
On the optimization of recursive relational

queries.

DIG Seminar

Louis Jachiet

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

1

The relational algebra

Generalities

The relational algebra [Cod70]

• a set of base relations

the tables in SQL

• combined through operators

union, projection, filter, join, etc.

• operates on named tuples

2

Syntax

ϕ ::= term

| X relation variable

| |c → v | constant

| ∅ empty set

| ϕ1 ∪ ϕ2 union

| ϕ1 ./ ϕ2 join

| ϕ1 . ϕ2 antijoin

| σfilter (ϕ) filter

| ρb
a (ϕ) rename

| πP (ϕ) projection

Figure 1: Syntax of the relational algebra

3

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

πto (T)

to

Paris

Saclay

Grenoble

4

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

ρstep
to (T)

from step

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

4

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

ρstep
to (T) ./ ρstep

from (T)

from step to

Lille Paris Saclay

Lille Paris Grenoble

Lille Saclay Grenoble

Paris Saclay Grenoble

4

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

σfrom=Lille (T)

from to

Lille Paris

Lille Saclay

4

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

σfrom=Paris (T) ∪ σfrom=Lille (T)

from to

Lille Paris

Lille Saclay

Paris Saclay

Paris Grenoble

4

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

πto (T) . σfrom=Lille (T)

to

Grenoble

4

Recursive relational algebra

Syntax

ϕ ::= term

| X relation variable

| |c → v | constant

| ∅ empty set

| ϕ1 ∪ ϕ2 union

| ϕ1 ./ ϕ2 join

| ϕ1 . ϕ2 antijoin

| σfilter (ϕ) filtering

| ρb
a (ϕ) rename

| πc1,...,cn (ϕ) projection

Figure 2: Syntax of our relational algebra
5

Syntax

ϕ ::= term

| X relation variable

| |c → v | constant

| ∅ empty set

| ϕ1 ∪ ϕ2 union

| ϕ1 ./ ϕ2 join

| ϕ1 . ϕ2 antijoin

| σfilter (ϕ) filtering

| ρb
a (ϕ) rename

| π̃c (ϕ) anti-projection

Figure 2: Syntax of our relational algebra
5

Syntax

ϕ ::= term

| X relation variable

| |c → v | constant

| ∅ empty set

| ϕ1 ∪ ϕ2 union

| ϕ1 ./ ϕ2 join

| ϕ1 . ϕ2 antijoin

| σfilter (ϕ) filtering

| ρb
a (ϕ) rename

| π̃c (ϕ) anti-projection

| βb
a (ϕ) duplication

Figure 2: Syntax of our relational algebra
5

Syntax

ϕ ::= term

| X relation variable

| |c → v | constant

| ∅ empty set

| ϕ1 ∪ ϕ2 union

| ϕ1 ./ ϕ2 join

| ϕ1 . ϕ2 antijoin

| σfilter (ϕ) filtering

| ρb
a (ϕ) rename

| π̃c (ϕ) anti-projection

| βb
a (ϕ) duplication

| µ(X = ϕ) fixpoint

Figure 2: Syntax of our relational algebra
5

Differences

Anti-projection
Remove a column

π̃d1 (. . . π̃dk
(ϕ) . . .) = πc1...cn (ϕ)

Duplication
Copy a column

βb
a (ϕ) = σa=b

(
ϕ ./ ρb

a (ϕ)
)

Fixpoints
Compute the least fixpoint of a function S → ϕ[X/S]

Jµ(X = ϕ)KV = limn→∞Un U0 = ∅
Un+1 = Un ∪ JϕKV [X/Un]

6

Differences

Anti-projection
Remove a column

π̃d1 (. . . π̃dk
(ϕ) . . .) = πc1...cn (ϕ)

Duplication
Copy a column

βb
a (ϕ) = σa=b

(
ϕ ./ ρb

a (ϕ)
)

Fixpoints
Compute the least fixpoint of a function S → ϕ[X/S]

Jµ(X = ϕ)KV = limn→∞Un U0 = ∅
Un+1 = Un ∪ JϕKV [X/Un]

6

Differences

Anti-projection
Remove a column

π̃d1 (. . . π̃dk
(ϕ) . . .) = πc1...cn (ϕ)

Duplication
Copy a column

βb
a (ϕ) = σa=b

(
ϕ ./ ρb

a (ϕ)
)

Fixpoints
Compute the least fixpoint of a function S → ϕ[X/S]

Jµ(X = ϕ)KV = limn→∞Un U0 = ∅
Un+1 = Un ∪ JϕKV [X/Un]

6

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

π̃from (T)

to

Paris

Saclay

Grenoble

7

Examples

T

from to

Lille Paris

Lille Saclay

Paris Grenoble

Paris Saclay

Saclay Grenoble

βto
from (π̃to (T))

from to

Lille Lille

Saclay Saclay

Paris Paris

7

Examples

T+ = µ(X = T ∪ T/X)

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

Lille Saclay

Paris Lyon

Saclay Grenoble

Lille Lyon

Paris Grenoble

Lille Grenoble

8

Examples

T+ = µ(X = T ∪ π̃s (ρs
to (X) ./ ρs

from (T)))

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

Lille Saclay

Paris Lyon

Saclay Grenoble

Lille Lyon

Paris Grenoble

Lille Grenoble

8

Examples

T+ = µ(X = T ∪ π̃s (ρs
to (X) ./ ρs

from (T)))

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

Lille Saclay

Paris Lyon

Saclay Grenoble

Lille Lyon

Paris Grenoble

Lille Grenoble

8

Examples

T+ = µ(X = T ∪ π̃s (ρs
to (X) ./ ρs

from (T)))

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

Lille Saclay

Paris Lyon

Saclay Grenoble

Lille Lyon

Paris Grenoble

Lille Grenoble

8

Examples

T+ = µ(X = T ∪ π̃s (ρs
to (X) ./ ρs

from (T)))

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble

Lille Saclay

Paris Lyon

Saclay Grenoble

Lille Lyon

Paris Grenoble

Lille Grenoble
8

Limitations

Limitations on fixpoints

• recursive variables must appear positively

No µ(X = R . X)

• no join between recursive terms

No µ(X = X on X)

• no mutually recursive fixpoints

No µ(X = µ(Y = X ∪ Y))

→ corresponds to linear datalog!

→ superset of WITH RECURSIVE in SQL!

9

Limitations

Limitations on fixpoints

• recursive variables must appear positively

No µ(X = R . X)

• no join between recursive terms

No µ(X = X on X)

• no mutually recursive fixpoints

No µ(X = µ(Y = X ∪ Y))

→ corresponds to linear datalog!

→ superset of WITH RECURSIVE in SQL!

9

Limitations

Limitations on fixpoints

• recursive variables must appear positively

No µ(X = R . X)

• no join between recursive terms

No µ(X = X on X)

• no mutually recursive fixpoints

No µ(X = µ(Y = X ∪ Y))

→ corresponds to linear datalog!

→ superset of WITH RECURSIVE in SQL!

9

Limitations

Limitations on fixpoints

• recursive variables must appear positively

No µ(X = R . X)

• no join between recursive terms

No µ(X = X on X)

• no mutually recursive fixpoints

No µ(X = µ(Y = X ∪ Y))

→ corresponds to linear datalog!

→ superset of WITH RECURSIVE in SQL!
9

Performance of recursive queries

An example

:Lille :TGV/:Bus∗ ?o

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:Lille :TGV/:Bus∗ ?o

L

10

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ :Bus/X)))

11

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ :Bus/X)))

11

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ :Bus/X)))

11

Benchmarking

102 103 104 105 106
10−2

10−1

100

101

number of nodes n

T
im

e
(s

)

Postgres
SQLite

Virtuoso
ARQ1

ARQ2

DLV1

DLV2

Ramsdell2
Ramsdell1

Vlog1
Vlog2

Figure 3: Time for : N :TGV/:Bus∗ ?o on n nodes

12

Benchmarking

Logicblox

• Materialization of all intermediate predicate

• ... except for “on demand” predicate

• therefore manual optimization

13

Rewrite rules

Rewrite rules for fixpoints

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints?

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

14

Rewrite rules

Rewrite rules for fixpoints

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints?

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

14

Rewrite rules

Rewrite rules for fixpoints

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints?

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

14

Rewrite rules

Rewrite rules for fixpoints

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints?

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

14

Rewrite rules

Rewrite rules for fixpoints

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints?

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

14

Rewrite rules

Rewrite rules for fixpoints

• Reverse fixpoints?

• pushing filters?

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins?

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins?

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections?

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

14

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

An example

:L :TGV/:Bus∗ ?o

π̃?s (σ?s=:L (:TGV/µ(X = βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV/βo
s (AllNodes) ∪ X/:Bus)))

π̃?s (σ?s=:L (µ(X = :TGV ∪ X/:Bus)))

π̃?s (µ(X = σ?s=:L (:TGV) ∪ X/:Bus))

µ(X = π̃?s (σ?s=:L (:TGV)) ∪ X/:Bus)

15

Other methods of optimization

Datalog?
No combination of fixpoints

Automata based techniques?
Step by Step and no conjunction

(a/b/c)+ vs ((a/b)/c)+ vs ((a/b/c))+

Special joins (RDF-3X ferari)?
Compute efficiently A ./ (B)∗ but same problem...

Waveguide
Efficient on a single RPQ but cannot optimize across RPQ.

16

Theoretical framework

Decomposition

Decomposed fixpoints
Given a fixpoint µ(X = ϕ) it can be rewritten to

µ(X = ϕcon ∪ ϕrec) with:

• ϕcon constant, i.e. JϕconKV [X/∅] = JϕconKV [X/S]

• ϕrec recursive, i.e. JϕconKV [X/∅] = ∅

17

Lineage

Linearity of fixpoints
Given a fixpoint µ(X = ϕ):

JϕKV [X/S] = JϕKV [X/∅]
⋃

w∈S

JϕKV [X/{w}]

Lineage
For each m ∈ Ui+1 \ Ui we can find w ∈ Ui such that m ∈ f (w)

with f (w) = JϕKV [X/{w}] \ JϕKV [X/∅].

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

18

Lineage

Linearity of fixpoints
Given a fixpoint µ(X = ϕ):

JϕKV [X/S] = JϕKV [X/∅]
⋃

w∈S

JϕKV [X/{w}]

Lineage
For each m ∈ Ui+1 \ Ui we can find w ∈ Ui such that m ∈ f (w)

with f (w) = JϕKV [X/{w}] \ JϕKV [X/∅].

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

18

Examples

∅

LYS/GRE

SAC/LYS SAC/GRE

PAR/SAC PAR/LYS PAR/GRE

LIL/PAR LIL/SAC LIL/LYO LIL/GRE

T+ = µ(X = T ∪ X/T)

T

from to

Lille Paris

Paris Saclay

Saclay Lyon

Lyon Grenoble 19

Invariant

How the elements of f (w) depend on w?

Stabilizers
For each w , m ∈ f (w) and c ∈ stab(ϕ): m(c) = w(c).

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

σfilter (µ(X = ϕ)) = µ(X = σfilter (ϕ))

when filter operates on stab(ϕ)

20

Invariant

How the elements of f (w) depend on w?

Stabilizers
For each w , m ∈ f (w) and c ∈ stab(ϕ): m(c) = w(c).

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

σfilter (µ(X = ϕ)) = µ(X = σfilter (ϕ))

when filter operates on stab(ϕ)

20

Invariant

How the elements of f (w) depend on w?

Stabilizers
For each w , m ∈ f (w) and c ∈ stab(ϕ): m(c) = w(c).

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

σfilter (µ(X = ϕ)) = µ(X = σfilter (ϕ))

when filter operates on stab(ϕ)

20

Examples

∅

LYS/GRE

SAC/LYS SAC/GRE

PAR/SAC PAR/LYS PAR/GRE

LIL/PAR LIL/SAC LIL/LYO LIL/GRE

σfrom=Lille

(
T+
)

= µ(X = σfrom=Lille (T) ∪ X/T)

σto=Lille

(
T+
)
6= µ(X = σfrom=Lille (T) ∪ X/T)

21

Invariant

How the elements of f (w) depend on w?

Added columns
For each c ∈ add(ϕ): f (w) ./ |c → v | = f (w ./ |c → v |)

∅

u u1
f

w w1

w2

f

w3 w4
f

f
f

ψ ./ µ(X = ϕ) = µ(X = ψ ./ ϕ)

when sort(ψ) ⊆ stab(ϕ)

and sort(ψ) ⊆ add(ϕ) ∪ sort(µ(X = ϕ))

22

Rewrite rules

Rewrite rules for fixpoints

• pushing filters

σfilter (µ(X = ϕ))
?
= µ(X = σfilter (ϕ))

• pushing joins

ψ ./ µ(X = ϕ)
?
= µ(X = ψ ./ ϕ)

• pushing antijoins

µ(X = ϕ) . ψ
?
= µ(X = ϕ . ψ)

• pushing anti-projections

π̃p (µ(X = ϕ))
?
= µ(X = π̃p (ϕ))

• combine fixpoints

µ(X = ψ ∪ κ) ./ µ(X = ϕ ∪ ξ)
?
= µ(X = ψ ./ ϕ ∪ ξ ∪ κ)

23

Streams

Streams

Streams are one-way communication channels

RS

end

24

Streams

Streams are one-way communication channels

RS

end

24

Streams

Streams are one-way communication channels

RS

end

24

Streams

Streams are one-way communication channels

RS

end

24

Streams

Streams are one-way communication channels

RS

end

24

Streams: a a good abstraction for iterative distributed execu-

tion

• no order of messages

• not necessarily a DAG

• fast single machine communication and slow inter-machine

communication

• partial typing of message content (for fast serialization)

25

Streams: a a good abstraction for iterative distributed execu-

tion

• no order of messages

• not necessarily a DAG

• fast single machine communication and slow inter-machine

communication

• partial typing of message content (for fast serialization)

25

Streams: a a good abstraction for iterative distributed execu-

tion

• no order of messages

• not necessarily a DAG

• fast single machine communication and slow inter-machine

communication

• partial typing of message content (for fast serialization)

25

Streams: a a good abstraction for iterative distributed execu-

tion

• no order of messages

• not necessarily a DAG

• fast single machine communication and slow inter-machine

communication

• partial typing of message content (for fast serialization)

25

Execution of µ-algebra terms with streams

start

Xn

. . .
X1

I2

I1

ϕ out

26

Streams

Streams for µ(X = X/T ∪ T)

X/T
T

X

∪∪ out

27

Benchmarking

Q2

102 103 104 105 106 107 108
10−2

10−1

100

101

102

Number of nodes

T
im

e
(s

)

Prototype
Ramsdell

DLV
Vlog

Postgres
MariaDB

Figure 4: ?a (P1+)/(P5+) ?b.
28

Q3

102 103 104 105 106 107 108
10−2

10−1

100

101

102

Number of nodes

T
im

e
(s

)

Prototype
Ramsdell

DLV
Vlog

Postgres
MariaDB

Figure 5: ?a (P1+)/P2 ?b . ?b P3 + ?c .
29

Q7

102 103 104 105 106 107 108
10−2

10−1

100

101

102

Number of nodes

T
im

e
(s

)

Prototype
Ramsdell

DLV
Vlog

Postgres
MariaDB

Figure 6: N0 P1/(P2+) ?a
30

Q10

102 103 104 105 106 107 108
10−2

10−1

100

101

102

Number of nodes

T
im

e
(s

)

Prototype
Ramsdell

DLV
Vlog

Postgres
MariaDB

Figure 7: ?a (P4+)/(P5+)/(P3+) ?b
31

Why recursive queries?

• Evaluate property paths

• Evaluate general recursive queries

• OBDA without rewriting nor materialization

32

What am I doing now?

33

Questions?

34

Edgar F Codd.

A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

Semantics

Semantics

Jϕ1 ./ ϕ2KV = {m1 + m2 | m1 ∈ Jϕ1KV ∧m2 ∈ Jϕ2KV ∧m1 ∼ m2}
Jϕ1 ∪ ϕ2KV = Jϕ1KV ∪ Jϕ2KV

Jϕ1 . ϕ2KV = {m ∈ Jϕ1KV | ∀m′ ∈ Jϕ2KV ¬(m′ ∼ m)}
Jπ̃a (ϕ)KV =

{
{c → v ∈ m | c 6= a}

∣∣∣ m ∈ JϕKV

}
JX KV = V (X)

Jβb
a (ϕ)KV =

{
{c → v ∈ m | c 6= b} ∪ {b → v | a→ v ∈ m}∣∣∣ m ∈ JϕKV

}
Jσfilter (ϕ)KV = {m | m ∈ JϕKV ∧ filter(m) = >}

Jµ(X = ϕ)KV = JX KV [X/U∞], U0 = ∅, Ui+1 = Ui ∪ JϕKV [X/Ui]

	The relational algebra
	Recursive relational algebra
	Performance of recursive queries
	Theoretical framework
	Streams
	Benchmarking
	Appendix
	Semantics

