On the optimization of recursive relational
queries.

DIG Seminar

Louis Jachiet

& [@RIStAL

Centre de Recherche en Informatique,
Signal et Automatique de Lille

The relational algebra

Generalities

The relational algebra [Cod70]

e a set of base relations
the tables in SQL
e combined through operators
union, projection, filter, join, etc.

e operates on named tuples

p = term
| X relation variable
| |c—v| constant
| 0 empty set
| ©w1Ugpo union
| i join
| 1> antijoin
| Ofirer (9) filter
) rename
| 7p(p) projection

Figure 1: Syntax of the relational algebra

T
from | to Tto (T)
Lille | Paris to
Lille | Saclay Paris
Paris | Grenoble Saclay
Paris | Saclay Grenoble
Saclay | Grenoble

T pio” (T)
from | to from | step
Lille | Paris Lille | Paris
Lille | Saclay Lille | Saclay
Paris | Grenoble Paris | Grenoble
Paris | Saclay Paris | Saclay
Saclay | Grenoble Saclay | Grenoble

T
ste ste
ptop (T) prrori (T)

from | to

: : from | step | to
Lille | Paris - -

) Lille | Paris | Saclay
Lille | Saclay

Lille | Paris | Grenoble
Paris | Grenoble

) Lille | Saclay | Grenoble
Paris | Saclay

Paris | Saclay | Grenoble

Saclay | Grenoble

T
from | to (7)
g —=Li
Lille | Paris from=Lill
from | to
Lille | Saclay : _
i Lille | Paris
Paris | Grenoble]
) Lille | Saclay
Paris | Saclay
Saclay | Grenoble

T
Ofrom=Paris (T) U Ofrom=Lille (T)
from | to
: : from | to
Lille | Paris - -
) Lille | Paris
Lille | Saclay]
_ Lille | Saclay
Paris | Grenoble)
) Paris | Saclay
Paris | Saclay]
Paris | Grenoble
Saclay | Grenoble

T
from | to
Lille | Paris Tto (T) > Ttrom=Lille (T)
Lille | Saclay to
Paris | Grenoble Grenoble
Paris | Saclay

Saclay | Grenoble

Recursive relational algebra

Y ooi= term
| X relation variable
| le— v constant
| 0 empty set
| p1Up union
| P12 join
| P12 antijoin
| Oiteer () filtering
| PS (¢) rename
| Tet,onen () projection

Figure 2: Syntax of our relational algebra

¥ = term
| X relation variable
| le—v constant
| 0 empty set
| p1Up union
| P12 join
| p1> 2 antijoin
| fiter () filtering
| PS (¢) rename
| e (p) anti-projection

Figure 2: Syntax of our relational algebra

¥ = term
| X relation variable
| le—v constant
| 0 empty set
| p1Up union
| P12 join
| p1> 2 antijoin
| Oireer () filtering
| 5 (p) rename
| 7Tc() anti-projection
| 55 (¢) duplication

Figure 2: Syntax of our relational algebra

Y o= term
X relation variable
| le—v| constant
‘ 0 empty set
| p1Up2 union
| P12 join
| o1 antijoin
| Oitter () filtering
| PI; (¢) rename
‘ e (90) anti-projection
\ 55 (¢) duplication
| (X =) fixpoint

Figure 2: Syntax of our relational algebra

Anti-projection
Remove a column

’FFdl ('-%dk ((p)): Tey...cn ((p)

Anti-projection
Remove a column

’FFdl ('-%dk ((p)): Tey...cn ((p)

Duplication
Copy a column

5 () = gamb (9105 ()

Anti-projection
Remove a column

’FFdl ('-%dk ((p)): Tey...cn ((p)

Duplication
Copy a column

BE(¢) = 0azp (¢ <1 05 ()

Fixpoints
Compute the least fixpoint of a function S — ¢[X/S]

HM(X = QO)]]V = limp—00o Un Uo =10
Unt1 = Up U9l vix 0,

T
from | to T from (T)
Lille | Paris to
Lille | Saclay Paris
Paris | Grenoble Saclay
Paris | Saclay Grenoble
Saclay | Grenoble

T
from | to Btom (Fto (T))
Lille | Paris from to
Lille | Saclay Lille Lille
Paris | Grenoble Saclay | Saclay
Paris | Saclay Paris Paris
Saclay | Grenoble

TH=puX=TUT/X)

from to

T
from | to
Lille | Paris
Paris | Saclay
Saclay | Lyon
Lyon | Grenoble

TH = (X = T U (p, (X) 5 phom (T)))

from to
Lille Paris
Paris Saclay
T
Saclay Lyon
from | to Lyon Grenoble
Lille | Paris
Paris | Saclay
Saclay | Lyon
Lyon | Grenoble

TH = (X = T U (p, (X) 5 phom (T)))

from to

Lille Paris

Paris Saclay

T

Saclay Lyon
frc'Jm to. Lyon Grenoble
L|II.e Paris Lille Saclay
Paris | Saclay Paris Lyon
Saclay | Lyon Saclay | Grenoble
Lyon | Grenoble

TH = (X = T U (p, (X) 5 phom (T)))

from to

Lille Paris

Paris Saclay

T Saclay Lyon

from | to Lyon Grenoble
Lille | Paris Lille Saclay
Paris | Saclay Paris Lyon
Saclay | Lyon Saclay | Grenoble
Lyon | Grenoble Lille Lyon
Paris Grenoble

TH = (X = T U (p, (X) 5 phom (T)))

from to

Lille Paris

Paris Saclay

T Saclay Lyon
from | to Lyon Grenoble
Lille | Paris Lille Saclay
Paris | Saclay Paris Lyon
Saclay | Lyon Saclay | Grenoble
Lyon | Grenoble Lille Lyon
Paris Grenoble

Lille Grenoble

Limitations on fixpoints

e recursive variables must appear positively

No (X = R X)

Limitations on fixpoints
e recursive variables must appear positively
No u(X = R X)
® no join between recursive terms

No (X = X x X)

Limitations on fixpoints

e recursive variables must appear positively
No u(X = R X)
® no join between recursive terms
No (X = X x X)
e no mutually recursive fixpoints

No pu(X = (Y =X UY))

Limitations on fixpoints

e recursive variables must appear positively
No u(X = R X)
® no join between recursive terms
No (X = X x X)
e no mutually recursive fixpoints

No pu(X = (Y =X UY))

— corresponds to linear datalog!

— superset of WITH RECURSIVE in SQL!

Performance of recursive queries

An example

:Lille : TGV/:Bus* 70

10

An example

:L :TGV/:Bus* 70

11

An example

:L :TGV/:Bus* 70

775 (072s=:1 (TGV/u(X = B2 (AlINodes) U X /:Bus)))

11

An example

:L :TGV/:Bus* 70
775 (072s=:1 (TGV/u(X = B2 (AlINodes) U X /:Bus)))

frs (0761 (TGV /(X = B2 (AllNodes) U :Bus/X)))

11

Benchmarking

10t |

—— Postgres
—— SQLite
— Virtuoso
1 — ARQ
1 — ARQ
— DLV
— DLV,
—— Ramsdell,
—— Ramsdell;

V|0g1

Vlogs

100 3

Time (s)

1071 f

10_2 | | | L
102 103 10* 10° 109

number of nodes n b

Benchmarking

Logicblox

e Materialization of all intermediate predicate
e ... except for “on demand” predicate

e therefore manual optimization

13

Rewrite rules

Rewrite rules for fixpoints
e pushing filters?

2

Titter (X = ©)) = (X = Titeer (¢))

14

Rewrite rules

Rewrite rules for fixpoints

e pushing filters?
,

Titter (X = ©)) = (X = Titeer (¢))

e pushing joins?

Y p(X = @) = p(X = Pagp)

14

Rewrite rules

Rewrite rules for fixpoints

e pushing filters?
Oriter (H(X = 9)) = 1(X = titer (7))
e pushing joins?
Yo p(X = @) = p(X = 0)
e pushing antijoins?

wX =)o 9 = u(X = p>9)

14

Rewrite rules

Rewrite rules for fixpoints

e pushing filters?
Otiter (H(X = ©)) = WX = Oirer (¢))
e pushing joins?
Y p(X =) = p(X = =)
e pushing antijoins?
u(X =)b = p(X = o> y)
e pushing anti-projections?

o (WX =) £ (X = 7p ()

14

Rewrite rules

Rewrite rules for fixpoints

e pushing filters?
Oiier (X = 0)) = p(X = Titer ()
e pushing joins?
Yo p(X = ¢) £ p(X = Pag)
e pushing antijoins?
WX =)ot = u(X = oo)
e pushing anti-projections?
o (WX =) £ (X = 7p ()

e combine fixpoints?
?
p(X = Ur)pap(X =pUé)=uX=9yxpUfUk)

14

Rewrite rules

Rewrite rules for fixpoints

e Reverse fixpoints?

14

An example

:L :TGV/:Bus* 70

ii5)

An example

:L :TGV/:Bus* 70

2s (02s=: (TGV/u(X = B2 (AllNodes) U X /:Bus)))

ii5)

An example

:L :TGV/:Bus* 70

2s (02s=: (TGV/u(X = B2 (AllNodes) U X /:Bus)))

Fos (07s—:1 (1(X = :TGV/32 (AllNodes) U X /:Bus)))

ii5)

An example

:L :TGV/:Bus* 70

2s (02s=: (TGV/u(X = B2 (AllNodes) U X /:Bus)))
Frs (02—t ((X = TGV/52 (AliNodes) U X /:Bus)))

75 (02s=:1 (u(X = : TGV U X/:Bus)))

ii5)

An example

:L :TGV/:Bus* 70

2s (02s=: (TGV/u(X = B2 (AllNodes) U X /:Bus)))
725 (025—st (W(X = TGV/B2 (AllNodes) U X /:Bus)))
75 (02s=:1 (u(X = : TGV U X/:Bus)))

s (/L(X = O07s=:L (:TGV) U X/:BUS))

ii5)

An example

:L :TGV/:Bus* 70

725 (02— (TGV/u(X = B2 (AliNodes) U X /:Bus)))
#rs (02—t (W(X = TGV/B2 (AllNodes) U X /:Bus)))
15 (070t ((X = TGV U X /:Bus)))
T2s ((X = 025=1 ((-TGV) U X/:Bus))

M(X = T7s (U?s::L (TGV)) U X/ZBUS)

ii5)

Other methods of optimization

Datalog?
No combination of fixpoints

Automata based techniques?
Step by Step and no conjunction

(a/b/c)™ wvs ((a/b)/c)" vs ((a/b/c))"

Special joins (RDF-3X ferari)?
Compute efficiently A< (B)* but same problem...

Waveguide
Efficient on a single RPQ but cannot optimize across RPQ.

16

Theoretical framework

Decomposed fixpoints
Given a fixpoint (X = ¢) it can be rewritten to

(X = @con U @rec) with:

® PDcon ConStant, Ie [[QOCO,,]] V[X/@] = [[SDCOI'IH V[X/S]

® ©rec recursive, i.e. [pcon] VIX/0] = .

17

Linearity of fixpoints
Given a fixpoint u(X = ¢):

[[SDHV[X/S] = [[‘P]]V[X/(Z)] U [[(p]]V[X/{W}]
weS

18

Linearity of fixpoints
Given a fixpoint u(X = ¢):

[[SDHV[X/S] = [[‘P]]V[X/(Z)] U [[(p]]V[X/{W}]
weS

Lineage
For each m € U1\ U; we can find w € U; such that m € f(w)

with f(w) = [¢] VIX/{w}] \ [¢] VIX/0]:

Wy

0

/W
\uf

U
18

LIL/PAR —— LIL/SAC —— LIL/LYO —— LIL/GRE

PAR/SAC —— PAR/LYS — PAR/GRE

/A

SAC/LYS — SAC/GRE
/ / TH=uwX=TUX/T)

T

from | to
Lille | Paris
Paris | Saclay

LYS/GRE

Saclay | Lyon

Lyon | Grenoble 19

How the elements of f(w) depend on w?

20

How the elements of f(w) depend on w?

Stabilizers
For each w, m € f(w) and c € stab(¢): m(c) = w(c).

20

How the elements of f(w) depend on w?

Stabilizers
For each w, m € f(w) and c € stab(¢): m(c) = w(c).

7

@/W
\u f

u

T itter (WX = ©)) = (X = fitter (¢))

when filter operates on stab(y)

20

LIL/PAR —— LIL/SAC —— LIL/LYO —— LIL/GRE

PAR/SAC — PAR/LYS — PAR/GRE

/A

SAC/LYS — SAC/GRE

LYS/GRE

Otrom=Litle (TT) = (X = ofom=tite (T)UX/T)

to—Lile (TT) # (X = Ofom=tie (T)UX/T)
21

How the elements of f(w) depend on w?

Added columns
For each ¢ € add(y): f(w)<|c — v| = f(wix|c — v|)

w3

Wy

F -
_ W P
\ s

0

w
/
\ ¢
u 1
P p(X = @) = (X =payp)
when sort(v)) C stab(y)

and sort(¢)) C add(p) U sort(u(X = ¢))
)

Rewrite rules

Rewrite rules for fixpoints

e pushing filters
,

Titter (X = ©)) = (X = Titeer (¢))

e pushing joins

?
Prap(X =) = p(X = Prayp)
e pushing antijoins

?
wX =)o = p(X =)
e pushing anti-projections

o (WX =) £ (X = 7p ()

e combine fixpoints
?
X =t Ur)pau(X =pU&) =X =1yxpUfUr)

23

Streams

Streams are one-way communication channels

24

Streams are one-way communication channels

(&— ®

24

Streams are one-way communication channels

0 0. 00
G— 0000 (®

24

Streams are one-way communication channels

0 0. 00
— 0 0 0 0—®

24

Streams are one-way communication channels

end

0 0.0_0
00 0 0—{®

24

Streams: a a good abstraction for iterative distributed execu-

tion

e no order of messages

25

Streams: a a good abstraction for iterative distributed execu-

tion

e no order of messages

e not necessarily a DAG

25

Streams: a a good abstraction for iterative distributed execu-

tion

e no order of messages
e not necessarily a DAG

e fast single machine communication and slow inter-machine

communication

25

Streams: a a good abstraction for iterative distributed execu-

tion

no order of messages
e not necessarily a DAG

fast single machine communication and slow inter-machine

communication

partial typing of message content (for fast serialization)

25

Execution of p-algebra terms with streams

start ——>

@Y ————> out

26

Streams for (X = X/TUT)

— > X/T

\ 4
-

» out

27

Benchmarking

102 | |
» 10! g —e— Prototype
: i —e— Ramsdell
= 100 | -— DLV
/ Vlog
101+ —e— Postgres
—e— MariaDB
1072 Ll Ll RN (RN

102 103 10% 10° 100 107 108
Number of nodes

Figure 4: ?a (P1+)/(P5+) ?b.

28

10° | |
0 10! —e— Prototype
2 i —o— Ramsdell
= 10° -— DLV
Vlog
101 —e— Postgres
—o— MariaDB
1072)

102 103 10* 10° 106 107 108
Number of nodes

Figure 5: ?a (P1+)/P2 ?b.7b P3+ 1?c.
29

10° | |
0 10! —e— Prototype
QE) i —o— Ramsdell
= 100 | —-— DLV
Vlog
10- } —e— Postgres
/ —o— MariaDB
1072 Ll Ll Ll | Ll

102 103 10* 10° 106 107 108
Number of nodes

Figure 6: NO P1/(P2+) ?a
30

0 10* g —e— Prototype
2 i —o— Ramsdell
= 100 | —-— DLV
p Vlog
101 —e— Postgres
' —o— MariaDB
1072 il | | T |

102 103 10* 10° 106 107 108

Number of nodes

Figure 7: ?7a (P4+)/(P5+)/(P3+) 7?b

Why recursive queries?

e Evaluate property paths
e Evaluate general recursive queries

e OBDA without rewriting nor materialization

32

What am | doing now?

Constraints

Database

Views

33

34

[§ Edgar F Codd.
A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377-387, 1970.

Semantics

Semantics

[prapa]y =
[prUpa]y =
[e1>02]y, =
[7a ()] =

X1y, =
8201y =

lofireer (‘P)HV =
[W(X =¢)y =

{my+ma [mi € [paly Ama €]y Amy~ ma}
[ealy U le2]y
{m e [ei]y [Vm' € [@2]y —(m" ~ m)}
{{c—>v€m\c#a} ‘ me[[cp]]v}
V(X)
{co>vem|c#blU{b—v|a—vem}

m e [l }
{m| me [¢], A filter(m) =T}
Xlvix/uep Yo =0, U= Ui Ulelyx/u;

	The relational algebra
	Recursive relational algebra
	Performance of recursive queries
	Theoretical framework
	Streams
	Benchmarking
	Appendix
	Semantics

