Beyond NP Revolution

Kuldeep S. Meel

National University of Singapore

@Telekom ParisTech

May 2019

Artificial Intelligence and Logic

Turing, 1950: "Opinions may vary as to the complexity which is suitable in the child machine. One might try to make it as simple as possible consistent with the general principles. Alternatively one might have a complete system of logical inference "built in". In the latter case the store would be largely occupied with definitions and propositions.
The propositions would have various kinds of status, e.g., well-established facts, conjectures, mathematically proved theorems, statements given by an authority,...'

Aristotle's Syllogisms

- All men are mortal
- Socrates is a man

Socrates is a mortal

Boole's Symbolic Logic

Boole's insight: Aristotle's syllogisms are about classes of objects, which can be treated algebraically.
> "If an adjective, as 'good', is employed as a term of description, let us represent by a letter, as y, all things to which the description 'good' is applicable, i.e., 'all good things', or the class of 'good things'. Let it further be agreed that by the combination xy shall be represented that class of things to which the name or description represented by x and y are simultaneously applicable. Thus, if x alone stands for 'white' things and y for 'sheep', let $x y$ stand for 'white sheep'.

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\wedge) "or", (\vee) and "not" (\neg), is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1)?
Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

Complexity of Boolean Reasoning

History:

- William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."
- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."

Complexity of Boolean Reasoning

History:

- William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."
- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."
- Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

Complexity of Boolean Reasoning

History:

- William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."
- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."
- Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.
- Clay Institute, 2000: \$1M Award!

Algorithmic Boolean Reasoning: Early History

- Davis and Putnam, 1958: "Computational Methods in The Propositional calculus", unpublished report to the NSA
- Davis and Putnam, JACM 1960: "A Computing procedure for quantification theory"
- Davis, Logemman, and Loveland, CACM 1962: "A machine program for theorem proving"
- Marques-Silva and Sakallah 1996, Zhang et al. 2001, Een and Sorensson 2003, Simon and Audemard 2009, Liang et al 2016 CDCL = conflict-driven clause learning
- Smart but cheap branching heuristics
- Quick detection of unit clauses
- Conflict Driven Clause Learning
- Restarts

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

Now that SAT is "easy", it is time to look beyond satisfiability

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Constrained Counting: Determine $|\operatorname{Sol}(F)|$
- Constrained Sampling: Randomly sample from Sol (F) such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{1}{|\operatorname{Sol}(F)|}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from Sol (F) such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{W(y)}{W(F)}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from $\operatorname{Sol}(F)$ such that $\operatorname{Pr}[y$ is sampled $]=\frac{W(y)}{W(F)}$
- Given
- $F:=\left(X_{1} \vee X_{2}\right)$
$-W[(0,0)]=W[(1,1)]=\frac{1}{6} ; W[(1,0)]=W[(0,1)]=\frac{1}{3}$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from $\operatorname{Sol}(F)$ such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{W(y)}{W(F)}$
- Given

$$
\begin{aligned}
& -F:=\left(X_{1} \vee X_{2}\right) \\
& -W[(0,0)]=W[(1,1)]=\frac{1}{6} ; W[(1,0)]=W[(0,1)]=\frac{1}{3}
\end{aligned}
$$

- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $W(F)=\frac{1}{3}+\frac{1}{3}+\frac{1}{6}=\frac{5}{6}$

Applications across Computer Science

Network Reliability
Probabilistic Inference
Hardware Validation

Network Reliability
Probabilistic Inference Constrained Counting
Hardware Validation

Network Reliability
Probabilistic Inference Constrained Counting Hashing Framework Hardware Validation

Network Reliability
$\begin{array}{ll}\text { Probabilistic Inference } & \text { Constrained Counting } \\ \text { Hardware Validation } & \text { Constrained Sampling Framework }\end{array}$

Can we reliably predict the effect of natural disasters on critical infrastructure such as power grids?

Can we reliably predict the effect of natural disasters on critical infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$
(DMPV, AAAI 17, ICASP13 2019)

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\operatorname{Pr}[\operatorname{Asthma}(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]}
$$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\begin{aligned}
& \operatorname{Pr}[\text { Asthma }(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]} \\
& F=\mathrm{A} \wedge \mathrm{C}
\end{aligned}
$$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\begin{aligned}
& \operatorname{Pr}[\text { Asthma }(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]} \\
& F=\mathrm{A} \wedge \mathrm{C} \\
& \operatorname{Sol}(F)=\{(\mathrm{A}, \mathrm{C}, \mathrm{~S}),(\mathrm{A}, \mathrm{C}, \overline{\mathrm{~S}})\}
\end{aligned}
$$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\begin{aligned}
& \operatorname{Pr}[\text { Asthma }(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]} \\
& F=\mathrm{A} \wedge \mathrm{C} \\
& \operatorname{Sol}(F)=\{(\mathrm{A}, \mathrm{C}, \mathrm{~S}),(\mathrm{A}, \mathrm{C}, \overline{\mathrm{~S}})\} \\
& \operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]=\Sigma_{y \in \operatorname{Sol}(F)} W(y)=W(F)
\end{aligned}
$$

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006, Lagniez and Marquis 2014-18)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques
(Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006, Lagniez and Marquis 2014-18)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

How to bridge this gap between theory and practice?

Constrained Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- ExactCount (F, W) : Compute $W(F)$?
- \#P-complete

Constrained Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- ExactCount (F, W) : Compute $W(F)$?
- \#P-complete
- ApproxCount $(F, W, \varepsilon, \delta)$: Compute C such that

$$
\operatorname{Pr}\left[\frac{W(F)}{1+\varepsilon} \leq C \leq W(F)(1+\varepsilon)\right] \geq 1-\delta
$$

From Weighted to Unweighted Counting

Boolean Formula F and weight Boolean Formula F^{\prime} function $W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}$

$$
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
$$

- Key Idea: Encode weight function as a set of constraints

From Weighted to Unweighted Counting

Boolean Formula F and weight Boolean Formula F^{\prime} function $W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}$

$$
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
$$

- Key Idea: Encode weight function as a set of constraints
- Caveat: $\left|F^{\prime}\right|=O(|F|+|W|)$

From Weighted to Unweighted Counting

Boolean Formula F and weight Boolean Formula F^{\prime} function $W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}$

$$
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
$$

- Key Idea: Encode weight function as a set of constraints
- Caveat: $\left|F^{\prime}\right|=O(|F|+|W|)$

How do we estimate $\left|\operatorname{Sol}\left(F^{\prime}\right)\right|$? (CFMV, IJCAI15)

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Paris

How many people in Paris like coffee?

- Population of Paris $=2.1 \mathrm{M}$
- Assign every person a unique $(n=) 21$ bit identifier $\left(2^{n}=2.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $2.1 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser $\#$ of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions
Universal Hashing (Carter and Wegman 1977)

2-Universal Hashing

- Let H be family of 2-universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

2-Universal Hashing

- Let H be family of 2-universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

- The power of 2-universality
- Z be the number of solutions in a randomly chosen cell
$-\mathrm{E}[Z]=\frac{|\operatorname{Sol}(F)|}{2^{m}}$
$-\sigma^{2}[Z] \leq \mathrm{E}[Z]$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them

$$
-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}
$$

- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
x_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
x_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
x_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them

$$
-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}
$$

- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers $!=$ SAT oracles)

Improved Universal Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not

Improved Universal Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I

Improved Universal Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)

Improved Universal Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I ?

Improved Universal Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I ?
- $F P^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset
- Not all variables are required to specify solution space of F

$$
-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)
$$

- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over 1 (CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent

Algorithmic procedure to determine I ?

- FP ${ }^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset
- Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Independent Support-based 2-Universal Hash Functions
Challenge 2 How many cells?

Question 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions

Question 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}$

Question 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\mathrm{Sol}(F)|}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC($F, \varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)

ApproxMC(F, $\varepsilon, \delta)$

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

- Prior work required $\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)$ calls to SAT oracle (Stockmeyer 1983)

ApproxMC(F, $\varepsilon, \delta)$

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

- Prior work required $\mathcal{O}\left(\frac{\boldsymbol{n} \log \boldsymbol{n} \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)$ calls to SAT oracle (Stockmeyer 1983)

Theorem (FPRAS for DNF; (MSV, FSTTCS-17; CP-18, IJCAI-29(Invited Paper)))
If F is a DNF formula, then ApproxMC is FPRAS - fundamentally different from the only other known FPRAS for DNF (Karp, Luby 1983)

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

Timeout $=1000$ seconds
(DMPV, AAAI17)

Beyond Network Reliability

Network Reliability

Probabilistic Inference
Constrained Counting

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results
- Challenge: How do we generate test vectors?
- 2^{128} combinations for a toy circuit

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results
- Challenge: How do we generate test vectors?
- 2^{128} combinations for a toy circuit
- Use constraints to represent interesting verification scenarios

Constrained-Random Simulation

Constraints

- Designers:

$$
\begin{aligned}
& -a+6411 * 32 b=12 \\
& -a<_{64}(b \gg 4)
\end{aligned}
$$

- Past Experience:

$$
\begin{aligned}
& -40<6434+a<645050 \\
& -120<_{64} b<_{64} 230
\end{aligned}
$$

- Users:

$$
\begin{aligned}
& -232 * 32 a+64 b!=1100 \\
& -1020<_{64}(b / 642)+64 a<_{64} 2200
\end{aligned}
$$

Test vectors: random solutions of constraints

Constrained Sampling

- Given:
- Set of Constraints F over variables $X_{1}, X_{2}, \cdots X_{n}$
- Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \operatorname{Pr}[y \text { is output }]=\frac{1}{|\operatorname{Sol}(F)|}
$$

- Almost-Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[\mathrm{y} \text { is output }] \leq \frac{(1+\varepsilon)}{|\operatorname{Sol}(F)|}
$$

Prior Work

Strong guarantees but poor scalability

- Polynomial calls to NP oracle (Bellare, Goldreich and Petrank, 2000)
- BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and Shiple 2000)
- Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986) Weak guarantees but impressive scalability
- Randomization in SAT solvers
(Moskewicz 2001, Nadel 2011)
- MCMC-based approaches Kitchen and Kuehlmann 2007,...)
- Belief Networks
(Sinclair 1993, Jerrum and Sinclair 1996,
(Dechter 2002, Gogate and Dechter 2006)

Prior Work

Strong guarantees but poor scalability

- Polynomial calls to NP oracle (Bellare, Goldreich and Petrank, 2000)
- BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and Shiple 2000)
- Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986) Weak guarantees but impressive scalability
- Randomization in SAT solvers
(Moskewicz 2001, Nadel 2011)
- MCMC-based approaches Kitchen and Kuehlmann 2007,...)
- Belief Networks
(Dechter 2002, Gogate and Dechter 2006)
How to bridge this gap between theory and practice?

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible

```
(Jerrum, Valiant and Vazirani, 1986)
```

- Is the reduction efficient?
- Almost-uniform sampler (JVV) require linear number of approximate counting calls

Key Ideas

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell

Key Ideas

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell Challenge: How many cells?

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\begin{aligned}
& \quad \operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta \\
& -\tilde{m}=\log \frac{C}{\text { thresh }}
\end{aligned}
$$

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC($F, \varepsilon, \delta)$ returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- $\tilde{m}=\log \frac{C}{\text { thresh }}$
- Check for $m=\tilde{m}-1, \tilde{m}, \tilde{m}+1$ if a randomly chosen cell is small

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- $\tilde{m}=\log \frac{C}{\text { thresh }}$
- Check for $m=\tilde{m}-1, \tilde{m}, \tilde{m}+1$ if a randomly chosen cell is small
- Not just a practical hack required non-trivial proof
(CMV, CAV13)
(CFMSV, AAAI14),
(SGRM, LPAR18)
(CMV, DAC14),
(CFMSV, TACAS15),
(SGRM, TACAS19)

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

- Prior work required \mathbf{n} calls to approximate counter and Vazirani, 1986)

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10

Experiments over 200+ benchmarks

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000

Experiments over 200+ benchmarks

Three Orders of Improvement

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000
UniGen	21

Experiments over 200+ benchmarks

Three Orders of Improvement

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000
UniGen	21

Experiments over 200+ benchmarks
Closer to technical transfer

Quiz Time: Uniformity

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Statistically Indistinguishable

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Usages of Open Source Tool: UniGen

$43 / 47$

AAAI19
TACAS19
IJCAI 16a IJCAI16b AAAI16
IJCAI15 CP 15
TACAS 15
DAC 14
AAAI 14

Mission 2025: Constrained Counting and Sampling Revolution

Requires combinations of ideas from theory, statistics and systems

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)
- Designing hardware accelerators - similar to advances in deep learning

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)
- Designing hardware accelerators - similar to advances in deep learning

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)
- Designing hardware accelerators - similar to advances in deep learning
- Understanding and applying sampling and counting to real world use-cases

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)
- Designing hardware accelerators - similar to advances in deep learning
- Understanding and applying sampling and counting to real world use-cases

We can only see a short distance ahead but we can see plenty there that needs to be done (Turing, 1950)

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms (SM, AAAI19)
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting (CM, AAAI19)
- Designing hardware accelerators - similar to advances in deep learning
- Understanding and applying sampling and counting to real world use-cases

We can only see a short distance ahead but we can see plenty there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD students, and postdocs. Visit meelgroup.github.io for details on how to apply.

Part I

Backup

Highly Accurate Estimates

Highly Accurate Estimates

Observed Geometric mean: 0.03

Observed Geometric mean: 0.03
These results are good

Observed Geometric mean: 0.03
These results are good problem.

Independent Support

- $I \subseteq X$ is an independent support:
$\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}$ and σ_{2} agree on I then $\sigma_{1}=\sigma_{2}$

Independent Support

- $I \subseteq X$ is an independent support:
$\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}$ and σ_{2} agree on I then $\sigma_{1}=\sigma_{2}$
- $F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)$ where $F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)$

Independent Support

- $I \subseteq X$ is an independent support:
$\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}$ and σ_{2} agree on I then $\sigma_{1}=\sigma_{2}$
- $F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)$ where $F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)$
- $Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.$ $\left.y_{i}\right)$)

Independent Support

- $I \subseteq X$ is an independent support:
$\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}$ and σ_{2} agree on I then $\sigma_{1}=\sigma_{2}$
- $F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)$ where $F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)$
- $Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.$ $\left.y_{i}\right)$)
- Lemma: $Q_{F, I}$ is UNSAT if and only if I is independent support

Independent Support

$$
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=y_{i}\right)\right)
\end{aligned}
$$

Lemma

$I=\left\{x_{i}\right\}$ is independent support iif $H^{I} \wedge \Omega$ is UNSAT where $H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}$

Minimal Unsatisfiable Subset

Given $\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega$
Unsatisfiable Subset Find subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega$ is UNSAT

Minimal Unsatisfiable Subset

Given $\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega$
Unsatisfiable Subset Find subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega$ is UNSAT
Minimal Unsatisfiable Subset Find minimal subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega$ is UNSAT

Minimal Unsatisfiable Subset

Given $\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega$
Unsatisfiable Subset Find subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega$ is UNSAT
Minimal Unsatisfiable Subset Find minimal subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega$ is UNSAT

Minimal Independent Support

$$
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=y_{i}\right)\right)
\end{aligned}
$$

Lemma

$I=\left\{x_{i}\right\}$ is Minimal Independent Support iif H^{\prime} is Minimal Unsatisfiable Subset where $H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}$

MIS \Rightarrow MUS

Minimal Independent Support

$$
\begin{array}{r}
H_{1}:=\left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
\Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=y_{i}\right)\right)
\end{array}
$$

Lemma

$I=\left\{x_{i}\right\}$ is Minimal Independent Support iif H^{\prime} is Minimal Unsatisfiable Subset where $H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}$

MIS \Rightarrow MUS

Two orders of magnitude improvement in runtime

