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Uncertain data management

Relational databases manage data, represented here as a labeled graph
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→ Problem: we are not certain about the true state of the data
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Uncertain data model

A.

B.

İ.

Télécom Paris
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90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))
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Queries

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Central database task: evaluate queries

“Is there some person x employed in an
institution who is part of a consortium z?”

Q(x, z) : ∃y x y z

Result on this graph:
x z

A. ParisTech

72%

A. IP Paris

99.1%

A. Paris-Saclay

9%

B. IP Paris

20%

B. Paris-Saclay

36%

B. CESAER

80%
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Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29



Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29



Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29



Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability

6/29



Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph

→ From now on, all queries are YES/NO queries,
so we have just one YES/NO answer to compute, or just one probability

6/29



Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

• Query: maps a graph to YES/NO

Why can we get away with that?

• Consider a query: Q(x, z) : ∃y x y z

• Consider each possible choice of (x, z), e.g., (A., CESAER)

• The query Q(A., CESAER) is a YES/NO query:
Q(A., CESAER.) : ∃y x y z

• The number of choices for (x, z) is polynomial in the input graph
→ From now on, all queries are YES/NO queries,

so we have just one YES/NO answer to compute, or just one probability
6/29



Query languages

Which kinds of queries do we want to express?

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z

→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
• e.g.,

(
∃x y z x y z

)
∨
(
∃x y zw x y z w

)
→ Formally: a finite disjunction of CQs

• Regular path queries (RPQ): can I find a match of a regular path?

• e.g., ∃x y x y
( )∗
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Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: ∃x y z x y z

• The input is a TID D:
A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)
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PQE: a simple example

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

Find the probability of: ∃x y x y

• It’s easier to compute the probability x
that there is no match of the query
→ The probability we want is 1− x
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PQE: a more complicated example
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How to compute the probability of the
query from the previous slide?
∃x y z x y z

• Key insight: consider all possible
choices for the middle variable y

• 1− (1−80%)× (1− (

1−

(1− 10%)× (1−
40%)

)× (1−

(1− 50%)× (1− 90%))

)×
(1− 80%× (1− (1− 90%)× (1− 90%))),
i.e., 97.65792%

• This is scary but polynomial time
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Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

My work: several dichotomies on the PQE problem:

• Existing results on UCQ:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• This talk: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• I’ll also mention some of my work on restricted graph classes
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Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P

• #P: counting class of problems expressible as the number of accepting paths
of a nondeterministic polynomial-time Turing Machine

→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., ∃x y x y or ∃x y z x y z
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PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q :

x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q
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The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)
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Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments
→ Independent conjunction over the facts
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Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1
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The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work

18/29
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Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms
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Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)
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Our result

We show:
Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
( )∗

• It is not equivalent to a UCQ: infinite disjunction
( )i

for all i ∈ N
• Hence, PQE(Q) is #P-hard
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Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)
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Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)
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Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs
• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries
• Understand unweighted subgraph counting for more general classes
• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.
• Connections to other problems, especially enumeration of query results and

maintenance under updates
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