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Graph Neural Networks (GNNs)

• With: Pablo Barceló, Egor Kostylev, Jorge Pérez, Juan
Reutter, Juan Pablo Silva

• Graph Neural Networks
(GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009]:
a class of NN architectures that has recently become popular
to deal with structured data
→ Goal: understand what they are, and their theoretical

properties
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Neural Networks (NNs)
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A fully connected neural network N .

• Weight wn′→n between two consecutive neurons
• Compute left to right λ(n) := f (

∑
wn′→n × λ(n′))

• Goal: find the weights that “solve” your problem
(classification, clustering, regression, etc.)
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Finding the weights

• Goal: find the weights that “solve” your problem

→ minimize Dist(N (x), g(x)), where g is what you want to learn

→ use backpropagation algorithms

• Problem: for fully connected NNs, when a layer has many
neurons there are a lot of weights. . .

→ example: input is a 250× 250 pixels image, and we want to
build a fully connected NN with 500 neurons per layer

→ between the first two layers we have
250× 250× 500 = 31, 250, 000 weights
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Convolutional Neural Networks

. . . . . .

input vector
(an image)

A convolutional neural network.

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local
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Graph Neural Networks (GNNs)
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input vector
(a molecule)

output:
is it poisonous? (e.g., [Duvenaud et al., 2015])

A (convolutional) graph neural network.

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input 5
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Question: what can we do with
graph neural networks? (from a
theoretical perspective)



GNNs: formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G : iteratively
compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as follows:

→ x (0)
u := λ(u)

→ x (i+1)
u := COMB(i+1)(x (i)

u ,AGG(i+1)({{x (i)
v | v ∈ NG (u)}}))

• Where the AGG(i) are called aggregation functions and
the COMB(i) combination functions

• Let us call such a GNN an aggregate-combine GNN (AC-GNN)
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Link with Weisfeiler-Lehman

• Recently, [Morris et al., 2019, Xu et al., 2019] established a
link with the Weisfeiler-Lehman (WL) isomorphism test

→ A heuristic to determine if two graphs are isomorphic (also
called color refinement)
1. Start from two graphs, with all nodes having the same color
2. At the next step, two nodes v , v ′ of the same color are

assigned different colors if there is a color c such that v and v ′

have a different number of neighbors with color c
3. Iterate step 2 until the coloring is stable (the partition of the

nodes into colors does not change)
4. If the two graphs have the same multiset of colors, accept,

else reject
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Weisfeiler-Lehman: example 1

→

→ → →

→

→ → →

{{•, •, •, •, •, •}} 6= {{•, •, •, •, •, •}}

→ reject (and this is correct)
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Weisfeiler-Lehman: example 2

→

→

{{•, •, •, •, •, •, •, •, }} = {{•, •, •, •, •, •, •, •, }}
→ accept (but this is incorrect!)
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Link between AC-GNNs and Weisfeiler-Lehman

Weisfeiler-Lehman works like this:

• WL(0)
u := λ(u)

• WL(i+1)
u := HASH(i+1)(WL(i)

u , {{WL(i)
v | v ∈ NG(u)}})

Aggregate-combine GNNs work like this:

• x (0)
u := λ(u)

• x (i+1)
u := COMB(i+1)(x (i)

u ,AGG(i+1)({{x (i)
v | v ∈ NG (u)}}))

→ WL works exactly like an AC-GNNs with injective aggregation
and combination functions

Corollary ([Morris et al., 2019, Xu et al., 2019])
If WL assigns the same value to two nodes at round i , then any
AC-GNN will also assign the same value to these two nodes at
round i

10
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Binary classifiers GNNs

Corollary ([Morris et al., 2019, Xu et al., 2019])
If WL assigns the same value to two nodes at round i , then any
AC-GNN will also assign the same value to these two nodes at
round i

• Is this all there is to say?

• Binary node classifier GNN: the final feature of every node is 0
or 1

→ What are the binary node classifiers that a GNN can learn?

• For instance, logical classifiers?

11
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Link between WL and first-order logic

• There is a link between the WL test and first-order logic
with 2 variables and counting (FOC2)

→ example: ϕ(x) = ∃≥5y(E (x , y) ∨ ∃≥2x(¬E (y , x) ∧ C (x)))

Theorem ([Cai et al., 1992])

We have WL
(i)
u = WL

(i)
v if and only if u and v agree on all FOC2

unary formulas of quantifier depth ≤ i in G

• Given these connections, we ask: let ϕ(x) be a unary FOC2
formula. Can we “capture” it with an AC-GNN?
• (capture: after some number L of layers, we have x (L)

u = 1
if (G , u) |= ϕ(x) and x (L)

u = 0 if (G , u) 6|= ϕ(x))

→ We answer this!

12
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AC-GNNs for FOC2: graded modal logic

• Observation: there are FOC2 unary formulas that we cannot
capture with any AC-GNN
→ ϕ(x) = Blue(x) ∧ ∃y Red(y)

G1 : • •, G2 : • •

• What are the FOC2 formulas that can be captured by an
AC-GNN?

→ Graded modal logic [de Rijke, 2000]: syntactical fragment
of FOC2 in which quantifiers are only of the
form ∃≥Ny (E (x , y) ∧ ϕ′(y))
(Also called ALCQ in description logics)

Theorem
Let ϕ be a unary FOC formula. If ϕ is equivalent to a graded
modal logic formula, then ϕ can be captured by an AC-GNN,
otherwise it cannot.
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Positive result: building simple GNNs

• We say that a GNN is simple if we update according to

x (i+1)
u := f

C (i)x (i)
u + A(i)

 ∑
v∈NG (u)

x (i)
v

+ b(i)

 ,

where f is the truncated ReLU (zero if ≤ 0, one if ≥ 1,
identity in between)

• Idea: the feature vectors x (i)
u of each node have one

component x (i)
u (ϕ′) ∈ {0, 1} for each subformula ϕ′ of ϕ

• x (i+1)
u (ϕ1 ∧ ϕ2) = f (x (i)

u (ϕ1) + x (i)
u (ϕ2)− 1)

• x (i+1)
u (¬ϕ′) = f (−x (i)

u (ϕ′) + 1)
• x (i+1)

u (∃≥Ny E (x , y) ∧ ϕ′) = f (
∑

v∈NG (u)
x (i)
v (ϕ′)− (N − 1))

→ After L layers, we will have x (L)
u (ϕ) = 1 iff u |= ϕ(x)
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Negative result: Van Benthem/Rosen characterization of GML

• We use the following [Otto, 2019]: let ϕ be an FOC unary
formula that is not equivalent to any GML formula. Then
there exist a graph G and two nodes u, v ∈ G such that u |= ϕ

and v 6|= ϕ and such that for all i ∈ N we have WL
(i)
u = WL

(i)
v

→ By [Morris et al., 2019, Xu et al., 2019], any AC-GNN must
have x (i)

u = x (i)
v for all i ∈ N, so it cannot capture ϕ
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ACR-GNNs for FOC2

• Can we extend AC-GNNs so that they are able to capture
any FOC2 unary formula?

→ Yes: add global computations in between every layer.

→ x (i+1)
u := COMB(i+1)(x (i)

u ,AGG(i+1)({{x (i)
v | v ∈

NG (u)}}),READ(i+1)({{x (i)
v | v ∈ G}}))

• Call that ACR-GNN, for aggregate-combine-readout GNNs

Theorem
Each FOC2 unary formula is captured by a simple ACR-GNN

→ Having readouts strictly increases the discriminative power of
GNNs
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Proofsketch

We use the following result of [Lutz et al., 2001]:

• Every FOC2 formula ϕ can be rewritten as a FOC2 formula ϕ′

in which every unary subformula ϕ′′(x) starting with a
quantifier is of one of the following form:
• ∃≥Ny x = y ∧ ψ(y)
• ∃≥Ny E (x , y) ∧ ψ(y)
• ∃≥Ny ¬E (x , y) ∧ ψ(y)
• ∃≥Ny ¬E (x , y) ∧ x 6= y ∧ ψ(y)
• ∃≥Ny ψ(y)

We then build a simple ACR-GNN just like for AC-GNNs and GML,
but, for instance:

• x (i+1)
u (∃≥Ny ¬E (x , y) ∧ ψ(y)) =
f (
∑

v∈G x (i)
v (ψ)−

∑
v∈NG (u)

x (i)
v (ψ)− (N − 1))
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Number of readouts

Theorem
Each FOC2 unary formula is captured by a simple ACR-GNN

• How many readouts do we need? A fixed number? The
quantifier depth of the formula?

→ We show that one final readout is enough (but the ACR-GNN
is no longer simple)

Theorem
Each FOC2 unary formula is captured by an ACR-GNN with one
final readout

18
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Conclusion

• We have seen the relationship between GNNs and WL
• We started to study the relationships between GNNs and logic
→ “GML = FOC ∩ AC-GNNs ⊆ simple AC-GNNs”
→ “FOC2 ⊆ simple ACR-GNNs”
→ “FOC2 ⊆ ACR-GNNs with only one final readout”

• Open: FOC ∩ ACR-GNNs = FOC2?

• Since then, GNNs have been compared to other known
frameworks for local computations (message-passing,
distributive local algorithms, etc). See, e.g.,
[Loukas, 2019, Sato et al., 2019]

Thanks for your attention!
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