Logical Expressiveness of Graph Neural Networks

DIG seminar

Mikaël Monet
March 12th, 2020
Millennium Institute for Foundational Research on Data, Chile

Graph Neural Networks (GNNs)

- With: Pablo Barceló, Egor Kostylev, Jorge Pérez, Juan Reutter, Juan Pablo Silva
- Graph Neural Networks
(GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009]:
a class of NN architectures that has recently become popular to deal with structured data
\rightarrow Goal: understand what they are, and their theoretical properties

Neural Networks (NNs)

output vector

Neural Networks (NNs)

output vector

- Weight $w_{n^{\prime} \rightarrow n}$ between two consecutive neurons

Neural Networks (NNs)

output vector

A fully connected neural network \mathcal{N}.

- Weight $w_{n^{\prime} \rightarrow n}$ between two consecutive neurons
- Compute left to right $\lambda(n):=f\left(\sum w_{n^{\prime} \rightarrow n} \times \lambda\left(n^{\prime}\right)\right)$

Neural Networks (NNs)

output vector

A fully connected neural network \mathcal{N}.

- Weight $w_{n^{\prime} \rightarrow n}$ between two consecutive neurons
- Compute left to right $\lambda(n):=f\left(\sum w_{n^{\prime} \rightarrow n} \times \lambda\left(n^{\prime}\right)\right)$
- Goal: find the weights that "solve" your problem (classification, clustering, regression, etc.)

Finding the weights

- Goal: find the weights that "solve" your problem
\rightarrow minimize $\operatorname{Dist}(\mathcal{N}(\bar{x}), g(\bar{x}))$, where g is what you want to learn

Finding the weights

- Goal: find the weights that "solve" your problem
\rightarrow minimize $\operatorname{Dist}(\mathcal{N}(\bar{x}), g(\bar{x}))$, where g is what you want to learn
\rightarrow use backpropagation algorithms

Finding the weights

- Goal: find the weights that "solve" your problem
\rightarrow minimize $\operatorname{Dist}(\mathcal{N}(\bar{x}), g(\bar{x}))$, where g is what you want to learn
\rightarrow use backpropagation algorithms
- Problem: for fully connected NNs, when a layer has many neurons there are a lot of weights...

Finding the weights

- Goal: find the weights that "solve" your problem
\rightarrow minimize $\operatorname{Dist}(\mathcal{N}(\bar{x}), g(\bar{x}))$, where g is what you want to learn
\rightarrow use backpropagation algorithms
- Problem: for fully connected NNs, when a layer has many neurons there are a lot of weights. . .
\rightarrow example: input is a 250×250 pixels image, and we want to build a fully connected NN with 500 neurons per layer
\rightarrow between the first two layers we have $250 \times 250 \times 500=31,250,000$ weights

Convolutional Neural Networks

- Idea: use the structure of the data (here, a grid)

Convolutional Neural Networks

- Idea: use the structure of the data (here, a grid)

Convolutional Neural Networks

- Idea: use the structure of the data (here, a grid)

Convolutional Neural Networks

- Idea: use the structure of the data (here, a grid)

Convolutional Neural Networks

- Idea: use the structure of the data (here, a grid)

Convolutional Neural Networks

> input vector
> (an image)

A convolutional neural network.

- Idea: use the structure of the data (here, a grid)
\rightarrow fewer weights to learn (e.g, $500 * 9=4,500$ for the first layer)

Convolutional Neural Networks

> input vector
> (an image)

A convolutional neural network.

- Idea: use the structure of the data (here, a grid)
\rightarrow fewer weights to learn (e.g, $500 * 9=4,500$ for the first layer)
\rightarrow other advantage: recognize patterns that are local

Graph Neural Networks (GNNs)

input vector
(a molecule)
output: is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Graph Neural Networks (GNNs)

input vector
(a molecule)
output: is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Graph Neural Networks (GNNs)

input vector
(a molecule)
is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Graph Neural Networks (GNNs)

input vector
(a molecule)
is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Graph Neural Networks (GNNs)

input vector
(a molecule)
is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Graph Neural Networks (GNNs)

input vector
(a molecule)

A (convolutional) graph neural network.

- Idea: use the structure of the data
\rightarrow GNNs generalize this idea to allow any graph as input

Question: what can we do with graph neural networks? (from a theoretical perspective)

GNNs: formalisation

- Simple, undirected, node-labeled graph $G=(V, E, \lambda)$, where $\lambda: V \rightarrow \mathbb{R}^{d}$

GNNs: formalisation

- Simple, undirected, node-labeled graph $G=(V, E, \lambda)$, where $\lambda: V \rightarrow \mathbb{R}^{d}$
- Run of a GNN with L layers on G : iteratively compute $\boldsymbol{x}_{u}^{(i)} \in \mathbb{R}^{d}$ for $0 \leq i \leq L$ as follows:

GNNs: formalisation

- Simple, undirected, node-labeled graph $G=(V, E, \lambda)$, where $\lambda: V \rightarrow \mathbb{R}^{d}$
- Run of a GNN with L layers on G : iteratively compute $\boldsymbol{x}_{u}^{(i)} \in \mathbb{R}^{d}$ for $0 \leq i \leq L$ as follows:
$\rightarrow \boldsymbol{x}_{u}^{(0)}:=\lambda(u)$

GNNs: formalisation

- Simple, undirected, node-labeled graph $G=(V, E, \lambda)$, where $\lambda: V \rightarrow \mathbb{R}^{d}$
- Run of a GNN with L layers on G : iteratively compute $\boldsymbol{x}_{u}^{(i)} \in \mathbb{R}^{d}$ for $0 \leq i \leq L$ as follows:
$\rightarrow \boldsymbol{x}_{u}^{(0)}:=\lambda(u)$
$\rightarrow \boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in \mathcal{N}_{G}(u)\right\}\right\}\right)\right)$
- Where the $\mathrm{AGG}^{(i)}$ are called aggregation functions and the $\mathrm{COMB}^{(i)}$ combination functions

GNNs: formalisation

- Simple, undirected, node-labeled graph $G=(V, E, \lambda)$, where $\lambda: V \rightarrow \mathbb{R}^{d}$
- Run of a GNN with L layers on G : iteratively compute $\boldsymbol{x}_{u}^{(i)} \in \mathbb{R}^{d}$ for $0 \leq i \leq L$ as follows:
$\rightarrow \boldsymbol{x}_{u}^{(0)}:=\lambda(u)$
$\rightarrow \boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in \mathcal{N}_{G}(u)\right\}\right\}\right)\right)$
- Where the $\mathrm{AGG}^{(i)}$ are called aggregation functions and the $\mathrm{COMB}^{(i)}$ combination functions
- Let us call such a GNN an aggregate-combine GNN (AC-GNN)

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test
\rightarrow A heuristic to determine if two graphs are isomorphic (also called color refinement)

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test
\rightarrow A heuristic to determine if two graphs are isomorphic (also called color refinement)

1. Start from two graphs, with all nodes having the same color

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test
\rightarrow A heuristic to determine if two graphs are isomorphic (also called color refinement)

1. Start from two graphs, with all nodes having the same color
2. At the next step, two nodes v, v^{\prime} of the same color are assigned different colors if there is a color c such that v and v^{\prime} have a different number of neighbors with color c

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test
\rightarrow A heuristic to determine if two graphs are isomorphic (also called color refinement)

1. Start from two graphs, with all nodes having the same color
2. At the next step, two nodes v, v^{\prime} of the same color are assigned different colors if there is a color c such that v and v^{\prime} have a different number of neighbors with color c
3. Iterate step 2 until the coloring is stable (the partition of the nodes into colors does not change)

Link with Weisfeiler-Lehman

- Recently, [Morris et al., 2019, Xu et al., 2019] established a link with the Weisfeiler-Lehman (WL) isomorphism test
\rightarrow A heuristic to determine if two graphs are isomorphic (also called color refinement)

1. Start from two graphs, with all nodes having the same color
2. At the next step, two nodes v, v^{\prime} of the same color are assigned different colors if there is a color c such that v and v^{\prime} have a different number of neighbors with color c
3. Iterate step 2 until the coloring is stable (the partition of the nodes into colors does not change)
4. If the two graphs have the same multiset of colors, accept, else reject

Weisfeiler-Lehman: example 1

N

Weisfeiler-Lehman: example 1

$$
\begin{aligned}
& \Delta \rightarrow \Delta \\
& \Delta \rightarrow \Delta
\end{aligned}
$$

Weisfeiler-Lehman: example 1

$$
\begin{aligned}
& \Delta \rightarrow \Delta \\
& \Delta \rightarrow \Delta
\end{aligned}
$$

Weisfeiler-Lehman: example 1

$$
\begin{aligned}
& \Delta \rightarrow \Delta \\
& \Delta \Delta+\Delta \\
& \Delta \Delta+\Delta
\end{aligned}
$$

Weisfeiler-Lehman: example 1

$$
\begin{aligned}
& \Delta \rightarrow \Delta \rightarrow \Delta \rightarrow \Delta \rightarrow \Delta \\
& D D+\mathbb{D} \rightarrow \boldsymbol{D}+\mathbb{D} \rightarrow \boldsymbol{D}
\end{aligned}
$$

Weisfeiler-Lehman: example 1

$$
\begin{aligned}
& \dot{\Delta} \cdot \vec{a} \cdot \vec{a} \cdot \vec{a} \cdot \vec{a} \\
& \sqrt{2}-\sqrt{2}-\sqrt{x} \\
& \{\{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\}\} \neq\{\{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\}\} \\
& \rightarrow \text { reject (and this is correct) }
\end{aligned}
$$

Weisfeiler-Lehman: example 2

Weisfeiler-Lehman: example 2

Weisfeiler-Lehman: example 2

$$
\begin{aligned}
\{\{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet,\}\} & =\{\{\bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet,\}\} \\
& \rightarrow \text { accept (but this is incorrect!) }
\end{aligned}
$$

Link between AC-GNNs and Weisfeiler-Lehman

Weisfeiler-Lehman works like this:

- $\mathrm{WL}_{\mathrm{u}}^{(0)}:=\lambda(\mathrm{u})$
- $\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i}+1)}:=\operatorname{HASH}^{(\mathrm{i}+1)}\left(\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i})},\left\{\left\{\mathrm{WL}_{\mathrm{v}}^{(\mathrm{i})} \mid \mathrm{v} \in \mathcal{N}_{\mathrm{G}}(\mathrm{u})\right\}\right\}\right)$

Link between AC-GNNs and Weisfeiler-Lehman

Weisfeiler-Lehman works like this:

- $\mathrm{WL}_{\mathrm{u}}^{(0)}:=\lambda(\mathrm{u})$
- $\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i}+1)}:=\operatorname{HASH}^{(\mathrm{i}+1)}\left(\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i})},\left\{\left\{\mathrm{WL}_{\mathrm{v}}^{(\mathrm{i})} \mid \mathrm{v} \in \mathcal{N}_{\mathrm{G}}(\mathrm{u})\right\}\right\}\right)$

Aggregate-combine GNNs work like this:

- $\boldsymbol{x}_{u}^{(0)}:=\lambda(u)$
- $\boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in \mathcal{N}_{G}(u)\right\}\right\}\right)\right)$

Link between AC-GNNs and Weisfeiler-Lehman

Weisfeiler-Lehman works like this:

- $\mathrm{WL}_{\mathrm{u}}^{(0)}:=\lambda(\mathrm{u})$
- $\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i}+1)}:=\operatorname{HASH}^{(\mathrm{i}+1)}\left(\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i})},\left\{\left\{\mathrm{WL}_{\mathrm{v}}^{(\mathrm{i})} \mid \mathrm{v} \in \mathcal{N}_{\mathrm{G}}(\mathrm{u})\right\}\right\}\right)$

Aggregate-combine GNNs work like this:

- $\boldsymbol{x}_{u}^{(0)}:=\lambda(u)$
- $\boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in \mathcal{N}_{G}(u)\right\}\right\}\right)\right)$
\rightarrow WL works exactly like an AC-GNNs with injective aggregation and combination functions

Link between AC-GNNs and Weisfeiler-Lehman

Weisfeiler-Lehman works like this:

- $\mathrm{WL}_{\mathrm{u}}^{(0)}:=\lambda(\mathrm{u})$
- $\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i}+1)}:=\operatorname{HASH}^{(\mathrm{i}+1)}\left(\mathrm{WL}_{\mathrm{u}}^{(\mathrm{i})},\left\{\left\{\mathrm{WL}_{\mathrm{v}}^{(\mathrm{i})} \mid \mathrm{v} \in \mathcal{N}_{\mathrm{G}}(\mathrm{u})\right\}\right\}\right)$

Aggregate-combine GNNs work like this:

- $\boldsymbol{x}_{u}^{(0)}:=\lambda(u)$
- $\boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in \mathcal{N}_{G}(u)\right\}\right\}\right)\right)$
\rightarrow WL works exactly like an AC-GNNs with injective aggregation and combination functions

Corollary ([Morris et al., 2019, Xu et al., 2019])
If WL assigns the same value to two nodes at round i, then any AC-GNN will also assign the same value to these two nodes at round i

Binary classifiers GNNs

Corollary ([Morris et al., 2019, Xu et al., 2019])

If WL assigns the same value to two nodes at round i, then any
AC-GNN will also assign the same value to these two nodes at round i

- Is this all there is to say?
- Binary node classifier GNN: the final feature of every node is 0 or 1

Binary classifiers GNNs

Corollary ([Morris et al., 2019, Xu et al., 2019])

If WL assigns the same value to two nodes at round i, then any
AC-GNN will also assign the same value to these two nodes at round i

- Is this all there is to say?
- Binary node classifier GNN: the final feature of every node is 0 or 1
\rightarrow What are the binary node classifiers that a GNN can learn?

Binary classifiers GNNs

Corollary ([Morris et al., 2019, Xu et al., 2019])

If WL assigns the same value to two nodes at round i, then any AC-GNN will also assign the same value to these two nodes at round i

- Is this all there is to say?
- Binary node classifier GNN: the final feature of every node is 0 or 1
\rightarrow What are the binary node classifiers that a GNN can learn?
- For instance, logical classifiers?

Link between WL and first-order logic

- There is a link between the WL test and first-order logic with 2 variables and counting (FOC_{2})

Link between WL and first-order logic

- There is a link between the WL test and first-order logic with 2 variables and counting $\left(\mathrm{FOC}_{2}\right)$
\rightarrow example: $\varphi(x)=\exists^{\geq 5} y\left(E(x, y) \vee \exists^{2} x(\neg E(y, x) \wedge C(x))\right)$

Link between WL and first-order logic

- There is a link between the WL test and first-order logic with 2 variables and counting $\left(\mathrm{FOC}_{2}\right)$
\rightarrow example: $\varphi(x)=\exists \geq 5 y\left(E(x, y) \vee \exists \geq^{2} x(\neg E(y, x) \wedge C(x))\right)$

Theorem ([Cai et al., 1992])

We have $\mathrm{WL}_{u}^{(i)}=\mathrm{WL}_{v}^{(i)}$ if and only if u and v agree on all FOC_{2} unary formulas of quantifier depth $\leq i$ in G

Link between WL and first-order logic

- There is a link between the WL test and first-order logic with 2 variables and counting $\left(\mathrm{FOC}_{2}\right)$
\rightarrow example: $\varphi(x)=\exists \geq 5 y\left(E(x, y) \vee \exists \geq^{2} x(\neg E(y, x) \wedge C(x))\right)$

Theorem ([Cai et al., 1992])

We have $\mathrm{WL}_{u}^{(i)}=\mathrm{WL}_{v}^{(i)}$ if and only if u and v agree on all FOC_{2} unary formulas of quantifier depth $\leq i$ in G

- Given these connections, we ask: let $\varphi(x)$ be a unary FOC_{2} formula. Can we "capture" it with an AC-GNN?
- (capture: after some number L of layers, we have $\boldsymbol{x}_{u}^{(L)}=1$ if $(G, u) \models \varphi(x)$ and $\boldsymbol{x}_{u}^{(L)}=0$ if $\left.(G, u) \not \models \varphi(x)\right)$

Link between WL and first-order logic

- There is a link between the WL test and first-order logic with 2 variables and counting $\left(\mathrm{FOC}_{2}\right)$
\rightarrow example: $\varphi(x)=\exists \geq 5 y\left(E(x, y) \vee \exists \geq^{2} x(\neg E(y, x) \wedge C(x))\right)$

Theorem ([Cai et al., 1992])

We have $\mathrm{WL}_{u}^{(i)}=\mathrm{WL}_{v}^{(i)}$ if and only if u and v agree on all FOC_{2} unary formulas of quantifier depth $\leq i$ in G

- Given these connections, we ask: let $\varphi(x)$ be a unary FOC_{2} formula. Can we "capture" it with an AC-GNN?
- (capture: after some number L of layers, we have $\boldsymbol{x}_{u}^{(L)}=1$

$$
\text { if } \left.(G, u) \models \varphi(x) \text { and } \boldsymbol{x}_{u}^{(L)}=0 \text { if }(G, u) \not \models \varphi(x)\right)
$$

\rightarrow We answer this!

AC-GNNs for FOC_{2} : graded modal logic

- Observation: there are FOC_{2} unary formulas that we cannot capture with any AC-GNN
$\rightarrow \varphi(x)=\operatorname{Blue}(x) \wedge \exists y \operatorname{Red}(y)$

AC-GNNs for FOC_{2} : graded modal logic

- Observation: there are FOC_{2} unary formulas that we cannot capture with any AC-GNN

$$
\begin{aligned}
& \rightarrow \varphi(x)=\operatorname{Blue}(x) \wedge \exists y \operatorname{Red}(y) \\
& G_{1}: \bullet \bullet, G_{2}: \bullet \bullet
\end{aligned}
$$

AC-GNNs for FOC_{2} : graded modal logic

- Observation: there are FOC_{2} unary formulas that we cannot capture with any AC-GNN

$$
\begin{aligned}
& \rightarrow \varphi(x)=\operatorname{Blue}(x) \wedge \exists y \operatorname{Red}(y) \\
& G_{1}: \bullet \bullet, G_{2}: \bullet \bullet
\end{aligned}
$$

- What are the FOC_{2} formulas that can be captured by an AC-GNN?

AC-GNNs for FOC_{2} : graded modal logic

- Observation: there are FOC_{2} unary formulas that we cannot capture with any AC-GNN

$$
\begin{gathered}
\rightarrow \varphi(x)=\operatorname{Blue}(x) \wedge \exists y \operatorname{Red}(y) \\
G_{1}: \bullet \bullet, G_{2}: \bullet \bullet
\end{gathered}
$$

- What are the FOC_{2} formulas that can be captured by an AC-GNN?
\rightarrow Graded modal logic [de Rijke, 2000]: syntactical fragment of FOC_{2} in which quantifiers are only of the form $\exists \geq N_{y}\left(E(x, y) \wedge \varphi^{\prime}(y)\right)$
(Also called $\mathcal{A L C Q}$ in description logics)

AC-GNNs for FOC_{2} : graded modal logic

- Observation: there are FOC_{2} unary formulas that we cannot capture with any AC-GNN

$$
\begin{aligned}
& \rightarrow \varphi(x)=\operatorname{Blue}(x) \wedge \exists y \operatorname{Red}(y) \\
& G_{1}: \bullet \bullet, G_{2}: \bullet \bullet
\end{aligned}
$$

- What are the FOC_{2} formulas that can be captured by an AC-GNN?
\rightarrow Graded modal logic [de Rijke, 2000]: syntactical fragment of FOC_{2} in which quantifiers are only of the form $\exists \geq N y\left(E(x, y) \wedge \varphi^{\prime}(y)\right)$
(Also called $\mathcal{A L C Q}$ in description logics)

Theorem

Let φ be a unary FOC formula. If φ is equivalent to a graded modal logic formula, then φ can be captured by an AC-GNN, otherwise it cannot.

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

- Idea: the feature vectors $\boldsymbol{x}_{\boldsymbol{u}}^{(i)}$ of each node have one component $x_{u}^{(i)}\left(\varphi^{\prime}\right) \in\{0,1\}$ for each subformula φ^{\prime} of φ

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

- Idea: the feature vectors $\boldsymbol{x}_{u}^{(i)}$ of each node have one component $x_{u}^{(i)}\left(\varphi^{\prime}\right) \in\{0,1\}$ for each subformula φ^{\prime} of φ
- $\boldsymbol{x}_{u}^{(i+1)}\left(\varphi_{1} \wedge \varphi_{2}\right)=f\left(\boldsymbol{x}_{u}^{(i)}\left(\varphi_{1}\right)+\boldsymbol{x}_{u}^{(i)}\left(\varphi_{2}\right)-1\right)$

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

- Idea: the feature vectors $x_{u}^{(i)}$ of each node have one component $x_{u}^{(i)}\left(\varphi^{\prime}\right) \in\{0,1\}$ for each subformula φ^{\prime} of φ
- $\boldsymbol{x}_{u}^{(i+1)}\left(\varphi_{1} \wedge \varphi_{2}\right)=f\left(\boldsymbol{x}_{u}^{(i)}\left(\varphi_{1}\right)+\boldsymbol{x}_{u}^{(i)}\left(\varphi_{2}\right)-1\right)$
- $x_{u}^{(i+1)}\left(\neg \varphi^{\prime}\right)=f\left(-x_{u}^{(i)}\left(\varphi^{\prime}\right)+1\right)$

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{V}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

- Idea: the feature vectors $\boldsymbol{x}_{\boldsymbol{u}}^{(i)}$ of each node have one component $x_{u}^{(i)}\left(\varphi^{\prime}\right) \in\{0,1\}$ for each subformula φ^{\prime} of φ
- $\boldsymbol{x}_{u}^{(i+1)}\left(\varphi_{1} \wedge \varphi_{2}\right)=f\left(\boldsymbol{x}_{u}^{(i)}\left(\varphi_{1}\right)+\boldsymbol{x}_{u}^{(i)}\left(\varphi_{2}\right)-1\right)$
- $x_{u}^{(i+1)}\left(\neg \varphi^{\prime}\right)=f\left(-x_{u}^{(i)}\left(\varphi^{\prime}\right)+1\right)$
- $\boldsymbol{x}_{u}^{(i+1)}\left(\exists \geq N_{y} E(x, y) \wedge \varphi^{\prime}\right)=f\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\left(\varphi^{\prime}\right)-(N-1)\right)$

Positive result: building simple GNNs

- We say that a GNN is simple if we update according to

$$
\boldsymbol{x}_{u}^{(i+1)}:=f\left(\boldsymbol{C}^{(i)} \boldsymbol{x}_{u}^{(i)}+\boldsymbol{A}^{(i)}\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\right)+\boldsymbol{b}^{(i)}\right)
$$

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1, identity in between)

- Idea: the feature vectors $x_{u}^{(i)}$ of each node have one component $x_{u}^{(i)}\left(\varphi^{\prime}\right) \in\{0,1\}$ for each subformula φ^{\prime} of φ
- $\boldsymbol{x}_{u}^{(i+1)}\left(\varphi_{1} \wedge \varphi_{2}\right)=f\left(\boldsymbol{x}_{u}^{(i)}\left(\varphi_{1}\right)+\boldsymbol{x}_{u}^{(i)}\left(\varphi_{2}\right)-1\right)$
- $x_{u}^{(i+1)}\left(\neg \varphi^{\prime}\right)=f\left(-x_{u}^{(i)}\left(\varphi^{\prime}\right)+1\right)$
- $\boldsymbol{x}_{u}^{(i+1)}\left(\exists \geq N_{y} E(x, y) \wedge \varphi^{\prime}\right)=f\left(\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}\left(\varphi^{\prime}\right)-(N-1)\right)$
\rightarrow After L layers, we will have $\boldsymbol{x}_{u}^{(L)}(\varphi)=1$ iff $u \models \varphi(x)$

Negative result: Van Benthem/Rosen characterization of GML

- We use the following [Otto, 2019]: let φ be an FOC unary formula that is not equivalent to any GML formula. Then there exist a graph G and two nodes $u, v \in G$ such that $u \models \varphi$ and $v \not \vDash \varphi$ and such that for all $i \in \mathbb{N}$ we have $\mathrm{WL}_{u}^{(i)}=\mathrm{WL}_{v}^{(i)}$

Negative result: Van Benthem/Rosen characterization of GML

- We use the following [Otto, 2019]: let φ be an FOC unary formula that is not equivalent to any GML formula. Then there exist a graph G and two nodes $u, v \in G$ such that $u \models \varphi$ and $v \not \vDash \varphi$ and such that for all $i \in \mathbb{N}$ we have $\mathrm{WL}_{u}^{(i)}=\mathrm{WL}_{v}^{(i)}$
\rightarrow By [Morris et al., 2019, Xu et al., 2019], any AC-GNN must have $\boldsymbol{x}_{u}^{(i)}=\boldsymbol{x}_{v}^{(i)}$ for all $i \in \mathbb{N}$, so it cannot capture φ

ACR-GNNs for FOC_{2}

- Can we extend AC-GNNs so that they are able to capture any FOC_{2} unary formula?
\rightarrow Yes: add global computations in between every layer.

$$
\begin{aligned}
\rightarrow & \boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \operatorname{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in\right.\right.\right.\right. \\
& \left.\left.\left.\left.\mathcal{N}_{G}(u)\right\}\right\}\right), \operatorname{READ}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in G\right\}\right\}\right)\right)
\end{aligned}
$$

ACR-GNNs for FOC_{2}

- Can we extend AC-GNNs so that they are able to capture any FOC_{2} unary formula?
\rightarrow Yes: add global computations in between every layer.

$$
\begin{aligned}
\rightarrow & \boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in\right.\right.\right.\right. \\
& \left.\left.\left.\left.\mathcal{N}_{G}(u)\right\}\right\}\right), \operatorname{READ}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in G\right\}\right\}\right)\right)
\end{aligned}
$$

- Call that ACR-GNN, for aggregate-combine-readout GNNs

ACR-GNNs for FOC_{2}

- Can we extend AC-GNNs so that they are able to capture any FOC_{2} unary formula?
\rightarrow Yes: add global computations in between every layer.

$$
\begin{aligned}
\rightarrow & \boldsymbol{x}_{u}^{(i+1)}:=\operatorname{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \operatorname{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in\right.\right.\right.\right. \\
& \left.\left.\left.\left.\mathcal{N}_{G}(u)\right\}\right\}\right), \operatorname{READ}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in G\right\}\right\}\right)\right)
\end{aligned}
$$

- Call that ACR-GNN, for aggregate-combine-readout GNNs

Theorem

Each FOC_{2} unary formula is captured by a simple ACR-GNN

ACR-GNNs for FOC_{2}

- Can we extend AC-GNNs so that they are able to capture any FOC_{2} unary formula?
\rightarrow Yes: add global computations in between every layer.
$\rightarrow \boldsymbol{x}_{u}^{(i+1)}:=\mathrm{COMB}^{(i+1)}\left(\boldsymbol{x}_{u}^{(i)}, \mathrm{AGG}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathcal{N}_{G}(u)\right\}\right\}\right), \operatorname{READ}^{(i+1)}\left(\left\{\left\{\boldsymbol{x}_{v}^{(i)} \mid v \in G\right\}\right\}\right)\right)$
- Call that ACR-GNN, for aggregate-combine-readout GNNs

Theorem

Each FOC_{2} unary formula is captured by a simple ACR-GNN
\rightarrow Having readouts strictly increases the discriminative power of GNNs

Proofsketch

We use the following result of [Lutz et al., 2001]:

- Every FOC_{2} formula φ can be rewritten as a FOC_{2} formula φ^{\prime} in which every unary subformula $\varphi^{\prime \prime}(x)$ starting with a quantifier is of one of the following form:
- $\exists \geq N_{y x}=y \wedge \psi(y)$
- $\exists \geq N^{\prime} E(x, y) \wedge \psi(y)$
- $\exists \geq N_{y} \neg E(x, y) \wedge \psi(y)$
- $\exists \geq N_{y} \neg E(x, y) \wedge x \neq y \wedge \psi(y)$
- $\exists \geq N^{\prime} \psi(y)$

Proofsketch

We use the following result of [Lutz et al., 2001]:

- Every FOC_{2} formula φ can be rewritten as a FOC_{2} formula φ^{\prime} in which every unary subformula $\varphi^{\prime \prime}(x)$ starting with a quantifier is of one of the following form:
- $\exists \geq N_{y x}=y \wedge \psi(y)$
- $\exists \geq N^{\prime} E(x, y) \wedge \psi(y)$
- $\exists \geq N^{\prime} y \neg E(x, y) \wedge \psi(y)$
- $\exists \geq N_{y} \neg E(x, y) \wedge x \neq y \wedge \psi(y)$
- $\exists \geq N^{\prime} y(y)$

We then build a simple ACR-GNN just like for AC-GNNs and GML, but, for instance:

$$
\text { - } \begin{aligned}
& \boldsymbol{x}_{u}^{(i+1)}\left(\exists \geq N_{y} \neg E(x, y) \wedge \psi(y)\right)= \\
& f\left(\sum_{v \in G} \boldsymbol{x}_{v}^{(i)}(\psi)-\sum_{v \in \mathcal{N}_{G}(u)} \boldsymbol{x}_{v}^{(i)}(\psi)-(N-1)\right)
\end{aligned}
$$

Number of readouts

Theorem
 Each FOC_{2} unary formula is captured by a simple ACR-GNN

- How many readouts do we need? A fixed number? The quantifier depth of the formula?

Number of readouts

Theorem

Each FOC_{2} unary formula is captured by a simple ACR-GNN

- How many readouts do we need? A fixed number? The quantifier depth of the formula?
\rightarrow We show that one final readout is enough (but the ACR-GNN is no longer simple)

Theorem

Each FOC_{2} unary formula is captured by an ACR-GNN with one final readout

Conclusion

- We have seen the relationship between GNNs and WL
- We started to study the relationships between GNNs and logic
\rightarrow "GML $=$ FOC $\cap \mathrm{AC}-G N N s \subseteq$ simple AC-GNNs"
\rightarrow "FOC $2 \subseteq$ simple ACR-GNNs"
\rightarrow " $\mathrm{FOC}_{2} \subseteq$ ACR-GNNs with only one final readout"

Conclusion

- We have seen the relationship between GNNs and WL
- We started to study the relationships between GNNs and logic
\rightarrow "GML $=$ FOC $\cap \mathrm{AC}-G N N s \subseteq$ simple AC-GNNs"
\rightarrow "FOC $2 \subseteq$ simple ACR-GNNs"
\rightarrow " $\mathrm{FOC}_{2} \subseteq$ ACR-GNNs with only one final readout"
- Open: $\mathrm{FOC} \cap \mathrm{ACR}-\mathrm{GNNs}=\mathrm{FOC}_{2}$?

Conclusion

- We have seen the relationship between GNNs and WL
- We started to study the relationships between GNNs and logic \rightarrow "GML $=$ FOC $\cap \mathrm{AC}-G N N s \subseteq$ simple AC-GNNs"
\rightarrow "FOC $2 \subseteq$ simple ACR-GNNs"
\rightarrow " $\mathrm{FOC}_{2} \subseteq$ ACR-GNNs with only one final readout"
- Open: $\mathrm{FOC} \cap \mathrm{ACR}-\mathrm{GNNs}=\mathrm{FOC}_{2}$?
- Since then, GNNs have been compared to other known frameworks for local computations (message-passing, distributive local algorithms, etc). See, e.g., [Loukas, 2019, Sato et al., 2019]

Thanks for your attention!

Bibliography I

囦 Cai, J.-Y., Fürer, M., and Immerman, N. (1992).
An optimal lower bound on the number of variables for graph identification.
Combinatorica, 12(4):389-410.
嗇 de Rijke, M. (2000).
A Note on graded modal logic.
Studia Logica, 64(2):271-283.

Bibliography II

囯 Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. (2015).

Convolutional networks on graphs for learning molecular fingerprints.
In Advances in neural information processing systems, pages 2224-2232.

目 Loukas, A. (2019).
What graph neural networks cannot learn: depth vs width.
arXiv preprint arXiv:1907.03199.

Bibliography III

Eutz, C., Sattler, U., and Wolter, F. (2001).
Modal logic and the two-variable fragment.
In Proceedings of the International Workshop on Computer Science Logic, CSL 2001, Paris, France, September 10-13, 2001, pages 247-261. Springer.
囯 Merkwirth, C. and Lengauer, T. (2005).
Automatic generation of complementary descriptors with molecular graph networks.
J. of Chemical Information and Modeling, 45(5):1159-1168.

Bibliography IV

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).

Weisfeiler and Leman go neural: higher-order graph neural networks.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 February 1, 2019, pages 4602-4609.

Otto, M. (2019).
Graded modal logic and counting bisimulation.
https://www2.mathematik.tu-darmstadt.de/~otto/ papers/cml19.pdf.

Bibliography V

Rato, R., Yamada, M., and Kashima, H. (2019).
Approximation ratios of graph neural networks for combinatorial problems.
In Advances in Neural Information Processing Systems, pages 4083-4092.

䍰 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).
The graph neural network model.
IEEE Trans. Neural Networks, 20(1):61-80.

Bibliography VI

圊 Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How Powerful are graph neural networks? In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

