Descriptive complexity
 for counting complexity classes

Martín Muñoz

PUC Chile - IMFD

Joint work with
Marcelo Arenas and Cristian Riveros

Descriptive complexity has been very fruitful in connecting logics with computational complexity

Descriptive complexity has been very fruitful in connecting logics with computational complexity

$$
\mathrm{NP} \quad \equiv \quad \exists \mathrm{SO}
$$

Descriptive complexity has been very fruitful in connecting logics with computational complexity

$$
\begin{array}{clc}
\mathrm{NP} & \equiv & \exists \mathrm{SO} \\
\mathrm{CONP} & \equiv & \forall \mathrm{SO} \\
\mathrm{P} & \equiv & \mathrm{LFP}_{\leq} \\
\mathrm{NL} & \equiv & \mathrm{TC}_{\leq} \\
\mathrm{AC}_{0} & \equiv & \mathrm{FO}+\mathrm{Bit} \\
\mathrm{PSPACE} & \equiv & \mathrm{PFP}_{\leq} \\
\vdots & \vdots & \vdots
\end{array}
$$

Descriptive complexity has been very fruitful in connecting logics with computational complexity

NP	\equiv	$\exists \mathrm{SO}$
CONP	\equiv	$\forall \mathrm{SO}$
P	\equiv	LFP_{\leq}
NL	\equiv	TC_{\leq}
AC_{0}	\equiv	$\mathrm{FO}+\mathrm{Bit}$
PSPACE	\equiv	PFP_{\leq}
\vdots	\vdots	\vdots

Many applications in diverse areas like:

1. Computational complexity and logics.
2. Database management systems.
3. Verification systems.
... but computational complexity
is not only about true or false
... but computational complexity

is not only about true or false

One would like to study the complexity of problems like:
"How many valuations satisfies my boolean formula?"

is not only about true or false

One would like to study the complexity of problems like:
"How many valuations satisfies my boolean formula?"
"How many simple paths
are connecting two vertices in my graph?"
... but computational complexity
is not only about true or false

$$
\begin{gathered}
\text { \#P } \\
\text { SPANP } \\
\text { FP } \\
\text { \#L } \\
\text { \#PSPACE }
\end{gathered}
$$

... but computational complexity
is not only about true or false
Counting
complexity
classes $\left\{\begin{array}{c}\text { \#P } \\ \text { SPANP } \\ \text { FP } \\ \text { \#L } \\ \text { \#PSPACE } \\ \vdots\end{array}\right.$
... but computational complexity is not only about true or false
Counting
complexity
classes $\left\{\begin{array}{ccc}\# \mathrm{P} & \equiv & ? \\ \text { SPANP } & \equiv & ? \\ \mathrm{FP} & \equiv & ? \\ \# \mathrm{~L} & \equiv & ? \\ \# \mathrm{PSPACE} & \equiv & ? \\ \vdots & \vdots & \vdots\end{array}\right.$

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:
Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:
Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

Specifically, our contributions are:

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:
Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

- \#P, SpanP, FP, \#PSPACE, MinP, MaxP, ...

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:
Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

- \#P, SpanP, FP, \#PSPACE, MinP, MaxP, ...

2. We use QSO to find classes below \#P that have good tractability and closure properties.

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:
Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

- \#P, SpanP, FP, \#PSPACE, MinP, MaxP, ...

2. We use QSO to find classes below \#P that have good tractability and closure properties.
3. We show how to define quantitative recursion over QSO in order to capture classes below FP.

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Some notation and restrictions

Given a relational signature $\mathbf{R}=\left\{R_{1}, \ldots, R_{k},<\right\}$, we consider finite ordered structures over \mathbf{R} of the form:

$$
\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}},<^{\mathfrak{A}}\right)
$$

where A is the domain and $<^{\mathfrak{A}}$ is a linear order over A.

Some notation and restrictions

Given a relational signature $\mathbf{R}=\left\{R_{1}, \ldots, R_{k},<\right\}$, we consider finite ordered structures over \mathbf{R} of the form:

$$
\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}},<^{\mathfrak{A}}\right)
$$

where A is the domain and $<^{\mathfrak{A}}$ is a linear order over A.

Let $\operatorname{Struct}(\mathbf{R})$ be the set of all finite ordered structures over \mathbf{R}.

Some notation and restrictions

Given a relational signature $\mathbf{R}=\left\{R_{1}, \ldots, R_{k},<\right\}$, we consider finite ordered structures over \mathbf{R} of the form:

$$
\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}},<^{\mathfrak{A}}\right)
$$

where A is the domain and $<^{\mathfrak{A}}$ is a linear order over A.

Let $\operatorname{Struct}(\mathbf{R})$ be the set of all finite ordered structures over \mathbf{R}.

We consider formulas of Second Order logic over \mathbf{R} of the form:

$$
\varphi:=\text { True }|x=y| R(\bar{u})|X(\bar{v})| \neg \varphi|(\varphi \vee \varphi)| \exists x \cdot \varphi \mid \exists X . \varphi
$$

where $R \in \mathbf{R}$ and x and X are a first and second order variable, respectively.

Some notation and restrictions

Given a relational signature $\mathbf{R}=\left\{R_{1}, \ldots, R_{k},<\right\}$, we consider finite ordered structures over \mathbf{R} of the form:

$$
\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}},<^{\mathfrak{A}}\right)
$$

where A is the domain and $<^{\mathfrak{A}}$ is a linear order over A.

Let $\operatorname{Struct}(\mathbf{R})$ be the set of all finite ordered structures over \mathbf{R}.

We consider formulas of Second Order logic over \mathbf{R} of the form:

$$
\varphi:=\text { True }|x=y| R(\bar{u})|X(\bar{v})| \neg \varphi|(\varphi \vee \varphi)| \exists x \cdot \varphi \mid \exists X . \varphi
$$

where $R \in \mathbf{R}$ and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.

Syntax of Quantitative Second Order logic

Syntax of Quantitative Second Order logic

Definition

A QSO-formula α over \mathbf{R} is given by the following syntax:

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x \cdot \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

where φ is a (boolean) second order formula and $s \in \mathbb{N}$.

Syntax of Quantitative Second Order logic

Definition

A QSO-formula α over \mathbf{R} is given by the following syntax:

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

where φ is a (boolean) second order formula and $s \in \mathbb{N}$.

Example

Let $\mathbf{R}=\{E(\cdot, \cdot),<\}$ where E encodes an edge relation.

$$
\alpha:=\Sigma x . \Sigma y . \Sigma z .(E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z)
$$

Syntax of Quantitative Second Order logic

Definition

A QSO-formula α over \mathbf{R} is given by the following syntax:

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

where φ is a (boolean) second order formula and $s \in \mathbb{N}$.

Example

Let $\mathbf{R}=\{E(\cdot, \cdot),<\}$ where E encodes an edge relation.

$$
\alpha:=\Sigma x \cdot \Sigma y \cdot \Sigma z \cdot(\underbrace{E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z}_{\text {SO formula } \varphi})
$$

Semantics of Quantitative Second Order logic

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{StRUCT}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $\lfloor\alpha \rrbracket: \operatorname{StRUCT}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{StRUCT}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $\lfloor\alpha \rrbracket: \operatorname{StRUCT}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

$$
\llbracket \varphi \rrbracket(\mathfrak{A}, v)= \begin{cases}1 & \text { if }(\mathfrak{A}, v) \vDash \varphi \\ 0 & \text { otherwise }\end{cases}
$$

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{StRUCT}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $\lfloor\alpha \rrbracket: \operatorname{StRUCT}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

$$
\begin{aligned}
& \llbracket \varphi \rrbracket(\mathfrak{A}, v)= \begin{cases}1 & \text { if }(\mathfrak{A}, v) \vDash \varphi \\
0 & \text { otherwise }\end{cases} \\
& \llbracket s \rrbracket(\mathfrak{A}, v)=s
\end{aligned}
$$

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{StRUCT}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $\lfloor\alpha \rrbracket: \operatorname{StRUCT}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

$$
\begin{aligned}
\llbracket \varphi \rrbracket(\mathfrak{A}, v) & = \begin{cases}1 & \text { if }(\mathfrak{A}, v) \vDash \varphi \\
0 & \text { otherwise }\end{cases} \\
\llbracket s \rrbracket(\mathfrak{A}, v) & =s \\
{\left[\alpha_{1}+\alpha_{2} \rrbracket(\mathfrak{A}, v)\right.} & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v)+\llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v) \\
\llbracket \alpha_{1} \cdot \alpha_{2} \rrbracket(\mathfrak{A}, v) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v) \cdot \llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v)
\end{aligned}
$$

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{Struct}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $[\alpha]: \operatorname{Struct}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

$$
\begin{aligned}
\llbracket \varphi \rrbracket(\mathfrak{A}, v) & = \begin{cases}1 & \text { if }(\mathfrak{A}, v) \vDash \varphi \\
0 & \text { otherwise }\end{cases} \\
\llbracket s \rrbracket(\mathfrak{A}, v) & =s \\
{\left[\alpha_{1}+\alpha_{2} \rrbracket(\mathfrak{A}, v)\right.} & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v)+\llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v) \\
\llbracket \alpha_{1} \cdot \alpha_{2} \rrbracket(\mathfrak{A}, v) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v) \cdot \llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v) \\
{[\Sigma x . \alpha \rrbracket(\mathfrak{A}, v)} & =\sum_{\mathfrak{a} \in \mathcal{A}} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x]) \\
\llbracket \Pi x . \alpha \rrbracket(\mathfrak{A}, v) & =\prod_{\mathfrak{a} \in \mathcal{A}} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x])
\end{aligned}
$$

Semantics of Quantitative Second Order logic

Given a QSO-formula $\alpha, \mathfrak{A} \in \operatorname{STruct}(\mathbf{R})$ and a var. assignment $v: \mathbf{X} \rightarrow A$ we define the semantics $[\alpha \rrbracket: \operatorname{STRUCT}(\mathbf{R}) \rightarrow \mathbb{N}$ recursively as follow:

$$
\begin{aligned}
\llbracket \varphi \rrbracket(\mathfrak{A}, v) & = \begin{cases}1 & \text { if }(\mathfrak{A}, v) \vDash \varphi \\
0 & \text { otherwise }\end{cases} \\
\llbracket s \rrbracket(\mathfrak{A}, v) & =s \\
\llbracket \alpha_{1}+\alpha_{2} \rrbracket(\mathfrak{A}, v) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v)+\llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v) \\
\llbracket \alpha_{1} \cdot \alpha_{2} \rrbracket(\mathfrak{A}, v) & =\llbracket \alpha_{1} \rrbracket(\mathfrak{A}, v) \cdot \llbracket \alpha_{2} \rrbracket(\mathfrak{A}, v) \\
\llbracket \Sigma x \cdot \alpha \rrbracket(\mathfrak{A}, v) & =\sum_{a \in A} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x]) \\
\llbracket \Pi x \cdot \alpha \rrbracket(\mathfrak{A}, v) & =\prod_{a \in A} \llbracket \alpha \rrbracket(\mathfrak{A}, v[a / x]) \\
\llbracket \Sigma X \cdot \alpha \rrbracket(\mathfrak{A}, v) & =\sum_{C \subseteq A^{\text {arity }}(x)} \llbracket \alpha \rrbracket(\mathfrak{A}, v[C / X]) \\
\llbracket \Pi X \cdot \alpha \rrbracket(\mathfrak{A}, v) & =\prod_{C \subseteq A^{\text {arity }(X)}} \llbracket \alpha \rrbracket(\mathfrak{A}, v[C / X])
\end{aligned}
$$

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

triangle $(x, y, z):=E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z$

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

triangle $(x, y, z):=E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z$

$$
\llbracket \text { triangle } \rrbracket(\mathfrak{A}, 3,4,5)=1
$$

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

$$
\begin{gathered}
\operatorname{triangle}(x, y, z):=E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z \\
\quad[\text { triangle } \rrbracket(\mathfrak{A}, 3,4,5)=1 \quad \llbracket \text { triangle } \rrbracket(\mathfrak{A}, 1,2,3)=0
\end{gathered}
$$

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

triangle $(x, y, z):=E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z$

$$
\llbracket \text { triangle } \rrbracket(\mathfrak{A}, 3,4,5)=1 \quad \llbracket \text { triangle } \rrbracket(\mathfrak{A}, 1,2,3)=0
$$

$$
\alpha:=\Sigma x \cdot \Sigma y \cdot \Sigma z . \text { triangle }(x, y, z)
$$

Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

triangle $(x, y, z):=E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z$

$$
\llbracket \text { triangle } \rrbracket(\mathfrak{A}, 3,4,5)=1 \quad \llbracket \text { triangle } \rrbracket(\mathfrak{A}, 1,2,3)=0
$$

$$
\alpha:=\Sigma x \cdot \Sigma y \cdot \Sigma z . \text { triangle }(x, y, z)
$$

$$
\llbracket \alpha \rrbracket(\mathfrak{A})=3
$$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

$$
\operatorname{clique}(X):=\forall x . \forall y .(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y)
$$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

clique $(X):=\forall x . \forall y .(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y)$
$\llbracket c l i q u e \rrbracket(\mathfrak{A},\{3,4,5\})=1$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

$$
\begin{aligned}
& \text { clique }(X):=\forall x . \forall y .(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y) \\
& \llbracket \text { clique } \rrbracket(\mathfrak{A},\{3,4,5\})=1 \quad \llbracket \text { clique } \rrbracket(\mathfrak{A},\{1,2\})=1
\end{aligned}
$$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

$$
\begin{aligned}
& \text { clique }(X):=\forall x . \forall y .(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y) \\
& \llbracket \text { clique } \rrbracket(\mathfrak{A},\{3,4,5\})=1 \quad \llbracket \text { clique } \rrbracket(\mathfrak{A},\{1,2\})=1
\end{aligned}
$$

$$
\alpha:=\Sigma X . \operatorname{clique}(X)
$$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)

$$
\begin{aligned}
& \text { clique }(X):=\forall x . \forall y .(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y) \\
& \llbracket \text { clique } \rrbracket(\mathfrak{A},\{3,4,5\})=1 \quad \llbracket \text { clique } \rrbracket(\mathfrak{A},\{1,2\})=1
\end{aligned}
$$

$$
\begin{gathered}
\alpha:=\Sigma X . \operatorname{clique}(X) \\
\lceil\alpha \rrbracket(\mathfrak{A})=18
\end{gathered}
$$

Subfragments and extentions of QSO

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

Subfragments and extentions of QSO

$$
\begin{gathered}
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x \cdot \alpha|\Pi x \cdot \alpha| \Sigma X \cdot \alpha \mid \Pi X \cdot \alpha \\
\text { QSO }=\underbrace{\text { QSO }}_{\alpha} \overbrace{(\mathrm{SO})}^{\varphi})
\end{gathered}
$$

Subfragments and extentions of QSO

$$
\begin{gathered}
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x \cdot \alpha|\Pi x \cdot \alpha| \Sigma X \cdot \alpha \mid \Pi X \cdot \alpha \\
\text { QSO }=\underbrace{\text { QSO }}_{\alpha} \overbrace{\text { SO }}^{\varphi})
\end{gathered}
$$

We can restrict or extend the language of φ :

$$
\text { QSO(FO) }:=\varphi \text { is restricted to FO logic. }
$$

Subfragments and extentions of QSO

$$
\begin{gathered}
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x \cdot \alpha|\Pi x \cdot \alpha| \Sigma X \cdot \alpha \mid \Pi X \cdot \alpha \\
\mathrm{QSO}=\underbrace{\mathrm{QSO}}_{\alpha}(\overbrace{\mathrm{SO}}^{\varphi})
\end{gathered}
$$

We can restrict or extend the language of φ :

$$
\mathrm{QSO}(\mathrm{FO}):=\quad \varphi \text { is restricted to } \mathrm{FO} \text { logic. }
$$

QSO(LFP) $:=\quad \varphi$ is restricted to LFP logic.

Subfragments and extentions of QSO

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

$$
\mathrm{QSO}=\underbrace{\mathrm{QSO}}_{\alpha}(\overbrace{\mathrm{SO}}^{\varphi})
$$

We can restrict or extend the language of φ :

$$
\begin{aligned}
\mathrm{QSO}(\mathrm{FO}) & :=\quad \varphi \text { is restricted to FO logic. } \\
\mathrm{QSO}(\mathrm{LFP}) & :=\quad \varphi \text { is restricted to LFP logic. }
\end{aligned}
$$

We can restrict or extend the language of α :
$\mathrm{QFO}(\mathrm{SO}) \quad:=\alpha$ is restricted to first order operators (i.e. $s,+, \cdot, \Sigma x ., \Pi x$.$) .$

Subfragments and extentions of QSO

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

$$
\mathrm{QSO}=\underbrace{\mathrm{QSO}}_{\alpha}(\overbrace{\mathrm{SO}}^{\varphi})
$$

We can restrict or extend the language of φ :

$$
\begin{aligned}
\mathrm{QSO}(\mathrm{FO}) & :=\quad \varphi \text { is restricted to FO logic. } \\
\mathrm{QSO}(\mathrm{LFP}) & :=\varphi \text { is restricted to LFP logic. }
\end{aligned}
$$

We can restrict or extend the language of α :
QFO(SO) $\quad:=\alpha$ is restricted to first order operators (i.e. $s,+, \cdot, \Sigma x ., \Pi x$.$) .$
$\Sigma Q S O(\mathrm{SO}) \quad:=\alpha$ is restricted to sum operators (i.e. $s,+, \Sigma x, \Sigma X$.)

Subfragments and extentions of QSO

$$
\alpha:=\varphi \in \mathrm{SO}|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x \cdot \alpha|\Pi x \cdot \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

$$
\mathrm{QSO}=\underbrace{\mathrm{QSO}}_{\alpha}(\overbrace{\mathrm{SO}}^{\varphi})
$$

We can restrict or extend the language of φ :

$$
\begin{aligned}
\mathrm{QSO}(\mathrm{FO}) & :=\quad \varphi \text { is restricted to FO logic. } \\
\mathrm{QSO}(\mathrm{LFP}) & :=\varphi \text { is restricted to LFP logic. }
\end{aligned}
$$

We can restrict or extend the language of α :
QFO(SO) $\quad:=\quad \alpha$ is restricted to first order operators (i.e. $s,+, \cdot, \Sigma x, \Pi x$.$) .$
$\Sigma Q S O(\mathrm{SO}) \quad:=\alpha$ is restricted to sum operators (i.e. $s,+, \Sigma x, \Sigma X$.)
Or both φ and α :
QFO(LFP) $=\alpha$ is restricted to first order operators and φ is restricted to LFP logic.

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.

- Let enc (\mathfrak{A}) be any reasonable encoding of \mathfrak{A} into a string in Σ^{*}.

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.
■ Let enc (\mathfrak{A}) be any reasonable encoding of \mathfrak{A} into a string in Σ^{*}.

Definition

Let \mathcal{F} be a fragment or extension of QSO and \mathcal{C} a counting complexity class.

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.
■ Let enc (\mathfrak{A}) be any reasonable encoding of \mathfrak{A} into a string in Σ^{*}.

Definition

Let \mathcal{F} be a fragment or extension of QSO and \mathcal{C} a counting complexity class.
Then \mathcal{F} captures \mathcal{C} over ordered \mathbf{R}-structures if:

1. for every $\alpha \in \mathcal{F}$, there exists $f \in \mathcal{C}$ such that $[\alpha \rrbracket(\mathfrak{A})=f(\operatorname{enc}(\mathcal{A}))$ for every $\mathfrak{A} \in \operatorname{StRUCT}[\mathbf{R}]$.

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.

- Let enc (\mathfrak{A}) be any reasonable encoding of \mathfrak{A} into a string in Σ^{*}.

Definition

Let \mathcal{F} be a fragment or extension of QSO and \mathcal{C} a counting complexity class.
Then \mathcal{F} captures \mathcal{C} over ordered \mathbf{R}-structures if:

1. for every $\alpha \in \mathcal{F}$, there exists $f \in \mathcal{C}$ such that $[\alpha \rrbracket(\mathfrak{A})=f(\operatorname{enc}(\mathcal{A}))$ for every $\mathfrak{A} \in \operatorname{StRUCT}[\mathbf{R}]$.
2. for every $f \in \mathcal{C}$, there exists $\alpha \in \mathcal{F}$ such that $f(\operatorname{enc}(\mathcal{A}))=\llbracket \alpha \rrbracket(\mathfrak{A})$ for every $\mathfrak{A} \in \operatorname{STRUCT}[\mathbf{R}]$.

Capturing a counting complexity class with QSO

■ Recall that a counting complexity $\mathcal{C} \subseteq\left\{f: \Sigma^{*} \rightarrow \mathbb{N}\right\}$.

- Let enc (\mathfrak{A}) be any reasonable encoding of \mathfrak{A} into a string in Σ^{*}.

Definition

Let \mathcal{F} be a fragment or extension of QSO and \mathcal{C} a counting complexity class.
Then \mathcal{F} captures \mathcal{C} over ordered \mathbf{R}-structures if:

1. for every $\alpha \in \mathcal{F}$, there exists $f \in \mathcal{C}$ such that $[\alpha \rrbracket(\mathfrak{A})=f(\operatorname{enc}(\mathcal{A}))$ for every $\mathfrak{A} \in \operatorname{Struct}[\mathbf{R}]$.
2. for every $f \in \mathcal{C}$, there exists $\alpha \in \mathcal{F}$ such that $f(\operatorname{enc}(\mathcal{A}))=\llbracket \alpha \rrbracket(\mathfrak{A})$ for every $\mathfrak{A} \in \operatorname{STRUCT}[\mathbf{R}]$.
\mathcal{F} captures \mathcal{C} over ordered structures if \mathcal{F} captures \mathcal{C} over ordered \mathbf{R}-structures for every signature \mathbf{R}.

What counting classes can be captured by QSO?

What counting classes can be captured by QSO?

We show that most of these classes can be captured by subfragments or extensions of QSO

How to capture \#P?

How to capture \#P?

$f \in \# \mathrm{P} \quad$ iff \quad there exists an NP machine M such that $f(x)=\# \operatorname{accepts}_{M}(x)$ for all $x \in \Sigma^{*}$.

How to capture \#P?

$f \in \# P \quad$ iff \quad there exists an NP machine M such that $f(x)=\# \operatorname{accepts}_{M}(x)$ for all $x \in \Sigma^{*}$.
Σ QSO(FO) $:=\quad \alpha$ restricted to sum operators (i.e. $s,+, \Sigma x ., \Sigma X$.) and φ restricted to FO logic.

How to capture \#P?

$f \in \# P \quad$ iff \quad there exists an NP machine M such that $f(x)=\# \operatorname{accepts}_{M}(x)$ for all $x \in \Sigma^{*}$.
Σ QSO(FO) $:=\alpha$ restricted to sum operators (i.e. $s,+, \Sigma x ., \Sigma X$.) and φ restricted to FO logic.

Theorem
ミQSO(FO) captures \#P over ordered structures.

How to capture SpanP?

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

How to capture SpanP?

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

$f \in \operatorname{SpanP}$ iff there exists an NP machine M with output such that $f(x)=\#$ outputs $_{M}(x)$ for all $x \in \Sigma^{*}$.

How to capture SpanP?

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

$$
\begin{array}{cl}
f \in \operatorname{SpANP} \quad \text { iff } \quad \begin{array}{l}
\text { there exists an NP machine } M \text { with output } \\
\text { such that } f(x)=\# \text { outputs }_{M}(x) \text { for all } x \in \Sigma^{*} .
\end{array} \\
\Sigma Q S O(\exists \mathrm{SO}):=\begin{array}{l}
\alpha \text { restricted to sum operators (i.e. } s,+, \Sigma x ., \Sigma X .) \\
\text { and } \varphi \text { restricted to existential SO logic. }
\end{array}
\end{array}
$$

How to capture SpanP?

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

$$
\begin{array}{cl}
f \in \operatorname{SpANP} \quad \text { iff } \quad \begin{array}{l}
\text { there exists an NP machine } M \text { with output } \\
\text { such that } f(x)=\# \text { outputs }_{M}(x) \text { for all } x \in \Sigma^{*} .
\end{array} \\
\Sigma \mathrm{QSO}(\exists \mathrm{SO}):=\begin{array}{l}
\alpha \text { restricted to sum operators (i.e. } s,+, \Sigma x ., \Sigma X .) \\
\text { and } \varphi \text { restricted to existential SO logic. }
\end{array}
\end{array}
$$

Theorem
Σ QSO $(\exists \mathrm{SO})$ captures SpanP over ordered structures.

How to capture SpanP?

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

$$
\begin{array}{cl}
f \in \operatorname{SpANP} \quad \text { iff } \quad \begin{array}{l}
\text { there exists an NP machine } M \text { with output } \\
\text { such that } f(x)=\# \text { outputs }_{M}(x) \text { for all } x \in \Sigma^{*} .
\end{array} \\
\Sigma \mathrm{QSO}(\exists \mathrm{SO}):=\begin{array}{l}
\alpha \text { restricted to sum operators (i.e. } s,+, \Sigma x ., \Sigma X .) \\
\text { and } \varphi \text { restricted to existential SO logic. }
\end{array}
\end{array}
$$

```
Theorem
\SigmaQSO(\existsSO) captures SpanP over ordered structures.
```

\#P and SpanP were shown to be captured by a different framework of Saluja et al. and Compton et al.

How to capture FP?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SPANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO})
\end{array}
$$

How to capture FP?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SpANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO})
\end{array}
$$

$f \in \mathrm{FP}$ iff there exists a PTIME machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

How to capture FP?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SpANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO})
\end{array}
$$

$f \in \mathrm{FP} \quad$ iff \quad there exists a PTIME machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

QFO(LFP) $:=\alpha$ restricted to first order op. (i.e. $+, \cdot, \Sigma x ., \Pi x$. and φ restricted to LFP logic.

How to capture FP?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SPANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO})
\end{array}
$$

$f \in \mathrm{FP}$ iff there exists a PTIME machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

QFO(LFP) $:=\alpha$ restricted to first order op. (i.e. $+, \cdot, \Sigma x ., \Pi x$. and φ restricted to LFP logic.

Theorem
QFO(LFP) captures FP over ordered structures.

How to capture FPSPACE?

$$
\begin{array}{clc}
\# P & \equiv & \Sigma Q S O(F O) \\
\text { SpANP } & \equiv & \Sigma Q S O(\exists S O) \\
F P & \equiv & \text { QFO(LFP) }
\end{array}
$$

How to capture FPSPACE?

$$
\begin{array}{clc}
\# P & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SPANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv & \mathrm{QFO}(\mathrm{LFP})
\end{array}
$$

$f \in$ FPSPACE iff there exists a PSPACE machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

How to capture FPSPACE?

$$
\begin{array}{clc}
\# P & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SPANP} & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{BO}) \\
\mathrm{FP} & \equiv & \mathrm{QFO}(\mathrm{LFP})
\end{array}
$$

$f \in$ FPSPACE iff there exists a PSPACE machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

QSO(PFP) $:=\quad \varphi$ restricted to PFP logic.

How to capture FPSPACE?

$$
\begin{array}{clc}
\# P & \equiv & \Sigma Q S O(F O) \\
\text { SpANP } & \equiv & \Sigma Q S O(\exists S O) \\
F P & \equiv & \text { QFO }(\text { LFP })
\end{array}
$$

$f \in$ FPSPACE iff there exists a PSPACE machine M with output such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

$$
\text { QSO(PFP) }:=\quad \varphi \text { restricted to PFP logic. }
$$

Theorem
QSO(PFP) captures FPSPACE over ordered structures.

How to capture FPSPACE(poly)?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{BO}) \\
\mathrm{FP} & \equiv & \text { QFO(LFP) } \\
\text { FPSPACE } & \equiv & \text { QSO(PFP) }
\end{array}
$$

How to capture FPSPACE(poly)?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv & \text { QFO(LFP) } \\
\text { FPSPACE } & \equiv & \text { QSO(PFP) }
\end{array}
$$

$f \in \operatorname{FPSPACE}($ poly $)$ iff there exists a PSPACE machine M with output of polynomial size such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

How to capture FPSPACE(poly)?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv & \text { QFO(LFP) } \\
\text { FPSPACE } & \equiv & \text { QSO(PFP) }
\end{array}
$$

$f \in \operatorname{FPSPACE}$ (poly) iff there exists a PSPACE machine M with output of polynomial size such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

QFO(PFP) $:=\quad \alpha$ restricted to first order op. (i.e. $+, \cdot, \Sigma x$., Πx.) and φ restricted to PFP logic.

How to capture FPSPACE(poly)?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv & \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv & \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv & \text { QFO(LFP) } \\
\text { FPSPACE } & \equiv & \text { QSO(PFP) }
\end{array}
$$

$f \in \operatorname{FPSPACE}$ (poly) iff there exists a PSPACE machine M with output of polynomial size such that $f(x)=M(x)$ for all $x \in \Sigma^{*}$.

QFO(PFP) $:=\quad \alpha$ restricted to first order op. (i.e. $+, \cdot, \Sigma x$., Πx.) and φ restricted to PFP logic.

Theorem
QFO(PFP) captures FPSPACE(poly) over ordered structures.

More classes?

$$
\begin{array}{clc}
\# \mathrm{P} & \equiv \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv \mathrm{QFO}(\mathrm{LFP}) \\
\text { FPSPACE } & \equiv \mathrm{QSO}(\mathrm{PFP}) \\
\text { FPSPACE(poly) } & \equiv & \mathrm{QFO}(\mathrm{PFP})
\end{array}
$$

More classes?

$$
\begin{array}{cl}
\# \mathrm{P} & \equiv \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\text { SPANP } & \equiv \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv \mathrm{QFO}(\mathrm{LFP}) \\
\text { FPSPACE } & \equiv \mathrm{QSO}(\mathrm{PFP}) \\
\text { FPSPACE(poly) } & \equiv \mathrm{QFO}(\mathrm{PFP}) \\
\text { GAPP } & \equiv \Sigma \mathrm{QSO}_{\mathbb{Z}}(\mathrm{FO})
\end{array}
$$

More classes?

$$
\begin{aligned}
\# \mathrm{P} & \equiv \Sigma \mathrm{QSO}(\mathrm{FO}) \\
\mathrm{SPANP} & \equiv \Sigma \mathrm{QSO}(\exists \mathrm{SO}) \\
\mathrm{FP} & \equiv \mathrm{QFO}(\mathrm{LFP}) \\
\text { FPSPACE } & \equiv \mathrm{QSO}(\mathrm{PFP}) \\
\text { FPSPACE(poly) } & \equiv \mathrm{QFO}^{2}(\mathrm{PFP}) \\
\operatorname{GapP} & \equiv \Sigma \mathrm{QSO}_{\mathbb{Z}}(\mathrm{FO}) \\
\operatorname{MaxP} & \equiv \operatorname{MaxQSO}(\mathrm{FO}) \\
\operatorname{MinP} & \equiv \operatorname{MinQSO}(\mathrm{FO})
\end{aligned}
$$

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

We consider subfragments below FO:

$$
\begin{aligned}
& \Sigma_{0}=\{\theta \in \mathrm{FO} \mid \theta \text { has no first-order quantifiers }\} \\
& \Sigma_{1}=\left\{\varphi \in \mathrm{FO} \mid \varphi=\exists \bar{x} \cdot \theta(\bar{x}) \wedge \theta \in \Sigma_{0}\right\} \\
& \Pi_{1}=\left\{\varphi \in \mathrm{FO} \mid \varphi=\forall \bar{x} \cdot \theta(\bar{x}) \wedge \theta \in \Sigma_{0}\right\} \\
& \Sigma_{2}=\left\{\varphi \in \mathrm{FO} \mid \varphi=\exists \bar{x} \cdot \forall \bar{y} \cdot \theta(\bar{x}, \bar{y}) \wedge \theta \in \Sigma_{0}\right\} \\
& \Pi_{2}=\left\{\varphi \in \mathrm{FO} \mid \varphi=\forall \bar{x} \cdot \exists \bar{y} \cdot \theta(\bar{x}, \bar{y}) \wedge \theta \in \Sigma_{0}\right\}
\end{aligned}
$$

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} \mp \# \Sigma_{2} \ddagger \# \Pi_{2}=\# F O \equiv \# \mathrm{P}
$$

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} \mp \# \Sigma_{2} \ddagger \# \Pi_{2}=\# \mathrm{FO} \equiv \# \mathrm{P}
$$

Theorem (Σ QSO-hierarchy)

$$
\begin{aligned}
& \# \Sigma_{1} \\
& \# \Sigma_{0}
\end{aligned}
$$

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} q \# \Sigma_{2} \ddagger \# \Pi_{2}=\# \mathrm{FO} \equiv \# \mathrm{P}
$$

Theorem (Σ QSO-hierarchy)

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} \mp \# \Sigma_{2} \mp \# \Pi_{2}=\# \mathrm{FO} \equiv \# \mathrm{P}
$$

Theorem (Σ QSO-hierarchy)

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} q \# \Sigma_{2} \ddagger \# \Pi_{2}=\# \mathrm{FO} \equiv \# \mathrm{P}
$$

Theorem (Σ QSO-hierarchy)

Use QSO to understand classes below \#P

$$
\# \mathrm{P} \equiv \Sigma \mathrm{QSO}(\mathrm{FO})
$$

Saluja et. al. counting classes below \#P

$$
\# \Sigma_{0} \mp \# \Sigma_{1} \mp \# \Pi_{1} q \# \Sigma_{2} \ddagger \# \Pi_{2}=\# F O \equiv \# \mathrm{P}
$$

Theorem (Σ QSO-hierarchy)

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

Consider the following fragment of FO:

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

Consider the following fragment of FO:

$$
\begin{aligned}
\Sigma_{1}[\mathrm{FO}]=\{\varphi \in \mathrm{FO} \mid & \varphi=\exists \bar{x} \cdot \theta(\bar{x}) \text { and } \theta \text { can contain } \\
& \text { atomic formulae of the form } \\
& u=v, X(\bar{u}) \text { and } \varphi(\bar{u}) \in \mathrm{FO}\}
\end{aligned}
$$

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

Consider the following fragment of FO:

$$
\begin{aligned}
\Sigma_{1}[\mathrm{FO}]=\{\varphi \in \mathrm{FO} \mid & \varphi=\exists \bar{x} \cdot \theta(\bar{x}) \text { and } \theta \text { can contain } \\
& \text { atomic formulae of the form } \\
& u=v, X(\bar{u}) \text { and } \varphi(\bar{u}) \in \mathrm{FO}\}
\end{aligned}
$$

Theorem (good decision and closure properties)
The class $\sum \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under sum, multiplication and subtraction by one.

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

Consider the following fragment of FO:

$$
\begin{aligned}
\Sigma_{1}[\mathrm{FO}]=\{\varphi \in \mathrm{FO} \mid & \varphi=\exists \bar{x} \cdot \theta(\bar{x}) \text { and } \theta \text { can contain } \\
& \text { atomic formulae of the form } \\
& u=v, X(\bar{u}) \text { and } \varphi(\bar{u}) \in \mathrm{FO}\}
\end{aligned}
$$

Theorem (good decision and closure properties)
The class Σ QSO $\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under sum, multiplication and subtraction by one. Moreover, $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right) \subseteq$ ТотP

The class $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$

Consider the following fragment of FO:

$$
\begin{aligned}
\Sigma_{1}[\mathrm{FO}]=\{\varphi \in \mathrm{FO} \mid & \varphi=\exists \bar{x} \cdot \theta(\bar{x}) \text { and } \theta \text { can contain } \\
& \text { atomic formulae of the form } \\
& u=v, X(\bar{u}) \text { and } \varphi(\bar{u}) \in \mathrm{FO}\}
\end{aligned}
$$

Theorem (good decision and closure properties)
The class Σ QSO $\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under sum, multiplication and subtraction by one. Moreover, $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right) \subseteq$ ТотP and every function in $\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ has an FPRAS.
$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

We focus on the case where $\alpha \in \Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is of the form:

$$
\alpha=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y})
$$

$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

We focus on the case where $\alpha \in \Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is of the form:

$$
\alpha=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y})
$$

We construct a formula $\min -\varphi^{\mathrm{FO}}(\bar{x})$ that identifies the lexicographically minimal assignment σ to \bar{x} that satisfies $\exists \bar{X} . \exists \bar{y} . \varphi(\bar{X}, \bar{x}, \bar{y})$.

$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

We focus on the case where $\alpha \in \Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is of the form:

$$
\alpha=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y})
$$

We construct a formula $\min -\varphi^{\mathrm{FO}}(\bar{x})$ that identifies the lexicographically minimal assignment σ to \bar{x} that satisfies $\exists \bar{X} . \exists \bar{y} . \varphi(\bar{X}, \bar{x}, \bar{y})$.

Then we use $\min -\varphi^{\mathrm{FO}}(\bar{x})$ to define a formula $\psi(\bar{X}, \bar{x})$ that filters out the minimal assignment to \bar{X} for that σ.

$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

We focus on the case where $\alpha \in \Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is of the form:

$$
\alpha=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y})
$$

We construct a formula $\min -\varphi^{\mathrm{FO}}(\bar{x})$ that identifies the lexicographically minimal assignment σ to \bar{x} that satisfies $\exists \bar{X} . \exists \bar{y} . \varphi(\bar{X}, \bar{x}, \bar{y})$.

Then we use $\min -\varphi^{\mathrm{FO}}(\bar{x})$ to define a formula $\psi(\bar{X}, \bar{x})$ that filters out the minimal assignment to \bar{X} for that σ.

Lastly, we define a formula that counts one assignment less for (\bar{X}, \bar{x}) :

$$
\alpha^{\prime}=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y}) \wedge \psi(\bar{X}, \bar{x})
$$

$\Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is closed under subtraction by one

We focus on the case where $\alpha \in \Sigma \mathrm{QSO}\left(\Sigma_{1}[\mathrm{FO}]\right)$ is of the form:

$$
\alpha=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y})
$$

We construct a formula $\min -\varphi^{\mathrm{FO}}(\bar{x})$ that identifies the lexicographically minimal assignment σ to \bar{x} that satisfies $\exists \bar{X} . \exists \bar{y} . \varphi(\bar{X}, \bar{x}, \bar{y})$.

Then we use $\min -\varphi^{\mathrm{FO}}(\bar{x})$ to define a formula $\psi(\bar{X}, \bar{x})$ that filters out the minimal assignment to \bar{X} for that σ.

Lastly, we define a formula that counts one assignment less for (\bar{X}, \bar{x}) :

$$
\alpha^{\prime}=\Sigma \bar{x} \cdot \Sigma \bar{x} \cdot \exists \bar{y} \cdot \varphi(\bar{X}, \bar{x}, \bar{y}) \wedge \psi(\bar{X}, \bar{x})
$$

In this setting, the existence of a small witness (in this case σ) is essential to have closure by subtraction by one.

Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

RQFO $=$ QFO with quantitative recursion.

Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

RQFO $=$ QFO with quantitative recursion.
TQFO $=$ QFO with quantitative transitive closure.

Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

> RQFO $=$ QFO with quantitative recursion.
> TQFO $=$ QFO with quantitative transitive closure.

Theorem

1. RQFO(FO) captures FP over the class of ordered structures.

Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

$$
\begin{aligned}
& \text { RQFO }=\text { QFO with quantitative recursion. } \\
& \text { TQFO }=\text { QFO with quantitative transitive closure. }
\end{aligned}
$$

Theorem

1. RQFO(FO) captures FP over the class of ordered structures.
2. TQFO(FO) captures \#L over the class of ordered structures.

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

1. Logical characterization of classes like TotP, SpanL, \ldots

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

1. Logical characterization of classes like TotP, $\operatorname{SpanL}, \ldots$
2. Compl. characterization of subfragments like QSO(FO), QFO(FO), \ldots

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

1. Logical characterization of classes like TotP, $\operatorname{SpanL}, \ldots$
2. Compl. characterization of subfragments like QSO(FO), QFO(FO), \ldots
3. Use quantitative logic to find complexity classes with good properties.

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

1. Logical characterization of classes like TotP, $\operatorname{SpanL}, \ldots$
2. Compl. characterization of subfragments like QSO(FO), QFO(FO), \ldots
3. Use quantitative logic to find complexity classes with good properties.
4. Understand the expressiveness of QSO and their subfragments.

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here ...

1. Logical characterization of classes like TotP, SpanL, ...
2. Compl. characterization of subfragments like QSO(FO), QFO(FO), \ldots
3. Use quantitative logic to find complexity classes with good properties.
4. Understand the expressiveness of QSO and their subfragments.

Thanks! Questions?

