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Descriptive complexity has been very fruitful

in connecting logics with computational complexity

NP ≡ ∃SO

coNP ≡ ∀SO

P ≡ LFP≤
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AC0 ≡ FO+Bit

PSPACE ≡ PFP≤
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Many applications in diverse areas like:

1. Computational complexity and logics.

2. Database management systems.

3. Verification systems.
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. . . but computational complexity

is not only about true or false

One would like to study the complexity of problems like:

“How many valuations satisfies my boolean formula?”

“How many simple paths

are connecting two vertices in my graph?”
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How can we describe these counting classes with logic?



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



In this paper, we propose to use weighted logics for

descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over N

Specifically, our contributions are:

1. We show that QSO captures many counting complexity classes.

● #P, SpanP, FP, #PSPACE, MinP, MaxP, . . .

2. We use QSO to find classes below #P

that have good tractability and closure properties.

3. We show how to define quantitative recursion over QSO

in order to capture classes below FP.



Quantitative second order logic

QSO vs counting complexity

Below and beyond

Outline



Quantitative second order logic

QSO vs counting complexity

Below and beyond

Outline



Some notation and restrictions

Given a relational signature R = {R1, . . . ,Rk ,<},

we consider finite ordered structures over R of the form:

A = (A,RA
1 , . . . ,R

A
k ,<A)

where A is the domain and <A is a linear order over A.

Let Struct(R) be the set of all finite ordered structures over R.

We consider formulas of Second Order logic over R of the form:

ϕ ∶= True ∣ x = y ∣ R(ū) ∣ X(v̄) ∣ ¬ϕ ∣ (ϕ ∨ ϕ) ∣ ∃x . ϕ ∣ ∃X . ϕ

where R ∈ R and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.
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ϕ ∶= True ∣ x = y ∣ R(ū) ∣ X(v̄) ∣ ¬ϕ ∣ (ϕ ∨ ϕ) ∣ ∃x . ϕ ∣ ∃X . ϕ

where R ∈ R and x and X are a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.



Syntax of Quantitative Second Order logic

Definition
A QSO-formula α over R is given by the following syntax:

α ∶= ϕ ∈ SO ∣ s ∣ (α + α) ∣ (α ⋅ α) ∣ Σx . α ∣ Πx . α ∣ ΣX . α ∣ ΠX . α

where ϕ is a (boolean) second order formula and s ∈ N.

Example

Let R = {E(⋅, ⋅),<} where E encodes an edge relation.

α ∶= Σx .Σy .Σz . (E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z)
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Semantics of Quantitative Second Order logic

Given a QSO-formula α, A ∈ Struct(R) and a var. assignment v ∶ X→ A

we define the semantics ⟦α⟧ ∶ Struct(R)→ N recursively as follow:

⟦ϕ⟧(A, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if (A, v) ⊧ ϕ
0 otherwise

⟦s⟧(A, v) = s

⟦α1 + α2⟧(A, v) = ⟦α1⟧(A, v) + ⟦α2⟧(A, v)

⟦α1 ⋅ α2⟧(A, v) = ⟦α1⟧(A, v) ⋅ ⟦α2⟧(A, v)

⟦Σx . α⟧(A, v) = ∑
a∈A

⟦α⟧(A, v[a/x])

⟦Πx . α⟧(A, v) = ∏
a∈A

⟦α⟧(A, v[a/x])

⟦ΣX . α⟧(A, v) = ∑
C⊆Aarity(X)

⟦α⟧(A, v[C/X ])

⟦ΠX . α⟧(A, v) = ∏
C⊆Aarity(X)

⟦α⟧(A, v[C/X ])
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Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)
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A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

1

2

34

5

34

5

3

1

2

A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

1

2

34

5

34

5

3

1

2

A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1

⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

1

2

34

5

34

5

3

1

2

A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

1

2

34

5

34

5

3

1

2

A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the triangles in a graph)

1

2

34

5

34

5

3

1

2

A ∶

triangle(x , y , z) ∶= E(x , y) ∧ E(y , z) ∧ E(z , x) ∧ x < y ∧ y < z

⟦triangle⟧(A,3,4,5) = 1 ⟦triangle⟧(A,1,2,3) = 0

α ∶= Σx .Σy .Σz . triangle(x , y , z)

⟦α⟧(A) = 3



Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)
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A ∶

clique(X) ∶= ∀x . ∀y . (X(x) ∧X(y) ∧ x ≠ y)→ E(x , y)

⟦clique⟧(A,{3,4,5}) = 1 ⟦clique⟧(A,{1,2}) = 1

α ∶= ΣX . clique(X)

⟦α⟧(A) = 18
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Subfragments and extentions of QSO

α ∶= ϕ ∈ SO ∣ s ∣ (α + α) ∣ (α ⋅ α) ∣ Σx . α ∣ Πx . α ∣ ΣX . α ∣ ΠX . α

QSO = QSO
±
α

(
ϕ

«
SO )

We can restrict or extend the language of ϕ:

QSO(FO) := ϕ is restricted to FO logic.

QSO(LFP) := ϕ is restricted to LFP logic.

We can restrict or extend the language of α:

QFO(SO) := α is restricted to first order operators (i.e. s,+, ⋅,Σx . ,Πx . ).

ΣQSO(SO) := α is restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

Or both ϕ and α:

QFO(LFP) = α is restricted to first order operators

and ϕ is restricted to LFP logic.
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Quantitative second order logic

QSO vs counting complexity

Below and beyond
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Capturing a counting complexity class with QSO

Recall that a counting complexity C ⊆ {f ∶ Σ∗ → N}.

Let enc(A) be any reasonable encoding of A into a string in Σ∗.

Definition

Let F be a fragment or extension of QSO and C a counting complexity class.

Then F captures C over ordered R-structures if:

1. for every α ∈ F , there exists f ∈ C such that ⟦α⟧(A) = f (enc(A))
for every A ∈ Struct[R].

2. for every f ∈ C, there exists α ∈ F such that f (enc(A)) = ⟦α⟧(A)
for every A ∈ Struct[R].

F captures C over ordered structures if F captures C over ordered

R-structures for every signature R.
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What counting classes can be captured by QSO?

Counting

complexity

classes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

#P

≡ ?

SpanP

≡ ?

FP

≡ ?

#L

≡ ?

#PSPACE

≡ ?

⋮

⋮ ⋮

We show that most of these classes

can be captured by subfragments or extensions of QSO
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How to capture #P?

f ∈ #P iff there exists an NP machine M

such that f (x) = #acceptsM(x) for all x ∈ Σ∗.

ΣQSO(FO) := α restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

and ϕ restricted to FO logic.

Theorem
ΣQSO(FO) captures #P over ordered structures.
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How to capture SpanP?

#P ≡ ΣQSO(FO)

f ∈ SpanP iff there exists an NP machine M with output

such that f (x) = #outputsM(x) for all x ∈ Σ∗.

ΣQSO(∃SO) := α restricted to sum operators (i.e. s,+,Σx . ,ΣX . )

and ϕ restricted to existential SO logic.

Theorem
ΣQSO(∃SO) captures SpanP over ordered structures.

#P and SpanP were shown to be captured

by a different framework of Saluja et al. and Compton et al.
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How to capture FP?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)

f ∈ FP iff there exists a PTIME machine M with output

such that f (x) =M(x) for all x ∈ Σ∗.

QFO(LFP) := α restricted to first order op. (i.e. +, ⋅,Σx . ,Πx . )

and ϕ restricted to LFP logic.

Theorem
QFO(LFP) captures FP over ordered structures.
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How to capture FPSPACE?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)
FP ≡ QFO(LFP)

f ∈ FPSPACE iff there exists a PSPACE machine M with output

such that f (x) =M(x) for all x ∈ Σ∗.

QSO(PFP) := ϕ restricted to PFP logic.

Theorem
QSO(PFP) captures FPSPACE over ordered structures.
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How to capture FPSPACE(poly)?

#P ≡ ΣQSO(FO)
SpanP ≡ ΣQSO(∃SO)
FP ≡ QFO(LFP)

FPSPACE ≡ QSO(PFP)

f ∈ FPSPACE(poly) iff there exists a PSPACE machine M

with output of polynomial size

such that f (x) =M(x) for all x ∈ Σ∗.

QFO(PFP) := α restricted to first order op. (i.e. +, ⋅,Σx . ,Πx . )

and ϕ restricted to PFP logic.

Theorem
QFO(PFP) captures FPSPACE(poly) over ordered structures.
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More classes?

#P ≡ ΣQSO(FO)

SpanP ≡ ΣQSO(∃SO)

FP ≡ QFO(LFP)

FPSPACE ≡ QSO(PFP)

FPSPACE(poly) ≡ QFO(PFP)

GapP ≡ ΣQSOZ(FO)

MaxP ≡ MaxQSO(FO)

MinP ≡ MinQSO(FO)
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Use QSO to understand classes below #P

#P ≡ ΣQSO(FO)

We consider subfragments below FO:

Σ0 = { θ ∈ FO ∣ θ has no first-order quantifiers }

Σ1 = { ϕ ∈ FO ∣ ϕ = ∃x̄ . θ(x̄) ∧ θ ∈ Σ0 }

Π1 = { ϕ ∈ FO ∣ ϕ = ∀x̄ . θ(x̄) ∧ θ ∈ Σ0 }

Σ2 = { ϕ ∈ FO ∣ ϕ = ∃x̄ . ∀ȳ . θ(x̄ , ȳ) ∧ θ ∈ Σ0 }

Π2 = { ϕ ∈ FO ∣ ϕ = ∀x̄ . ∃ȳ . θ(x̄ , ȳ) ∧ θ ∈ Σ0 }
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The class ΣQSO(Σ1[FO])

Consider the following fragment of FO:

Σ1[FO] = { ϕ ∈ FO ∣ ϕ = ∃x̄ . θ(x̄) and θ can contain

atomic formulae of the form

u = v , X(ū) and ϕ(ū) ∈ FO }

Theorem (good decision and closure properties)

The class ΣQSO(Σ1[FO]) is closed under sum, multiplication and

subtraction by one. Moreover, ΣQSO(Σ1[FO]) ⊆ TotP and

every function in ΣQSO(Σ1[FO]) has an FPRAS.
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ΣQSO(Σ1[FO]) is closed under subtraction by one

We focus on the case where α ∈ ΣQSO(Σ1[FO]) is of the form:

α = ΣX̄ .Σx̄ .∃ȳ . ϕ(X̄ , x̄ , ȳ)

We construct a formula min-ϕFO(x̄) that identifies the lexicographically

minimal assignment σ to x̄ that satisfies ∃X̄ . ∃ȳ . ϕ(X̄ , x̄ , ȳ).

Then we use min-ϕFO(x̄) to define a formula ψ(X̄ , x̄) that filters out the

minimal assignment to X̄ for that σ.

Lastly, we define a formula that counts one assignment less for (X̄ , x̄):

α′ = ΣX̄ .Σx̄ .∃ȳ . ϕ(X̄ , x̄ , ȳ) ∧ ψ(X̄ , x̄)

In this setting, the existence of a small witness (in this case σ)

is essential to have closure by subtraction by one.

(proof sketch)
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We construct a formula min-ϕFO(x̄) that identifies the lexicographically

minimal assignment σ to x̄ that satisfies ∃X̄ . ∃ȳ . ϕ(X̄ , x̄ , ȳ).
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α = ΣX̄ .Σx̄ .∃ȳ . ϕ(X̄ , x̄ , ȳ)
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We construct a formula min-ϕFO(x̄) that identifies the lexicographically

minimal assignment σ to x̄ that satisfies ∃X̄ . ∃ȳ . ϕ(X̄ , x̄ , ȳ).
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Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

RQFO = QFO with quantitative recursion.

TQFO = QFO with quantitative transitive closure.

Theorem

1. RQFO(FO) captures FP over the class of ordered structures.

2. TQFO(FO) captures #L over the class of ordered structures.
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Conclusions and future work

“We believe that quantitative logics are the right framework for

Descriptive complexity of counting complexity classes.”

Plenty of open problems here . . .

1. Logical characterization of classes like TotP,SpanL, . . .

2. Compl. characterization of subfragments like QSO(FO),QFO(FO), . . .

3. Use quantitative logic to find complexity classes with good properties.

4. Understand the expressiveness of QSO and their subfragments.

Thanks! Questions?
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