
Beyond NP Revolution

Kuldeep S. Meel

National University of Singapore

@Telekom ParisTech

May 2019

1/47

Artificial Intelligence and Logic

Turing, 1950: “Opinions may vary as to the complexity which is
suitable in the child machine. One might try to make it as simple as
possible consistent with the general principles. Alternatively one might
have a complete system of logical inference “built in”. In the latter case
the store would be largely occupied with definitions and propositions.
The propositions would have various kinds of status, e.g.,
well-established facts, conjectures, mathematically proved theorems,
statements given by an authority,...’

2/47

Aristotle’s Syllogisms

• All men are mortal

• Socrates is a man

Socrates is a mortal

3/47

Boole’s Symbolic Logic

Boole’s insight: Aristotle’s syllogisms are about classes of objects,
which can be treated algebraically.

“If an adjective, as ‘good’, is employed as a term of
description, let us represent by a letter, as y , all things to
which the description ‘good’ is applicable, i.e., ‘all good
things’, or the class of ‘good things’. Let it further be agreed
that by the combination xy shall be represented that class of
things to which the name or description represented by x and
y are simultaneously applicable. Thus, if x alone stands for
‘white’ things and y for ‘sheep’, let xy stand for ‘white sheep’.

4/47

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using
“and” (∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an
assignment of 0’s and 1’s to the variables that makes the expression
equal 1)?
Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

5/47

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the
process, and I shall describe several devices which may be adopted
for saving trouble and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the
consequences of any premises, or at least the fastest method for
obtaining these consequences, seems to me to be one of the
noblest, if not the ultimate goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

• Clay Institute, 2000: $1M Award!

6/47

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the
process, and I shall describe several devices which may be adopted
for saving trouble and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the
consequences of any premises, or at least the fastest method for
obtaining these consequences, seems to me to be one of the
noblest, if not the ultimate goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

• Clay Institute, 2000: $1M Award!

6/47

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the
process, and I shall describe several devices which may be adopted
for saving trouble and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the
consequences of any premises, or at least the fastest method for
obtaining these consequences, seems to me to be one of the
noblest, if not the ultimate goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

• Clay Institute, 2000: $1M Award!

6/47

Algorithmic Boolean Reasoning: Early History

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine
program for theorem proving”

• Marques-Silva and Sakallah 1996, Zhang et al. 2001, Een and
Sorensson 2003, Simon and Audemard 2009, Liang et al 2016
CDCL = conflict-driven clause learning

– Smart but cheap branching heuristics
– Quick detection of unit clauses
– Conflict Driven Clause Learning
– Restarts

7/47

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

8/47

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

8/47

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

8/47

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine

W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

9/47

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine |Sol(F)|

W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = 1
|Sol(F)|

Pr[y is sampled] = W (y)
W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• W (F) = 1
3 + 1

3 + 1
6 = 5

6

9/47

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

9/47

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• W (F) = 1
3 + 1

3 + 1
6 = 5

6

9/47

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

9/47

Applications across Computer Science

Counting &
Sampling

Network
Reliability

Probabilistic
Inference

Explainable
AI

Hardware
Validation

Neural
Network

Verification

Quantified
Information

Flow

10/47

Today’s Menu

Network Reliability

Probabilistic Inference

Hardware Validation

Constrained Counting Hashing Framework

Constrained Sampling

11/47

Today’s Menu

Network Reliability

Probabilistic Inference

Hardware Validation

Constrained Counting

Hashing Framework

Constrained Sampling

11/47

Today’s Menu

Network Reliability

Probabilistic Inference

Hardware Validation

Constrained Counting Hashing Framework

Constrained Sampling

11/47

Today’s Menu

Network Reliability

Probabilistic Inference

Hardware Validation

Constrained Counting Hashing Framework

Constrained Sampling

11/47

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

12/47

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

12/47

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?

Can we predict likelihood of a region facing blackout?

12/47

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

12/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17, ICASP13 2019)

13/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17, ICASP13 2019)

13/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17, ICASP13 2019)

13/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17, ICASP13 2019)

13/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17, ICASP13 2019)

13/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}
Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}
Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}
Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}
Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}

Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C,S), (A,C, S̄)}
Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting (Roth, 1996)

14/47

Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006, Lagniez and Marquis 2014-18)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

How to bridge this gap between theory and practice?

15/47

Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006, Lagniez and Marquis 2014-18)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

How to bridge this gap between theory and practice?

15/47

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• ExactCount(F ,W): Compute W (F)?

– #P-complete (Valiant 1979)

• ApproxCount(F ,W , ε, δ): Compute C such that

Pr[
W (F)

1 + ε
≤ C ≤W (F)(1 + ε)] ≥ 1− δ

16/47

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• ExactCount(F ,W): Compute W (F)?

– #P-complete (Valiant 1979)

• ApproxCount(F ,W , ε, δ): Compute C such that

Pr[
W (F)

1 + ε
≤ C ≤W (F)(1 + ε)] ≥ 1− δ

16/47

From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F) = c(W)× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

• Caveat: |F ′| = O(|F |+ |W |)

(CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?

17/47

From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F) = c(W)× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

• Caveat: |F ′| = O(|F |+ |W |)

(CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?

17/47

From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F) = c(W)× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

• Caveat: |F ′| = O(|F |+ |W |)

(CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?

17/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

Counting in Paris

How many people in Paris like coffee?

• Population of Paris = 2.1M

• Assign every person a unique (n =) 21 bit identifier (2n = 2.1M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 2.1M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

18/47

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

19/47

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

19/47

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

19/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

20/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

Challenge 2 How many cells?

20/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

20/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work

• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)

20/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

20/47

2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-universality

– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

21/47

2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-universality

– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

21/47

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

22/47

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

22/47

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

22/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)

23/47

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How many cells?

24/47

Question 2: How many cells?

• A cell is small if it has ≈ thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

25/47

Question 2: How many cells?

• A cell is small if it has ≈ thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

25/47

Question 2: How many cells?

• A cell is small if it has ≈ thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

25/47

ApproxMC(F , ε, δ)

of sols
≤ thresh?

26/47

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No

26/47

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No No

26/47

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

26/47

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

26/47

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))

(CMV, IJCAI16)

27/47

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

(CMV, IJCAI16)

27/47

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

(CMV, IJCAI16)

27/47

ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F)|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log(1

δ
)

ε) calls to SAT oracle (Stockmeyer

1983)

Theorem (FPRAS for DNF; (MSV, FSTTCS-17; CP-18, IJCAI-29(
Invited Paper)))

If F is a DNF formula, then ApproxMC is FPRAS – fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983)

28/47

ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F)|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log(1

δ
)

ε) calls to SAT oracle (Stockmeyer

1983)

Theorem (FPRAS for DNF; (MSV, FSTTCS-17; CP-18, IJCAI-29(
Invited Paper)))

If F is a DNF formula, then ApproxMC is FPRAS – fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983)

28/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

Timeout = 1000 seconds

(DMPV, AAAI17)
29/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA

Timeout = 1000 seconds

(DMPV, AAAI17)
29/47

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA
ApproxMC

Timeout = 1000 seconds

(DMPV, AAAI17)
29/47

Beyond Network Reliability

ApproxMC
Network

Reliability

Probabilistic
Inference

Quantified
Information

Flow

Deep
Learning

Verification

(DMPV,
AAAI17)

(CFMSV, AAAI14), (IMMV,
CP15), (CFMV, IJCAI15), (CMMV,

AAAI16), (CMV, IJCAI16)

Fremont, Rabe and Seshia
2017, BEHLM Q-18, Bang-2018

BMS 2019

30/47

Network Reliability

Probabilistic Inference Constrained Counting

Hashing FrameworkHardware Validation

31/47

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

• Use constraints to represent interesting
verification scenarios

32/47

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

• Use constraints to represent interesting
verification scenarios

32/47

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

• Use constraints to represent interesting
verification scenarios

32/47

Constrained-Random Simulation

Constraints

• Designers:

– a +64 11 ∗ 32b = 12
– a <64 (b >> 4)

• Past Experience:

– 40 <64 34 + a <64 5050
– 120 <64 b <64 230

• Users:

– 232 ∗ 32a +64 b! = 1100
– 1020 <64 (b/642) +64 a <64 2200

Test vectors: random solutions of con-
straints

33/47

Constrained Sampling

• Given:

– Set of Constraints F over variables X1,X2, · · ·Xn

• Uniform Sampler

∀y ∈ Sol(F),Pr[y is output] =
1

|Sol(F)|

• Almost-Uniform Sampler

∀y ∈ Sol(F),
1

(1 + ε)|Sol(F)|
≤ Pr[y is output] ≤ (1 + ε)

|Sol(F)|

34/47

Prior Work

Strong guarantees but poor scalability

• Polynomial calls to NP oracle (Bellare, Goldreich and Petrank,2000)

• BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and

Shiple 2000)

• Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

• Randomization in SAT solvers (Moskewicz 2001, Nadel 2011)

• MCMC-based approaches (Sinclair 1993, Jerrum and Sinclair 1996,

Kitchen and Kuehlmann 2007,...)

• Belief Networks (Dechter 2002, Gogate and Dechter 2006)

How to bridge this gap between theory and practice?

35/47

Prior Work

Strong guarantees but poor scalability

• Polynomial calls to NP oracle (Bellare, Goldreich and Petrank,2000)

• BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and

Shiple 2000)

• Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

• Randomization in SAT solvers (Moskewicz 2001, Nadel 2011)

• MCMC-based approaches (Sinclair 1993, Jerrum and Sinclair 1996,

Kitchen and Kuehlmann 2007,...)

• Belief Networks (Dechter 2002, Gogate and Dechter 2006)

How to bridge this gap between theory and practice?

35/47

Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls

36/47

Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls

36/47

Key Ideas

• Check if a randomly picked cell is small

– If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?

37/47

Key Ideas

• Check if a randomly picked cell is small

– If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?

37/47

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh (m∗ = log |Sol(F)|thresh)

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F)|
1+ε ≤ C ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

(CMV, CAV13) (CMV, DAC14),
(CFMSV, AAAI14), (CFMSV, TACAS15),
(SGRM, LPAR18) (SGRM, TACAS19)

38/47

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh (m∗ = log |Sol(F)|thresh)

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F)|
1+ε ≤ C ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

(CMV, CAV13) (CMV, DAC14),
(CFMSV, AAAI14), (CFMSV, TACAS15),
(SGRM, LPAR18) (SGRM, TACAS19)

38/47

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh (m∗ = log |Sol(F)|thresh)

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F)|
1+ε ≤ C ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small

– Not just a practical hack required non-trivial proof

(CMV, CAV13) (CMV, DAC14),
(CFMSV, AAAI14), (CFMSV, TACAS15),
(SGRM, LPAR18) (SGRM, TACAS19)

38/47

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh (m∗ = log |Sol(F)|thresh)

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F)|
1+ε ≤ C ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

(CMV, CAV13) (CMV, DAC14),
(CFMSV, AAAI14), (CFMSV, TACAS15),
(SGRM, LPAR18) (SGRM, TACAS19)

38/47

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

39/47

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

39/47

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

39/47

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen 21

Experiments over 200+ benchmarks

Closer to technical transfer

40/47

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen 21

Experiments over 200+ benchmarks

Closer to technical transfer

40/47

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen 21

Experiments over 200+ benchmarks

Closer to technical transfer

40/47

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen 21

Experiments over 200+ benchmarks
Closer to technical transfer

40/47

Quiz Time: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

41/47

Statistically Indistinguishable

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

42/47

Usages of Open Source Tool: UniGen

UniGen
Hardware
Validation

Pattern
Mining

Probabilistic
Reasoning

Problem
Generation

43/47

Mission 2025: Constrained Counting and Sampling
Revolution

2012 2013 2014 2015 2016 2019

101

102

103

104

105

106

S
p
ee
d
u
p
ov
er

20
12

st
at
e
of

th
e
ar
t

44/47

Mission 2025: Constrained Counting and Sampling
Revolution

2012 2013 2014 2015 2016 2019

101

102

103

104

105

106

CP 13
CAV 13

DAC 14
AAAI 14

IJCAI15
CP 15
TACAS 15

IJCAI 16a
IJCAI16b
AAAI16

AAAI19
TACAS19

S
p
ee
d
u
p
ov
er

20
12

st
at
e
of

th
e
ar
t

44/47

Mission 2025: Constrained Counting and Sampling
Revolution

2012 2014 2016 2020 2022 2024 2025

101

102

103

104

105

106
S
p
ee
d
u
p
ov
er

20
12

st
at
e
of

th
e
ar
t

Requires combinations of ideas from theory, statistics and systems

44/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Handling weighted distributions: Connections to theory of
integration

• Verification of sampling and counting (CM, AAAI19)

• Designing hardware accelerators – similar to advances in deep
learning

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)

Join us in our mission: Positions for long-term research assistants, PhD
students, and postdocs. Visit meelgroup.github.io for details on how to
apply.

45/47

Part I

Backup

46/47

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03
These results are good problem.

47/47

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03

These results are good problem.

47/47

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03
These results are good

problem.

47/47

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03
These results are good problem.

47/47

Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) =⇒
∧

i (xi = yi)
where F (y1, · · · yn) := F (x1 � y1, · · · xn � yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) ∧ ¬(
∧

i (xi =
yi))

• Lemma: QF ,I is UNSAT if and only if I is independent support

47/47

Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) =⇒
∧

i (xi = yi)
where F (y1, · · · yn) := F (x1 � y1, · · · xn � yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) ∧ ¬(
∧

i (xi =
yi))

• Lemma: QF ,I is UNSAT if and only if I is independent support

47/47

Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) =⇒
∧

i (xi = yi)
where F (y1, · · · yn) := F (x1 � y1, · · · xn � yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) ∧ ¬(
∧

i (xi =
yi))

• Lemma: QF ,I is UNSAT if and only if I is independent support

47/47

Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) =⇒
∧

i (xi = yi)
where F (y1, · · · yn) := F (x1 � y1, · · · xn � yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I (xi = yi) ∧ ¬(
∧

i (xi =
yi))

• Lemma: QF ,I is UNSAT if and only if I is independent support

47/47

Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧
i

(xi = yi))

Lemma

I = {xi} is independent support iif H I ∧ Ω is UNSAT where
H I = {Hi |xi ∈ I}

47/47

Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT

47/47

Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT

47/47

Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT

47/47

Minimal Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧
i

(xi = yi))

Lemma

I = {xi} is Minimal Independent Support iif H I is Minimal Unsatisfiable
Subset where H I = {Hi |xi ∈ I}

MIS MUS

Two orders of magnitude improvement in runtime

47/47

Minimal Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧
i

(xi = yi))

Lemma

I = {xi} is Minimal Independent Support iif H I is Minimal Unsatisfiable
Subset where H I = {Hi |xi ∈ I}

MIS MUS
Two orders of magnitude improvement in runtime

47/47

	Backup

