A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Antoine Amarilli
October 29, 2020
Télécom Paris

Table of contents

Introduction and problem statement
Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Uncertain data management

Relational databases manage data, represented here as a labeled graph

Uncertain data management

Relational databases manage data, represented here as a labeled graph
WorksAt

Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	
Télécom Paris Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

A. Télécom Paris ParisTech	
B. Paris Sud	
B. IP Paris	
i. Technion Paris-Saclay	
	U. Oxford

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	
MemberOf		
Télécom Paris		
Télécom Paris	IP Paris	
Paris Sud	IP Paris	
Paris Sud	Paris-Saclay	
Technion	CESAER	

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

\rightarrow Problem: we are not certain about the true state of the data

Uncertain data model

A. \longrightarrow Télécom Paris \longrightarrow ParisTech

B.

i. \longrightarrow U. Oxford

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

$$
\operatorname{Pr}(W)=\left(\prod_{F \in W} \operatorname{Pr}(F)\right) \times\left(\prod_{F \notin W}(1-\operatorname{Pr}(F))\right)
$$

Queries

Central database task: evaluate queries

Queries

Central database task: evaluate queries
"Is there some person x employed in an institution who is part of a consortium z?"

Queries

Central database task: evaluate queries
"Is there some person x employed in an institution who is part of a consortium z ?"

$$
Q(x, z): \exists y \quad x \longrightarrow y \longrightarrow z
$$

Queries

Central database task: evaluate queries
"Is there some person x employed in an institution who is part of a consortium z ?"

$$
Q(x, z): \exists y \quad x \longrightarrow y \longrightarrow z
$$

Result on this graph:

x	z
A.	ParisTech
A.	IP Paris
A.	Paris-Saclay
B.	IP Paris
B.	Paris-Saclay
B.	CESAER

Queries

Central database task: evaluate queries
"Is there some person x employed in an institution who is part of a consortium z ?"

$$
Q(x, z): \exists y \quad x \longrightarrow y \longrightarrow z
$$

Result on this graph:

x	z
A.	ParisTech
A.	IP Paris
A.	Paris-Saclay
B.	IP Paris
B.	Paris-Saclay
B.	CESAER

Queries

Central database task: evaluate queries
"Is there some person x employed in an institution who is part of a consortium z ?"

$$
Q(x, z): \exists y \quad x \longrightarrow y \longrightarrow z
$$

Result on this graph:

x	z	
A.	ParisTech	72%
A.	IP Paris	99.1%
A.	Paris-Saclay	9%
B.	IP Paris	20%
B.	Paris-Saclay	36%
B.	CESAER	80%

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

- Consider a query: $Q(x, z): \exists y x \longrightarrow y \longrightarrow z$

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

- Consider a query: $Q(x, z): \exists y x \longrightarrow y \longrightarrow z$
- Consider each possible choice of (x, z), e.g., (A., CESAER)

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

- Consider a query: $Q(x, z): \exists y x \longrightarrow y \longrightarrow z$
- Consider each possible choice of (x, z), e.g., (A., CESAER)
- The query $Q(A ., C E S A E R)$ is a YES/NO query:

$$
Q(A ., \text { CESAER. }): \exists y \quad x \longrightarrow y \longrightarrow z
$$

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

- Consider a query: $Q(x, z): \exists y x \longrightarrow y \longrightarrow z$
- Consider each possible choice of (x, z), e.g., (A., CESAER)
- The query $Q(A .$, CESAER) is a YES/NO query:

$$
Q(A ., \text { CESAER. }): \exists y x \longrightarrow y \longrightarrow z
$$

- The number of choices for (x, z) is polynomial in the input graph

Restricting to YES/NO queries

To make the problem simpler to study, we will restrict to YES/NO queries:

- Query: maps a graph to YES/NO

Why can we get away with that?

- Consider a query: $Q(x, z): \exists y x \longrightarrow y \longrightarrow z$
- Consider each possible choice of (x, z), e.g., (A., CESAER)
- The query $Q(A ., C E S A E R)$ is a YES/NO query:

$$
Q(A ., \text { CESAER. }): \exists y \quad x \longrightarrow y \longrightarrow z
$$

- The number of choices for (x, z) is polynomial in the input graph
\rightarrow From now on, all queries are YES/NO queries, so we have just one YES/NO answer to compute, or just one probability

Query languages

Which kinds of queries do we want to express?

- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$

Query languages

Which kinds of queries do we want to express?

- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)

Query languages

Which kinds of queries do we want to express?

- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- e.g., $(\exists x y z x \longrightarrow y \longrightarrow z) \vee(\exists x y z w x \longrightarrow y \quad z \longrightarrow w)$

Query languages

Which kinds of queries do we want to express?

- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\cdot e.g., $(\exists x y z x \longrightarrow y \longrightarrow z) \vee(\exists x y z w x \longrightarrow y \quad z \longrightarrow w)$
\rightarrow Formally: a finite disjunction of CQs

Query languages

Which kinds of queries do we want to express?

- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\cdot e.g., $(\exists x y z x \longrightarrow y \longrightarrow z) \vee(\exists x y z w x \longrightarrow y \quad z \longrightarrow w)$
\rightarrow Formally: a finite disjunction of CQs
- Regular path queries (RPQ): can I find a match of a regular path?
- e.g., $\exists x y \quad x \longrightarrow(\longrightarrow)^{*} \longrightarrow$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $\exists x y z x \longrightarrow z$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $\exists x y z x \longrightarrow z$
- The input is a TID D:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $\exists x y z x \longrightarrow z \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $\exists x y z x \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \in Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $\exists x y z x \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)

PQE: a simple example

Find the probability of: $\exists x y x \longrightarrow y$

PQE: a simple example

Find the probability of: $\exists x y x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$

PQE: a simple example

Find the probability of: $\exists x y \quad x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept

PQE: a simple example

Find the probability of: $\exists x y x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

PQE: a simple example

Find the probability of: $\exists x y \quad x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

$$
(1-80 \%)
$$

PQE: a simple example

Find the probability of: $\exists x y \quad x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

$$
(1-80 \%) \times(1-10 \%)
$$

PQE: a simple example

Find the probability of: $\exists x y \quad x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

$$
\begin{aligned}
& (1-80 \%) \times(1-10 \%) \times(1-40 \%) \times \\
& (1-80 \%) \times(1-100 \%)
\end{aligned}
$$

PQE: a simple example

Find the probability of: $\exists x y \quad x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

$$
(1-80 \%) \times(1-10 \%) \times(1-40 \%) \times
$$

$$
(1-80 \%) \times(1-100 \%)
$$

- This gives $x=0 \%$, so the query has probability 100\%

PQE: a simple example

Find the probability of: $\exists x y x \longrightarrow y$

- It's easier to compute the probability x that there is no match of the query
\rightarrow The probability we want is $1-x$
- There is no match of the query iff every red edge is not kept
- These choices are independent, so x is:

$$
\begin{aligned}
& (1-80 \%) \times(1-10 \%) \times(1-40 \%) \times \\
& (1-80 \%) \times(1-100 \%)
\end{aligned}
$$

- This gives $x=0 \%$, so the query has probability 100\%
- This process is in polynomial time

PQE: a more complicated example

How to compute the probability of the query from the previous slide?
$\exists x y z x \longrightarrow y \longrightarrow z$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow z \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow z \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- 1 -

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- 1 - $(1-80 \%) \times(1-$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-$

$$
) \times(1-
$$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-(1-50 \%) \times(1-90 \%)))$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-(1-50 \%) \times(1-90 \%)))$

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-(1-50 \%) \times(1-90 \%))) \times$ $(1-80 \% \times(1-(1-90 \%) \times(1-90 \%)))$,

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow z \longrightarrow$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-(1-50 \%) \times(1-90 \%))) \times$ $(1-80 \% \times(1-(1-90 \%) \times(1-90 \%)))$, i.e., 97.65792%

PQE: a more complicated example

How to compute the probability of the query from the previous slide? $\exists x y z x \longrightarrow y \longrightarrow z$

- Key insight: consider all possible choices for the middle variable y
- $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-$ $40 \%)) \times(1-(1-50 \%) \times(1-90 \%))) \times$ $(1-80 \% \times(1-(1-90 \%) \times(1-90 \%)))$, i.e., 97.65792%
- This is scary but polynomial time

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data My work: several dichotomies on the PQE problem:

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data My work: several dichotomies on the PQE problem:

- Existing results on UCQ:
- $\operatorname{PQE}(Q)$ is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data
My work: several dichotomies on the PQE problem:

- Existing results on UCQ:
- PQE(Q) is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME
- This talk: dichotomy on homomorphism-closed queries
- $\operatorname{PQE}(Q)$ is \#P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data
My work: several dichotomies on the PQE problem:

- Existing results on UCQ:
- PQE(Q) is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME
- This talk: dichotomy on homomorphism-closed queries
- PQE(Q) is \#P-hard for all homomorphism-closed queries not equivalent to a safe UCQ
- I'll also mention some of my work on restricted graph classes

Table of contents

Introduction and problem statement

Existing results
Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, PQE(Q) is in \#P for any UCQ Q

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, PQE(Q) is in \#P for any UCQ Q
- For some queries Q, the task $\operatorname{PQE}(Q)$ is in PTIME

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, PQE(Q) is in \#P for any UCQ Q
- For some queries Q, the task $\operatorname{PQE}(Q)$ is in PTIME
\rightarrow e.g., $\exists x y x \longrightarrow y$ or $\exists x y z x \longrightarrow z$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ Q :

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

PQE is sometimes \#P-hard

Let us show that PQE (Q) is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard
- A star is a CQ where each connected component has a separator variable that occurs in every edge of the component

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard
- A star is a CQ where each connected component has a separator variable that occurs in every edge of the component

- The dichotomy generalizes to higher-arity data (hierarchical queries)

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \longleftrightarrow{ }_{z}^{W} \quad u \longrightarrow v \quad$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?

Proving the small dichotomy (upper bound)

$$
\begin{array}{ll}
x \rightleftarrows y \longleftrightarrow w & u \longrightarrow v \quad \text { How to solve PQE(} Q \text {) for } Q \text { a self-join-free star? } \\
x \rightleftarrows y \longleftrightarrow w & \\
z & \text { • We consider each connected component separately } \\
z & \rightarrow \text { Independent conjunction over the connected components }
\end{array}
$$

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \longleftrightarrow{ }_{z}^{W}$	$u \longrightarrow v$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?
$x \rightleftarrows y \longleftrightarrow z$	- We consider each connected component separately \rightarrow Independent conjunction over the connected components
$\rightleftarrows \boldsymbol{a} \breve{Z}_{z}^{w}$	- We can test all possible values of the separator variable \rightarrow Independent disjunction over the values of the separator

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \leftrightharpoons{ }_{z}^{w}$	$u \longrightarrow v$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?
$x \rightleftarrows y \rightleftarrows{ }_{z}^{w}$	- We consider each connected component separately \rightarrow Independent conjunction over the connected components
$x \rightleftarrows \boldsymbol{a} \leftrightharpoons{ }_{z}$	- We can test all possible values of the separator variable \rightarrow Independent disjunction over the values of the separator
$x \rightleftarrows a$	- For every match, we consider every other variable separately \rightarrow Independent conjunction over the variables

Proving the small dichotomy (upper bound)

$X \longrightarrow a$
$U \longrightarrow V$
How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?

- We consider each connected component separately
\rightarrow Independent conjunction over the connected components
- We can test all possible values of the separator variable
\rightarrow Independent disjunction over the values of the separator
- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
- We consider every value for the other variable
\rightarrow Independent disjunction over the possible assignments
\rightarrow Independent conjunction over the facts

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

We can use this to reduce from \#SAT like before:

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)

Let Q be a UCQ:

- If Q is handled by a complicated algorithm $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)

Let Q be a UCQ:

- If Q is handled by a complicated algorithm $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, PQE(Q) is \#P-hard

This result is far more complicated (but still generalizes to higher arity)

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

- Work by Fink and Olteanu 2016 about negation
- Some work on ontology-mediated query answering (Jung and Lutz 2012)

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

- Work by Fink and Olteanu 2016 about negation
- Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed
- Homomorphism-closed queries can equivalently be seen as infinite unions of CQs (corresponding to their models)

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $P Q E(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $P Q E(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)

Let $k \in \mathbb{N}$ be a constant bound, and let Q be a Boolean monadic second-order query. Then $\operatorname{PQE}(Q)$ is in PTIME on input TID instances with treewidth $\leq k$

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)

Let $k \in \mathbb{N}$ be a constant bound, and let Q be a Boolean monadic second-order query. Then $\operatorname{PQE}(Q)$ is in PTIME on input TID instances with treewidth $\leq k$

Conversely, there is a query Q for which $\mathrm{PQE}(Q)$ is intractable on any input instance family of unbounded treewidth (under some technical assumptions)

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)
More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Problem statement

What if we restricted probabilities on input instances to always be $1 / 2$?

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The SC problem reduces to PQE, but no obvious reduction in the other direction

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The SC problem reduces to $P Q E$, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the "small" Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, even $\mathrm{SC}(Q)$ is \#P-hard
\rightarrow This also extends beyond arity two (hierarchical queries)

Table of contents

Introduction and problem statement

Existing results

Main result: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth (1 slide)

More restricted instances: Unweighted instances (1 slide)

Conclusion and open problems

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data
- Other query features: negation, inequalities, etc.

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data
- Other query features: negation, inequalities, etc.
- Connections to other problems, especially enumeration of query results and maintenance under updates

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

NO FREE VIEW?

NO REVIEW!

Are you tired of doing reviewing work for conferences and journals that do not publish their research online?

If so, sign the pledge "No free view? No review!"
www.nofreeviewnoreview.org
(with Antonin Delpeuch)

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

NO FREE VIEW?

NO REVIEW!

Are you tired of doing reviewing work for conferences and journals that do not publish their research online?

If so, sign the pledge "No free view? No review!"
www.nofreeviewnoreview.org
(with Antonin Delpeuch)

Bibliography i

Amarilli, Antoine, Pierre Bourhis, and Pierre Senellart (2015). "Provenance Circuits for Trees and Treelike Instances". In: ICALP.

- (2016). "Tractable Lineages on Treelike Instances: Limits and Extensions". In: PODS. Amarilli, Antoine and Ismail Ilkan Ceylan (2020). "A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs". In: ICDT. Amarilli, Antoine and Benny Kimelfeld (2020). "Uniform Reliability of Self-Join-Free Conjunctive Queries". Preprint: https://arxiv.org/abs/1908.07093.
Dalvi, Nilesh and Dan Suciu (2007). "The dichotomy of conjunctive queries on probabilistic structures". In: Proc. PODS.
- (2012). "The dichotomy of probabilistic inference for unions of conjunctive queries". In: J. ACM 59.6.

Bibliography ii

Fink, Robert and Dan Olteanu (2016). "Dichotomies for queries with negation in probabilistic databases". In: 41.1, 4.1-4:47.
Jung, Jean Christoph and Carsten Lutz (2012). "Ontology-based access to probabilistic data with OWL QL". In: Proceedings of the 11th International Conference on The Semantic Web - Volume Part I, pp. 182-197.

