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Descriptive complexity has been very fruitful

in connecting logics with computational complexity

NP ≡ ∃SO

coNP ≡ ∀SO

P ≡ LFP≤

NL ≡ TC≤

AC0 ≡ FO+Bit

PSPACE ≡ PFP≤

⋮ ⋮ ⋮

Many applications in diverse areas like:

1. Computational complexity and logics.

2. Database management systems.

3. Verification systems.
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. . . but computational complexity

is not only about true or false

One would like to study the complexity of problems like:

“How many valuations satisfies my boolean formula?”

“How many simple paths

are connecting two vertices in my graph?”
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How can we describe these counting classes with logic?



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.
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Some notation and restrictions

Given a relational signature R = {R1, . . . ,Rk ,<},

we consider finite ordered structures over R of the form:

A = (A,RA
1 , . . . ,R

A
k ,<A)

where A is the domain and <A is a linear order over A.

Let Struct(R) be the set of all finite ordered structures over R.

We consider formulas of Second Order logic over R of the form:

ϕ ∶= True ∣ x = y ∣ R(ū) ∣ X(v̄) ∣ ¬ϕ ∣ (ϕ ∨ ϕ) ∣ ∃x . ϕ ∣ ∃X . ϕ

where R ∈ R and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.
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ϕ ∶= True ∣ x = y ∣ R(ū) ∣ X(v̄) ∣ ¬ϕ ∣ (ϕ ∨ ϕ) ∣ ∃x . ϕ ∣ ∃X . ϕ

where R ∈ R and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.



Some notation and restrictions

Given a relational signature R = {R1, . . . ,Rk ,<},

we consider finite ordered structures over R of the form:

A = (A,RA
1 , . . . ,R

A
k ,<A)

where A is the domain and <A is a linear order over A.

Let Struct(R) be the set of all finite ordered structures over R.

We consider formulas of Second Order logic over R of the form:

ϕ ∶= True ∣ x = y ∣ R(ū) ∣ X(v̄) ∣ ¬ϕ ∣ (ϕ ∨ ϕ) ∣ ∃x . ϕ ∣ ∃X . ϕ

where R ∈ R and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.



Syntax of Quantitative Second Order logic

Definition
A QSO-formula α over R is given by the following syntax:

α ∶= ϕ ∈ SO ∣ s ∣ (α + α) ∣ (α ⋅ α) ∣ Σx . α ∣ Πx . α ∣ ΣX . α ∣ ΠX . α

where ϕ is a (boolean) second order formula and s ∈ N.

Example

Let R = {E(⋅, ⋅),<} where E encodes an edge relation.

α ∶= Σx .Σy .Σz . (E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z)
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Semantics of Quantitative Second Order logic

Given a QSO-formula α, A ∈ Struct(R) and a var. assignment v ∶ X→ A

we define the semantics ⟦α⟧ ∶ Struct(R) → N recursively as follow:

⟦ϕ⟧(A, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if (A, v) ⊧ ϕ
0 otherwise

⟦s⟧(A, v) = s

⟦α1 + α2⟧(A, v) = ⟦α1⟧(A, v) + ⟦α2⟧(A, v)

⟦α1 ⋅ α2⟧(A, v) = ⟦α1⟧(A, v) ⋅ ⟦α2⟧(A, v)

⟦Σx . α⟧(A, v) = ∑
a∈A

⟦α⟧(A, v[a/x])

⟦Πx . α⟧(A, v) = ∏
a∈A

⟦α⟧(A, v[a/x])

⟦ΣX . α⟧(A, v) = ∑
C⊆Aarity(X)

⟦α⟧(A, v[C/X ])

⟦ΠX . α⟧(A, v) = ∏
C⊆Aarity(X)

⟦α⟧(A, v[C/X ])
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Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)
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A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3
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Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)
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A ∶

clique(X) ∶= ∀x . ∀y . (X(x) ∧X(y) ∧ x ≠ y) → E(x , y)

⟦clique⟧(A,{3,4,5}) = 1 ⟦clique⟧(A,{1,2}) = 1

α ∶= ΣX . clique(X)
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Subfragments and extentions of QSO

α ∶= ϕ ∈ SO ∣ s ∣ (α + α) ∣ (α ⋅ α) ∣ Σx . α ∣ Πx . α ∣ ΣX . α ∣ ΠX . α

QSO = QSO
±
α

(
ϕ

«
SO )

We can restrict or extend the language of ϕ:

QSO(FO) := ϕ is restricted to FO logic.

QSO(LFP) := ϕ is restricted to LFP logic.

We can restrict or extend the language of α:

QFO(SO) := α is restricted to first order operators (i.e. s,+, ⋅,Σx . ,Πx . ).

ΣQSO(SO) := α is restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

Or both ϕ and α:

QFO(LFP) = α is restricted to first order operators

and ϕ is restricted to LFP logic.
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Quantitative second order logic

QSO vs counting complexity

Below and beyond
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Capturing a counting complexity class with QSO

Recall that a counting complexity C ⊆ {f ∶ Σ∗ → N}.

Let enc(A) be any reasonable encoding of A into a string in Σ∗.

Definition

Let F be a fragment or extension of QSO and C a counting complexity class.

Then F captures C over ordered R-structures if:

1. for every α ∈ F , there exists f ∈ C such that ⟦α⟧(A) = f (enc(A))
for every A ∈ Struct[R].

2. for every f ∈ C, there exists α ∈ F such that f (enc(A)) = ⟦α⟧(A)
for every A ∈ Struct[R].

F captures C over ordered structures if F captures C over ordered

R-structures for every signature R.
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What counting classes can be captured by QSO?

Counting

complexity

classes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

#P

≡ ?

SpanP

≡ ?

FP

≡ ?

#L

≡ ?

#PSPACE

≡ ?

⋮

⋮ ⋮

We show that most of these classes

can be captured by subfragments or extensions of QSO
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How to capture #P?

f ∈ #P iff there exists an NP machine M

such that f (x) = #acceptsM(x) for all x ∈ Σ∗.

ΣQSO(FO) := α restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

and ϕ restricted to FO logic.

Theorem
ΣQSO(FO) captures #P over ordered structures.
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How to capture SpanP?

#P ≡ ΣQSO(FO)

f ∈ SpanP iff there exists an NP machine M with output

such that f (x) = #outputsM(x) for all x ∈ Σ∗.

ΣQSO(∃SO) := α restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

and ϕ restricted to existential SO logic.

Theorem
ΣQSO(∃SO) captures SpanP over ordered structures.

#P and SpanP were shown to be captured

by a different framework of Saluja et al. and Compton et al.
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How to capture FP?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)

f ∈ FP iff there exists a PTIME machine M with output

such that f (x) =M(x) for all x ∈ Σ∗.

QFO(LFP) := α restricted to first order op. (i.e. +, ⋅,Σx . ,Πx . )

and ϕ restricted to LFP logic.

Theorem
QFO(LFP) captures FP over ordered structures.
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How to capture FPSPACE?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)
FP ≡ QFO(LFP)

f ∈ FPSPACE iff there exists a PSPACE machine M with output

such that f (x) =M(x) for all x ∈ Σ∗.

QSO(PFP) := ϕ restricted to PFP logic.

Theorem
QSO(PFP) captures FPSPACE over ordered structures.
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How to capture FPSPACE(poly)?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)
FP ≡ QFO(LFP)

FPSPACE ≡ QSO(PFP)

f ∈ FPSPACE(poly) iff there exists a PSPACE machine M

with output of polynomial size

such that f (x) =M(x) for all x ∈ Σ∗.

QFO(PFP) := α restricted to first order op. (i.e. +, ⋅,Σx . ,Πx . )

and ϕ restricted to PFP logic.

Theorem
QFO(PFP) captures FPSPACE(poly) over ordered structures.
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More classes?

#P ≡ ΣQSO(FO)

SpanP ≡ ΣQSO(∃SO)

FP ≡ QFO(LFP)

FPSPACE ≡ QSO(PFP)

FPSPACE(poly) ≡ QFO(PFP)

GapP ≡ ΣQSOZ(FO)

MaxP ≡ MaxQSO(FO)

MinP ≡ MinQSO(FO)
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Use QSO to understand classes below #P

#P ≡ ΣQSO(FO)

We consider subfragments below FO:

Σ0 = { θ ∈ FO ∣ θ has no first-order quantifiers }

Σ1 = { ϕ ∈ FO ∣ ϕ = ∃x̄ . θ(x̄) ∧ θ ∈ Σ0 }

Π1 = { ϕ ∈ FO ∣ ϕ = ∀x̄ . θ(x̄) ∧ θ ∈ Σ0 }

Σ2 = { ϕ ∈ FO ∣ ϕ = ∃x̄ . ∀ȳ . θ(x̄ , ȳ) ∧ θ ∈ Σ0 }

Π2 = { ϕ ∈ FO ∣ ϕ = ∀x̄ . ∃ȳ . θ(x̄ , ȳ) ∧ θ ∈ Σ0 }
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The class ΣQSO(Σ1[FO])

Consider the following fragment of FO:

Σ1[FO] = { ϕ ∈ FO ∣ ϕ = ∃x̄ . θ(x̄) and θ can contain

atomic formulae of the form

u = v , X(ū) and ϕ(ū) ∈ FO }

Theorem (good decision and closure properties)

The class ΣQSO(Σ1[FO]) is closed under sum, multiplication and

subtraction by one. Moreover, ΣQSO(Σ1[FO]) ⊆ TotP and

every function in ΣQSO(Σ1[FO]) has an FPRAS.
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ΣQSO(Σ1[FO]) is closed under subtraction by one

We focus on the case where α ∈ ΣQSO(Σ1[FO]) is of the form:

α = ΣX̄ .Σx̄ .∃ȳ . ϕ(X̄ , x̄ , ȳ)

We construct a formula min-ϕFO(x̄) that identifies the lexicographically

minimal assignment σ to x̄ that satisfies ∃X̄ . ∃ȳ . ϕ(X̄ , x̄ , ȳ).

Then we use min-ϕFO(x̄) to define a formula ψ(X̄ , x̄) that filters out the

minimal assignment to X̄ for that σ.

Lastly, we define a formula that counts one assignment less for (X̄ , x̄):

α′ = ΣX̄ .Σx̄ .∃ȳ . ϕ(X̄ , x̄ , ȳ) ∧ ψ(X̄ , x̄)

In this setting, the existence of a small witness (in this case σ)

is essential to have closure by subtraction by one.

(proof sketch)
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Then we use min-ϕFO(x̄) to define a formula ψ(X̄ , x̄) that filters out the

minimal assignment to X̄ for that σ.

Lastly, we define a formula that counts one assignment less for (X̄ , x̄):
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Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

RQFO = QFO with quantitative recursion.

TQFO = QFO with quantitative transitive closure.

Theorem

1. RQFO(FO) captures FP over the class of ordered structures.

2. TQFO(FO) captures #L over the class of ordered structures.
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Conclusions and future work

“We believe that quantitative logics are the right framework for

Descriptive complexity of counting complexity classes.”

Plenty of open problems here . . .

1. Logical characterization of classes like TotP,SpanL, . . .

2. Compl. characterization of subfragments like QSO(FO),QFO(FO), . . .

3. Use quantitative logic to find complexity classes with good properties.

4. Understand the expressiveness of QSO and their subfragments.

Thanks! Questions?
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