. In: Proc. PODS.
— (2012). “The dichotomy of probabilistic inference for unions of conjunctive queries”.

In: J. ACM 59.6.

https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://diku-dk.github.io/edbticdt2020/
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

Bibliography ii

Fink, Robert and Dan Olteanu (2016). “Dichotomies for queries with negation in
probabilistic databases”. In: 41.1, 4:1–4:47.

Jung, Jean Christoph and Carsten Lutz (2012). “Ontology-based access to probabilistic
data with OWL QL”. In: Proceedings of the 11th International Conference on The
Semantic Web - Volume Part I, pp. 182–197.

http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf

	Introduction and problem statement
	Existing results
	Main result: Dichotomy on homomorphism-closed queries
	More restricted instances: Words, trees and bounded treewidth (1 slide)
	More restricted instances: Unweighted instances (1 slide)
	Conclusion and open problems
	Appendix
	
	References

