On the optimization of recursive relational queries.

DIG Seminar

Louis Jachiet

The relational algebra

The relational algebra [Cod70]

• a set of base relations

the tables in SQL

• combined through operators

union, projection, filter, join, etc.

• operates on named tuples

φ	::=		term
		X	relation variable
		c ightarrow v	constant
		Ø	empty set
		$\varphi_1\cup\varphi_2$	union
		$\varphi_1 \bowtie \varphi_2$	join
		$\varphi_1 \triangleright \varphi_2$	antijoin
		$\sigma_{\textit{filter}}\left(\varphi\right)$	filter
		$\rho_{a}^{b}\left(\varphi\right)$	rename
		$\pi_{P}\left(\varphi\right)$	projection
Figu	re 1:	Syntax of th	e relational algebra

Т			
from	to		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

Т			
from	to		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

$\rho_{to}^{step}\left(T ight)$			
from	step		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

Т			
from	to		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

$\rho_{to}^{step}(T) \bowtie \rho_{from}^{step}(T)$			
from	step	to	
Lille	Paris	Saclay	
Lille	Paris	Grenoble	
Lille	Saclay	Grenoble	
Paris	Saclay	Grenoble	

Т			
from	to		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

$\sigma_{from=Lille}(T)$			
from	to		
Lille	Paris		
Lille	Saclay		

Т			
from	to		
Lille	Paris		
Lille	Saclay		
Paris	Grenoble		
Paris	Saclay		
Saclay	Grenoble		

$\sigma_{from=Paris}(\mathcal{T})\cup\sigma_{from=Lille}(\mathcal{T})$		
from	to	
Lille	Paris	
Lille	Saclay	
Paris	Saclay	
Paris	Grenoble	

Т		
from	to	
Lille	Paris	
Lille	Saclay	
Paris	Grenoble	
Paris	Saclay	
Saclay	Grenoble	

 $\pi_{to}(T) \triangleright \sigma_{\text{from}=\text{Lille}}(T)$

to

Grenoble

Recursive relational algebra

ρ	::=		term
		X	relation variable
		c ightarrow v	constant
		Ø	empty set
		$\varphi_1\cup\varphi_2$	union
		$\varphi_1 \bowtie \varphi_2$	join
		$\varphi_1 \triangleright \varphi_2$	antijoin
		$\sigma_{\textit{filter}}\left(\varphi\right)$	filtering
		$\rho_{a}^{b}\left(\varphi\right)$	rename
		$\pi_{c_1,\ldots,c_n}(\varphi)$	projection

Figure 2: Syntax of our relational algebra

φ	::=		term
		X	relation variable
		c ightarrow v	constant
		Ø	empty set
		$\varphi_1\cup\varphi_2$	union
		$\varphi_1 \Join \varphi_2$	join
		$\varphi_1 \triangleright \varphi_2$	antijoin
		$\sigma_{\textit{filter}}\left(\varphi\right)$	filtering
		$\rho_{a}^{b}\left(\varphi ight)$	rename
		$\tilde{\pi}_{c}\left(\varphi\right)$	anti-projection

Figure 2: Syntax of our relational algebra

φ	::=		term
		X	relation variable
		c ightarrow v	constant
		Ø	empty set
		$\varphi_1\cup\varphi_2$	union
		$\varphi_1 \bowtie \varphi_2$	join
		$\varphi_1 \triangleright \varphi_2$	antijoin
		$\sigma_{\textit{filter}}\left(\varphi\right)$	filtering
		$\rho_{a}^{b}\left(\varphi\right)$	rename
		$\tilde{\pi}_{c}\left(\varphi\right)$	anti-projection
		$\beta_{a}^{b}\left(\varphi\right)$	duplication

Figure 2: Syntax of our relational algebra

φ	::=		term
		X	relation variable
		c ightarrow v	constant
		Ø	empty set
		$\varphi_1\cup\varphi_2$	union
		$\varphi_1 \Join \varphi_2$	join
		$\varphi_1 \triangleright \varphi_2$	antijoin
		$\sigma_{\it filter}\left(\varphi\right)$	filtering
		$\rho_{a}^{b}(\varphi)$	rename
		$\tilde{\pi}_{c}\left(\varphi\right)$	anti-projection
		$\beta^{b}_{a}(\varphi)$	duplication
		$\mu(X=\varphi)$	fixpoint
Fig	ure 2:	Syntax of our	relational algebra

Differences

Anti-projection Remove a column

 $\tilde{\pi}_{d_1}\left(\ldots\tilde{\pi}_{d_k}\left(\varphi\right)\ldots\right)=\pi_{c_1\ldots c_n}\left(\varphi\right)$

Differences

Anti-projection Remove a column

 $\tilde{\pi}_{d_1}\left(\ldots\tilde{\pi}_{d_k}\left(\varphi\right)\ldots\right)=\pi_{c_1\ldots c_n}\left(\varphi\right)$

Duplication Copy a column

 $\beta_{a}^{b}(\varphi) = \sigma_{a=b}\left(\varphi \bowtie \rho_{a}^{b}(\varphi)\right)$

Differences

Anti-projection Remove a column

$$\tilde{\pi}_{d_1}\left(\ldots\tilde{\pi}_{d_k}\left(\varphi\right)\ldots\right)=\pi_{c_1\ldots c_n}\left(\varphi\right)$$

Duplication Copy a column

$$\beta_{a}^{b}(\varphi) = \sigma_{a=b}\left(\varphi \bowtie \rho_{a}^{b}(\varphi)\right)$$

Fixpoints Compute the least fixpoint of a function $S \rightarrow \varphi[X/S]$

$$\llbracket \mu(X = \varphi) \rrbracket_V = \lim_{n \to \infty} U_n \qquad U_0 = \emptyset$$
$$U_{n+1} = U_n \cup \llbracket \varphi \rrbracket_{V[X/U_n]}$$

Т		
from	to	
Lille	Paris	
Lille	Saclay	
Paris	Grenoble	
Paris	Saclay	
Saclay	Grenoble	

Т		
from	to	
Lille	Paris	
Lille	Saclay	
Paris	Grenoble	
Paris	Saclay	
Saclay	Grenoble	

$\beta_{\textit{from}}^{\textit{to}}\left(\tilde{\pi}_{\textit{to}}\left(T\right)\right)$	
from	to
Lille	Lille
Saclay	Saclay
Paris	Paris

$$T^{+} = \mu(X = T \cup \tilde{\pi}_{s} \left(\rho_{to}^{s}(X) \bowtie \rho_{from}^{s}(T)\right))$$

from	to
Lille	Paris
Paris	Saclay
Saclay	Lyon
Lyon	Grenoble

$$T^{+} = \mu(X = T \cup \tilde{\pi}_{s}(\rho_{to}^{s}(X) \bowtie \rho_{from}^{s}(T)))$$

Т		
from	to	
Lille	Paris	
Paris	Saclay	
Saclay	Lyon	
Lyon	Grenoble	

from	to
Lille	Paris
Paris	Saclay
Saclay	Lyon
Lyon	Grenoble
Lille	Saclay
Paris	Lyon
Saclay	Grenoble

$$T^{+} = \mu(X = T \cup \tilde{\pi}_{s} \left(\rho_{to}^{s}\left(X\right) \bowtie \rho_{from}^{s}\left(T\right)\right))$$

Т		
from	to	
Lille	Paris	
Paris	Saclay	
Saclay	Lyon	
Lyon	Grenoble	

from	to
Lille	Paris
Paris	Saclay
Saclay	Lyon
Lyon	Grenoble
Lille	Saclay
Paris	Lyon
Saclay	Grenoble
Lille	Lyon
Paris	Grenoble

$$T^{+} = \mu(X = T \cup \tilde{\pi}_{s} \left(\rho_{to}^{s} \left(X \right) \bowtie \rho_{from}^{s} \left(T \right) \right) \right)$$

	Т
from	to
Lille	Paris
Paris	Saclay
Saclay	Lyon
Lyon	Grenoble

from	to
Lille	Paris
Paris	Saclay
Saclay	Lyon
Lyon	Grenoble
Lille	Saclay
Paris	Lyon
Saclay	Grenoble
Lille	Lyon
Paris	Grenoble
Lille	Grenoble

Limitations on fixpoints

• recursive variables must appear positively

No $\mu(X = R \triangleright X)$

Limitations on fixpoints

• recursive variables must appear positively

No $\mu(X = R \triangleright X)$

• no join between recursive terms

No $\mu(X = X \bowtie X)$

Limitations on fixpoints

• recursive variables must appear positively

No
$$\mu(X = R \triangleright X)$$

• no join between recursive terms

No $\mu(X = X \bowtie X)$

no mutually recursive fixpoints

No $\mu(X = \mu(Y = X \cup Y))$

Limitations on fixpoints

• recursive variables must appear positively

No
$$\mu(X = R \triangleright X)$$

no join between recursive terms

No $\mu(X = X \bowtie X)$

no mutually recursive fixpoints

No $\mu(X = \mu(Y = X \cup Y))$

 \rightarrow corresponds to linear datalog!

 \rightarrow superset of WITH RECURSIVE in SQL!

Performance of recursive queries

:L :TGV/:Bus* ?o

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup:\mathsf{Bus}/X)\right)\right)$

Logicblox

- Materialization of all intermediate predicate
- $\bullet \ \ldots \ except$ for "on demand" predicate
- therefore manual optimization

Rewrite rules for fixpoints

• pushing filters?

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

Rewrite rules for fixpoints

• pushing filters?

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

• pushing joins?

$$\psi \bowtie \mu(X = \varphi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi)$$

Rewrite rules for fixpoints

• pushing filters?

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

• pushing joins?

$$\psi \bowtie \mu(X = \varphi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi)$$

• pushing antijoins?

$$\mu(X = \varphi) \triangleright \psi \stackrel{?}{=} \mu(X = \varphi \triangleright \psi)$$

Rewrite rules for fixpoints

• pushing filters?

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

• pushing joins?

$$\psi \bowtie \mu(X = \varphi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi)$$

• pushing antijoins?

$$\mu(X = \varphi) \triangleright \psi \stackrel{?}{=} \mu(X = \varphi \triangleright \psi)$$

• pushing anti-projections?

$$\widetilde{\pi}_{p}\left(\mu(X=\varphi)\right) \stackrel{?}{=} \mu(X=\widetilde{\pi}_{p}(\varphi))$$

Rewrite rules for fixpoints

• pushing filters?

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

• pushing joins?

$$\psi \bowtie \mu(X = \varphi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi)$$

• pushing antijoins?

$$\mu(X = \varphi) \triangleright \psi \stackrel{?}{=} \mu(X = \varphi \triangleright \psi)$$

• pushing anti-projections?

$$\tilde{\pi}_{p}\left(\mu(X=\varphi)\right) \stackrel{?}{=} \mu(X=\tilde{\pi}_{p}(\varphi))$$

• combine fixpoints?

$$\mu(X = \psi \cup \kappa) \bowtie \mu(X = \varphi \cup \xi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi \cup \xi \cup \kappa)$$

Rewrite rules for fixpoints

• Reverse fixpoints?

:L :TGV/:Bus* ?o

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}/\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}/\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}\cup X/:\mathsf{Bus})\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}/\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

$$\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}\cup X/:\mathsf{Bus})\right)\right)$$

 $\tilde{\pi}_{?s}\left(\mu(X = \sigma_{?s=:L}(:\mathsf{TGV}) \cup X/:\mathsf{Bus})\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(:\mathsf{TGV}/\mu(X=\beta_s^o\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

 $\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}/\beta_{s}^{o}\left(\mathsf{AllNodes}\right)\cup X/:\mathsf{Bus}\right)\right)\right)$

$$\tilde{\pi}_{?s}\left(\sigma_{?s=:L}\left(\mu(X=:\mathsf{TGV}\cup X/:\mathsf{Bus})\right)\right)$$

$$ilde{\pi}_{?s}\left(\mu(X=\sigma_{?s=:L}\left(:\mathsf{TGV}\right)\cup X/:\mathsf{Bus})\right)$$

$$\mu(X = \tilde{\pi}_{?s} \left(\sigma_{?s=:L} \left(:\mathsf{TGV}\right) \right) \cup X/:\mathsf{Bus})$$

Datalog? No combination of fixpoints

Automata based techniques? Step by Step and no conjunction

 $(a/b/c)^+$ vs $((a/b)/c)^+$ vs $((a/b/c))^+$

Special joins (RDF-3X ferari)? Compute efficiently $A \bowtie (B)$ * but same problem...

Waveguide Efficient on a single RPQ but cannot optimize across RPQ.

Theoretical framework

Decomposed fixpoints Given a fixpoint $\mu(X = \varphi)$ it can be rewritten to $\mu(X = \varphi_{con} \cup \varphi_{rec})$ with:

- φ_{con} constant, *i.e.* $[\![\varphi_{con}]\!]_{V[X/\emptyset]} = [\![\varphi_{con}]\!]_{V[X/S]}$
- φ_{rec} recursive, *i.e.* $[\![\varphi_{con}]\!]_{V[X/\emptyset]} = \emptyset$

Lineage

Linearity of fixpoints Given a fixpoint $\mu(X = \varphi)$:

$$\llbracket \varphi \rrbracket_{V[X/S]} = \llbracket \varphi \rrbracket_{V[X/\emptyset]} \bigcup_{w \in S} \llbracket \varphi \rrbracket_{V[X/\{w\}]}$$

Lineage

Linearity of fixpoints Given a fixpoint $\mu(X = \varphi)$:

$$\llbracket \varphi \rrbracket_{V[X/S]} = \llbracket \varphi \rrbracket_{V[X/\emptyset]} \bigcup_{w \in S} \llbracket \varphi \rrbracket_{V[X/\{w\}]}$$

Lineage

For each $m \in U_{i+1} \setminus U_i$ we can find $w \in U_i$ such that $m \in f(w)$ with $f(w) = \llbracket \varphi \rrbracket_{V[X/\{w\}]} \setminus \llbracket \varphi \rrbracket_{V[X/\emptyset]}$.

Examples

19

Invariant

How the elements of f(w) depend on w?

Invariant

How the elements of f(w) depend on w?

Stabilizers

For each w, $m \in f(w)$ and $c \in stab(\varphi)$: m(c) = w(c).

Invariant

How the elements of f(w) depend on w?

Stabilizers

For each w, $m \in f(w)$ and $c \in stab(\varphi)$: m(c) = w(c).

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) = \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

when *filter* operates on $stab(\varphi)$

$$\sigma_{\text{from}=\text{Lille}} (T^{+}) = \mu(X = \sigma_{\text{from}=\text{Lille}} (T) \cup X/T)$$

$$\sigma_{\text{to}=\text{Lille}} (T^{+}) \neq \mu(X = \sigma_{\text{from}=\text{Lille}} (T) \cup X/T)$$

Invariant

How the elements of f(w) depend on w?

Added columns

For each $c \in add(\varphi)$: $f(w) \bowtie |c \rightarrow v| = f(w \bowtie |c \rightarrow v|)$

$$\psi \bowtie \mu(X = \varphi) = \mu(X = \psi \bowtie \varphi)$$

when $sort(\psi) \subseteq stab(\varphi)$
and $sort(\psi) \subseteq add(\varphi) \cup sort(\mu(X = \varphi))$

Rewrite rules

Rewrite rules for fixpoints

• pushing filters

$$\sigma_{\text{filter}} \left(\mu(X = \varphi) \right) \stackrel{?}{=} \mu(X = \sigma_{\text{filter}} \left(\varphi \right))$$

• pushing joins

$$\psi \bowtie \mu(X = \varphi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi)$$

• pushing antijoins

$$\mu(X = \varphi) \triangleright \psi \stackrel{?}{=} \mu(X = \varphi \triangleright \psi)$$

• pushing anti-projections

$$\tilde{\pi}_{\rho}\left(\mu(X=\varphi)\right) \stackrel{?}{=} \mu(X=\tilde{\pi}_{\rho}(\varphi))$$

• combine fixpoints

$$\mu(X = \psi \cup \kappa) \bowtie \mu(X = \varphi \cup \xi) \stackrel{?}{=} \mu(X = \psi \bowtie \varphi \cup \xi \cup \kappa)$$

Streams

$(S) \longrightarrow [] [] [] [] [] [] [] (R)$

• no order of messages

- no order of messages
- not necessarily a DAG

- no order of messages
- not necessarily a DAG
- fast single machine communication and slow inter-machine communication

- no order of messages
- not necessarily a DAG
- fast single machine communication and slow inter-machine communication
- partial typing of message content (for fast serialization)

Execution of μ -algebra terms with streams

Streams

Streams for $\mu(X = X/T \cup T)$

27

Benchmarking

Figure 4: ?a (P1+)/(P5+) ?b.

Figure 5: ?a (P1+)/P2 ?b . ?b P3 + ?c.

Figure 6: N0 P1/(P2+) ?a

Figure 7: ?a (P4+)/(P5+)/(P3+) ?b

- Evaluate property paths
- Evaluate general recursive queries
- OBDA without rewriting nor materialization

Questions?

A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377-387, 1970.

Semantics

 $\left[\right]$

$$\begin{split} & \left[\varphi_{1} \bowtie \varphi_{2} \right]_{V} = \left\{ m_{1} + m_{2} \mid m_{1} \in \left[\varphi_{1} \right] \right]_{V} \land m_{2} \in \left[\varphi_{2} \right] _{V} \land m_{1} \sim m_{2} \right] \\ & \left[\varphi_{1} \cup \varphi_{2} \right]_{V} = \left[\varphi_{1} \right] _{V} \cup \left[\varphi_{2} \right] _{V} \\ & \left[\varphi_{1} \triangleright \varphi_{2} \right] _{V} = \left\{ m \in \left[\varphi_{1} \right] _{V} \mid \forall m' \in \left[\varphi_{2} \right] _{V} \neg (m' \sim m) \right\} \\ & \left[\tilde{\pi}_{a} \left(\varphi \right) \right] _{V} = \left\{ \left\{ c \rightarrow v \in m \mid c \neq a \right\} \mid m \in \left[\varphi \right] _{V} \right\} \\ & \left[\left[X \right] _{V} = V(X) \\ & \left[\beta_{a}^{b} \left(\varphi \right) \right] _{V} = \left\{ \left\{ c \rightarrow v \in m \mid c \neq b \right\} \cup \left\{ b \rightarrow v \mid a \rightarrow v \in m \right\} \\ & n \in \left[\varphi \right] _{V} \right\} \\ & \left[\sigma_{filter} \left(\varphi \right) \right] _{V} = \left\{ m \mid m \in \left[\varphi \right] _{V} \land filter(m) = \top \right\} \\ & \mu(X = \varphi) \right] _{V} = \left[X \right] _{V[X/U_{\infty}]}, U_{0} = \emptyset, U_{i+1} = U_{i} \cup \left[\varphi \right] _{V[X/U_{i}]} \end{split}$$