

Reasoning about Disclosure in Data Integration in the Presence of Source Constraints

DIG Seminar 21/11/19

Michael Benedikt Pierre Bourhis Louis Jachiet Michael Thomazo

${\sf Schema} + {\sf Constraints}$

Secret

publication

Secret leaked?

Secret

Safe publication?

Secret leaked?

Example: Hospital setting

Patients

Doctors

Buildings

Specialties

Open hours

Example: Hospital setting

Database schema

Predicate	Meaning
${\tt IsOpen}(b,t)$	Building b is open on Date t
$\mathtt{PatBdlg}(p,b)$	Patient <i>p</i> is present in Building <i>b</i>
${ t PatSpec}(p,s)$	Patient <i>p</i> was treated for Specialty <i>s</i>
$\mathtt{PatDoc}(p,d)$	Patient <i>p</i> was treated by Doctor <i>d</i>
$\mathtt{DocBldg}(d,b)$	Doctor d is associated with Building b
$\mathtt{DocSpec}(d,s)$	Doctor d is associated with Specialty s

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

Constraints

```
\mathtt{PatDoc}(p,d) \ 	o \ \exists s \ \mathtt{PatSpec}(p,s) \land \mathtt{DocSpec}(d,s) \mathtt{PatBdlg}(p,b) \ 	o \ \exists d \ \mathtt{PatDoc}(p,d) \land \mathtt{DocBldg}(d,b)
```

Views

```
OpenHours(b, t) = IsOpen(b, t)
VisitingHours(p, t) = PatBdlg(p, b) \land IsOpen(b, t)
    DocList(d, s, b) = DocSpec(d, s) \land DocBldg(d, b)
```

Constraints

$$\mathtt{PatDoc}(p,d) \rightarrow \exists s \ \mathtt{PatSpec}(p,s) \land \mathtt{DocSpec}(d,s)$$
 $\mathtt{PatBdlg}(p,b) \rightarrow \exists d \ \mathtt{PatDoc}(p,d) \land \mathtt{DocBldg}(d,b)$

Secret

$$\exists p, s \; \text{PatSpec}(p, s)$$
?

OpenHour			
B_1		Tuesday	
B_2	Every day 10-17h		
VisitingHours			
Charline Tuesday			

DocList			
Alice	B_1		
Alice	Cancer	B_2	
Bob	Radiology	B_2	
Daniel	Cancer	B_1	

7 / 32

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

Louis JACHIET

OpenHour			
B_1		Tuesday	
B_2	Every day 10-17h		
VisitingHours			
Charline Tuesday			

DocList			
Alice	B_1		
Alice	Cancer	B_2	
Bob	Radiology	B_2	
Daniel	Cancer	B_1	

7 / 32

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) & = & \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) & = & \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) & = & \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

Louis JACHIET

OpenHour			
B_1	Tuesday		
B_2	Every day 10-17h		
VisitingHours			
Charline Tuesday			

DocList			
Alice	Cancer	B_1	
Alice	Cancer	B_2	
Bob	Radiology	B_2	
Daniel	Cancer	B_1	

Constraints

$$\mathtt{PatBdlg}(p,b) \ o \ \exists d \ \mathtt{PatDoc}(p,d) \land \mathtt{DocBldg}(d,b)$$

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

OpenHour			
B_1		Tuesday	
B_2	Ever	y day 10-17h	
VisitingHours			
Charline Tuesday			

DocList			
Alice	Cancer	B_1	
Alice	B_2		
Bob	Radiology	B_2	
Daniel	Cancer	B_1	

Constraints

$$\mathtt{PatBdlg}(p,b) \ o \ \exists d \ \mathtt{PatDoc}(p,d) \land \mathtt{DocBldg}(d,b)$$

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

OpenHour			
B_1	Tuesday		
B_2	Every day 10-17h		
VisitingHours			
Charline Tuesday			

DocList			
Alice	Cancer	B_1	
Alice	Cancer	B_2	
Bob	Radiology	B_2	
Daniel	Cancer	B_1	

Constraints

$$ext{PatBdlg}(p,b)
ightarrow \exists d \ ext{PatDoc}(p,d) \land ext{DocBldg}(d,b)$$
 $ext{PatDoc}(p,d)
ightarrow \exists s \ ext{PatSpec}(p,s) \land ext{DocSpec}(d,s)$

Views

```
\begin{array}{lcl} \texttt{OpenHours}(b,t) &=& \texttt{IsOpen}(b,t) \\ \texttt{VisitingHours}(p,t) &=& \texttt{PatBdlg}(p,b) \land \texttt{IsOpen}(b,t) \\ \texttt{DocList}(d,s,b) &=& \texttt{DocSpec}(d,s) \land \texttt{DocBldg}(d,b) \end{array}
```

Formalism

Data represented by databases

$$R(1,17), R(2,42), S(23,45), \dots$$

Formalism

Data represented by databases

$$R(1,17), R(2,42), S(23,45), \dots$$

$$\hookrightarrow$$
+ secret

Mappings and secrets are CQ

$$V(x,z) := R(x,y) \wedge S(y,z)$$

Formalism

Data represented by databases

$$R(1,17), R(2,42), S(23,45), \dots$$

$$\hookrightarrow$$
+ secret

Mappings and secrets are CQ

$$V(x,z) := R(x,y) \wedge S(y,z)$$

Constraints are TGD

$$R(x,y) \rightarrow \exists z, S(y,z)$$

View Problem

Given (schema, constraints \mathcal{C} , views \mathcal{V} , secret \mathcal{S} , visible \bigcirc) do we have \bigcirc such that $\mathcal{C}(\bigcirc)$, $\mathcal{V}(\bigcirc) = \bigcirc$ and $\neg \mathcal{S}(\bigcirc)$?

Schema Problem

Given (schema, constraints \mathcal{C} , views \mathcal{V} , secret \mathcal{S}) do we have for all

an instance such that $\mathcal{C}(\square)$, $\mathcal{V}(\square) = \mathcal{V}(\square)$ and

 $\neg \mathcal{S}()?$

Which configurations are decidable/tractable for the schema problem?

Which configurations are decidable/tractable for the schema problem?

Secrets Views Constraints

Which configurations are decidable/tractable for the schema problem?

Secrets

Views

Constraints

Which $\underline{\text{configurations}}$ are decidable/tractable for the schema problem?

Which $\underline{\text{configurations}}$ are decidable/tractable for the schema problem?

Which $\underline{\text{configurations}}$ are decidable/tractable for the schema problem?

Ontologies

Ontologies in a few words

An ontology represents entities and their relationship to each other.

Ontologies in a few words

An ontology represents entities and their relationship to each other.

Ontologies can be seen as a sort of expressive schema.

Ontologies in a few words

An ontology represents entities and their relationship to each other.

Ontologies can be seen as a sort of expressive schema.

Ontologies allows to enrich data by inferring new facts from existing ones.

An example of ontology

With plain words:

All cats are mammals.

All mammals are animals.

With plain words:

All cats are mammals.

All mammals are animals.

With Tuple Generating Dependencies:

$$CAT(x) \rightarrow MAMMAL(x)$$

$$MAMMAL(x) \rightarrow ANIMAL(x)$$

With plain words:

All cats are mammals.

All mammals are animals.

Database: $\{CAT(\begin{tabular}{c} \begin{tabular}{c} \begin{tabular} \begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c}$

With plain words:

All cats are mammals.

All mammals are animals.

Database: {CAT()}

Query: Are there animals? $(\exists X, ANIMAL(X)?)$

With plain words:

All cats are mammals.

All mammals are animals.

Database: $\{CAT(\stackrel{\bullet}{V})\}$

Query: Are there animals? $(\exists X, ANIMAL(X)?)$

Answer: Yes: $CAT() \Rightarrow MAMMAL() \Rightarrow ANIMAL() \Rightarrow$

More complex ontological rules

Foreign key constraint:

$$SEMINAR(team, speaker, room, date) \rightarrow \\ \exists pers, RESERVED(room, date, pers)$$

More complex ontological rules

Foreign key constraint:

$$SEMINAR(team, speaker, room, date) \rightarrow \\ \exists pers, RESERVED(room, date, pers)$$

Even more complex constraints:

```
SEMINAR(team, speaker, room, date) \rightarrow
\exists pers, RESERVED(room, date, pers) \land MEMBER(pers, team)
```

More complex ontological rules

Foreign key constraint:

$$SEMINAR(team, speaker, room, date) \rightarrow \\ \exists pers, RESERVED(room, date, pers)$$

Even more complex constraints:

$$SEMINAR(team, speaker, room, date) \rightarrow \\ \exists pers, RESERVED(room, date, pers) \land MEMBER(pers, team)$$

 $MEMBER(person, team) \rightarrow$ $\exists date, room, SEMINAR(team, person, room, date)$

$$\forall \vec{X}, \vec{Y} \quad \varphi(\vec{X}, \vec{Y}) \quad \Rightarrow \quad \exists \vec{Z} \quad \psi(\vec{Y}, \vec{Z})$$

Open World Query Answering (OWQA)

Open World Query Answering

- ullet A set of facts ${\cal F}$
- ullet A set of TGD constraints ${\cal C}$
- A conjunctive query Q

Do we have, for all ::

$$(\mathcal{F}\subseteq \bigcirc \land \mathcal{C}(\bigcirc))\Rightarrow \mathcal{Q}(\bigcirc)?$$

 $\mathsf{OWQA}(\mathcal{F},\mathcal{C},\mathcal{Q})$ asks if \mathcal{Q} is true in all completions of \mathcal{F} (respecting \mathcal{C}).

OWQA($\mathcal{F}, \mathcal{C}, \mathcal{Q}$) asks if \mathcal{Q} is true in all completions of \mathcal{F} (respecting \mathcal{C}).

The Chase algorithms build a universal model.

 $\mathsf{OWQA}(\mathcal{F},\mathcal{C},\mathcal{Q})$ asks if \mathcal{Q} is true in all completions of \mathcal{F} (respecting C).

The Chase algorithms build a universal model.

$$OWQA(\mathcal{F}, \mathcal{C}, \mathcal{Q}) \Leftrightarrow Chase(\mathcal{F}, \mathcal{C}) \vDash \mathcal{Q}$$

16 / 32

Intuitively the chase simply "applies" the constraints.

Intuitively the chase simply "applies" the constraints.

With:

- $\mathcal{F} = CAT())$
- $C = \{CAT(X) \rightarrow MAMMAL(X), MAMMAL(X) \rightarrow ANIMAL(X)\}$

We obtain:

1.
$$\mathcal{F}_1 = \{ CAT(\) \}$$

Intuitively the chase simply "applies" the constraints.

With:

•
$$\mathcal{F} = CAT()$$

• $C = \{CAT(X) \rightarrow MAMMAL(X), MAMMAL(X) \rightarrow$ ANIMAL(X)

We obtain:

1.
$$\mathcal{F}_1 = \{CAT()\}$$

2.
$$\mathcal{F}_2 = \{CAT(\overset{\bullet}{\bigvee}), MAMMAL(\overset{\bullet}{\bigvee})\}$$

Intuitively the chase simply "applies" the constraints.

With:

•
$$\mathcal{F} = CAT()$$

• $C = \{CAT(X) \rightarrow MAMMAL(X), MAMMAL(X) \rightarrow ANIMAL(X)\}$

We obtain:

1.
$$\mathcal{F}_1 = \{CAT()\}$$

2.
$$\mathcal{F}_2 = \{CAT(), MAMMAL()\}$$

3.
$$\mathcal{F}_3 = \{CAT(\stackrel{\bullet}{\bigvee}), MAMMAL(\stackrel{\bullet}{\bigvee}), ANIMAL(\stackrel{\bullet}{\bigvee})\}$$

Intuitively the chase simply "applies" the constraints.

Intuitively the chase simply "applies" the constraints.

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y)\}$

We obtain:

1. $\mathcal{F}_1 = \{PERSON(alice)\}$

Intuitively the chase simply "applies" the constraints.

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$

Intuitively the chase simply "applies" the constraints.

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y) \\ PARENT(X, Y) \rightarrow \exists PERSON(Y)\}$

We obtain:

1. $\mathcal{F}_1 = \{PERSON(alice)\}$

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y) \\ PARENT(X, Y) \rightarrow \exists PERSON(Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y) \\ PARENT(X, Y) \rightarrow \exists PERSON(Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$
- 3. $\mathcal{F}_3 = \{PERSON(alice), PARENT(alice, Y), PERSON(Y)\}$

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y) \\ PARENT(X, Y) \rightarrow \exists PERSON(Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$
- 3. $\mathcal{F}_3 = \{PERSON(alice), PARENT(alice, Y), PERSON(Y)\}$
- 4. $\mathcal{F}_4 = \{PERSON(alice), PARENT(alice, Y), PERSON(Y), PARENT(Y, Y')\}$

With:

- $\mathcal{F} = \{PERSON(alice)\}$
- $C = \{PERSON(X) \rightarrow \exists Y, PARENT(X, Y) \\ PARENT(X, Y) \rightarrow \exists PERSON(Y)\}$

We obtain:

- 1. $\mathcal{F}_1 = \{PERSON(alice)\}$
- 2. $\mathcal{F}_2 = \{PERSON(alice), PARENT(alice, Y)\}$
- 3. $\mathcal{F}_3 = \{PERSON(alice), PARENT(alice, Y), PERSON(Y)\}$
- 4. $\mathcal{F}_4 = \{PERSON(alice), PARENT(alice, Y), PERSON(Y), PARENT(Y, Y')\}$

. . .

The Chase model is not always finite.

The Chase model is not always finite.

When it is not finite it sometimes has a regularity that allows for decidable OWQA.

The Chase model is not always finite.

When it is not finite it sometimes has a regularity that allows for decidable OWQA.

And in general the OWQA is undecidable...

• UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• IncDep, the foreign key constraint

$$A(\vec{X}, \vec{Y}) \rightarrow \exists Z, B(\vec{X}, \vec{Z})$$

• UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• IncDep, the foreign key constraint

$$A(\vec{X}, \vec{Y}) \rightarrow \exists Z, B(\vec{X}, \vec{Z})$$

• LTGD, the foreign key constraint with repetition of atoms

$$A(x, x, y) \rightarrow \exists Z, B(x, y, y, z)$$

• UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• IncDep, the foreign key constraint

$$A(\vec{X}, \vec{Y}) \rightarrow \exists Z, B(\vec{X}, \vec{Z})$$

• LTGD, the foreign key constraint with repetition of atoms

$$A(x, x, y) \rightarrow \exists Z, B(x, y, y, z)$$

• GTGD, one atom in the body guards all variables

$$A(x, y, z) \wedge B(x) \wedge C(y, z) \rightarrow \exists w, D(x, y, w)$$

Decidable Classes of TGD

• UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• IncDep, the foreign key constraint

$$A(\vec{X}, \vec{Y}) \rightarrow \exists Z, B(\vec{X}, \vec{Z})$$

• LTGD, the foreign key constraint with repetition of atoms

$$A(x, x, y) \rightarrow \exists Z, B(x, y, y, z)$$

• GTGD, one atom in the body guards all variables

$$A(x, y, z) \wedge B(x) \wedge C(y, z) \rightarrow \exists w, D(x, y, w)$$

FGTGD, one atom in the body guards all the frontier variables

$$A(w, y, y) \wedge B(x) \wedge C(y, z) \rightarrow \exists u, D(x, y, u)$$

Decidable Classes of TGD

UID, the foreign key constraint with one variable

$$A(x, \vec{Y}) \rightarrow \exists Z, B(x, \vec{Z})$$

• IncDep, the foreign key constraint

$$A(\vec{X}, \vec{Y}) \rightarrow \exists Z, B(\vec{X}, \vec{Z})$$

• LTGD, the foreign key constraint with repetition of atoms

$$A(x,x,y) \rightarrow \exists Z, B(x,y,y,z)$$

• GTGD, one atom in the body guards all variables

$$A(x, y, z) \wedge B(x) \wedge C(y, z) \rightarrow \exists w, D(x, y, w)$$

• FGTGD, one atom in the body guards all the frontier variables

$$A(w, y, y) \wedge B(x) \wedge C(y, z) \rightarrow \exists u, D(x, y, u)$$

 Fr1LTGD, one atom in the body guards the only frontier variable

$$A(w, y, y) \land B(x) \land C(y, z) \rightarrow \exists u, D(x, u)$$

Another approach: query rewriting

With

- $MAMMAL(X) \rightarrow ANIMAL(X)$
- $CAT(X) \rightarrow MAMMAL(X)$

And the query $\exists X, ANIMAL(X)$, we obtain:

• ANIMAL(X)

Another approach: query rewriting

With

- $MAMMAL(X) \rightarrow ANIMAL(X)$
- $CAT(X) \rightarrow MAMMAL(X)$

And the query $\exists X, ANIMAL(X)$, we obtain:

- ANIMAL(X)
- $ANIMAL(X) \lor MAMMAL(X)$

Another approach: query rewriting

With

- $MAMMAL(X) \rightarrow ANIMAL(X)$
- $CAT(X) \rightarrow MAMMAL(X)$

And the query $\exists X, ANIMAL(X)$, we obtain:

- ANIMAL(X)
- $ANIMAL(X) \vee MAMMAL(X)$
- $ANIMAL(X) \lor MAMMAL(X) \lor CAT(X)$

Solving our problem

Back to our problems

View Problem

Given (schema, constraints \mathcal{C} , views \mathcal{V} , secret \mathcal{S} , visible \bigcirc) do we have \bigcirc such that $\mathcal{C}(\bigcirc)$, $\mathcal{V}(\bigcirc) = \bigcirc$ and $\neg \mathcal{S}(\bigcirc)$?

Schema Problem

Given (schema, constraints \mathcal{C} , views \mathcal{V} , secret \mathcal{S}) do we have for all

an instance such that
$$\mathcal{C}(\)$$
, $\mathcal{V}(\)=\mathcal{V}(\)$ and

$$\neg \mathcal{S}(\square)$$
?

Solving the schema problem

The critical instance

The instance \bigcirc_{C} contains one fact per relation, with one constant: C.

Solving the schema problem

The critical instance

The instance \bigcirc_{C} contains one fact per relation, with one constant: C. We note $\bigcirc_{\mathsf{C}} = \mathcal{V}(\bigcirc_{\mathsf{C}})$ its view image.

Solving the schema problem

The critical instance

The instance $\bigcirc_{\rm C}$ contains one fact per relation, with one constant: C. We note $\bigcirc_{\rm C}=\mathcal{V}(\bigcirc_{\rm C})$ its view image.

Reduction for schema problem

 $SchemaProblem(\mathcal{C}, \mathcal{V}, \mathcal{S})$ reduces to $ViewProblem(\bigcirc_{\mathbb{C}}, \mathcal{C}, \mathcal{V}, \mathcal{S})$

From Querying Visible and Invisible Information. LICS 2016

Open World Query Answering

- ullet A set of facts ${\cal F}$
- ullet A set of TGD constraints ${\cal C}$
- A query Q

Do we have, for all ::

$$(\mathcal{F}\subseteq \bigcirc \land \mathcal{C}(\bigcirc))\Rightarrow \mathcal{Q}(\bigcirc)?$$

Encoding $ViewProblem(\bigcirc_{\mathbf{C}}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

Encoding $ViewProblem(\bigcirc_{\mathbf{C}}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

 \bullet The query is ${\cal S}$

Encoding $ViewProblem(\bigcirc_{\mathbf{C}}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

- ullet The query is ${\cal S}$
- The initial facts encode the forward constraints

Encoding $ViewProblem(\bigcirc_{c}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

- ullet The query is ${\cal S}$
- The initial facts encode the forward constraints

ullet The constraints are the original constraints ${\cal C}.$

Encoding $ViewProblem(\bigcirc_{c}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

- ullet The query is ${\cal S}$
- The initial facts encode the forward constraints

$$\bigcirc_{\mathcal{C}} \subseteq \mathcal{V}(\bigcirc)$$

ullet The constraints are the original constraints $\mathcal{C}.$

But we also need to encode the backward constraints $\mathcal{V}(\square) \subseteq \bigcirc_{\mathbb{C}}!$

Encoding $ViewProblem(\bigcirc_{\mathbb{C}}, \mathcal{C}, \mathcal{V}, \mathcal{S})$ as OWQA

- ullet The query is ${\cal S}$
- The initial facts encode the forward constraints

$$\bigcirc_{\mathcal{C}} \subseteq \mathcal{V}(\bigcirc)$$

ullet The constraints are the original constraints $\mathcal{C}.$

But we also need to encode the backward constraints $\mathcal{V}(\square) \subseteq \bigcirc_{\mathbb{C}}!$

For this we use that $adom(\mathcal{V}(\square)) = \{C\}$

Lower bounds

Various reductions from:

• OWQA

Lower bounds

Various reductions from:

- OWQA
- Query evaluation

Lower bounds

Various reductions from:

- OWQA
- Query evaluation
- Alternating Turing Machines

Constraints	Views	ProjMap	AtomMap	GuardedMap	CQMap
IncDep		PSPACE	EXPTIME	2ExpTime	2ExpTime
LTGD		ExpTime	EXPTIME	2ExpTime	2ExpTime
GTGD		2ExpTime	2ExpTime	2ExpTime	2ExpTime
FGTGD		2ExpTime	2ExpTime	2ExpTime	2ExpTime

Table 1: Complexity of disclosure

 \Rightarrow all bounds are *tight*!

Constraints	Views	ProjMap	AtomMap	GuardedMap	CQMap
IncDep		NP	NP	EXPTIME	2ExpTime
LTGD		NP	NP	EXPTIME	2ExpTime
GTGD		EXPTIME	EXPTIME	EXPTIME	2ExpTime
FGTGD		2ExpTime	2ExpTime	2ExpTime	2ExpTime

Table 2: Complexity of disclosure in bounded arity

 \Rightarrow all bounds are *tight*!

In PTIME:

• CQ secret, foreign keys constraints and projection views

Louis JACHIET 30 / 32

In PTIME:

- CQ secret, foreign keys constraints and projection views
- bounded CQ secret, ProjMap, LTGD

Louis JACHIET 30 / 32

Future Works

• Implement model checker for publication methods.

Louis JACHIET 31 / 32

Future Works

- Implement model checker for publication methods.
- How to synthesize publications automatically?

Louis JACHIET 31 / 32

Thank you!

Questions?