Explainable Artificial Intelligence

Student: Nedeljko Radulović
Supervisors: Mr. Albert Bifet and Mr. Fabian Suchanek
Introduction
Research avenues

- Explainability
- Integration of first-order logic and Deep Learning
- Detecting vandalism in Knowledge Bases based on correction history
Machine Learning and Deep Learning models sometimes exceed the human performance in decision making. Major drawback is lack of transparency and interpretability. Bringing transparency to the ML models is a crucial step towards the Explainable Artificial Intelligence and its use in very sensitive fields.
State of the art

- Explainable Artificial Intelligence is the topic of great interest in research in recent years

- Interpretability:
 - Using visualization techniques (mostly used in image and text classification)

- Explainability:
 - Computing influence from inputs to outputs
 - Approximating complex model with a simpler model locally (LIME)
State of the art

- Attempts to combine Machine Learning and knowledge from Knowledge Bases
 - Reasoning over knowledge base embeddings to provide explainable recommendations
Explainability
Explainability

Input:
- Headache
- No fatigue
- Sneeze
- Weight
- Age

Classifier

Flu
Explainability

Input:
- Headache
- No fatigue
- Sneeze
- Weight
- Age

Classifier

Flu

Explanation

- Sneeze
- Headache
- No fatigue
LIME1 - Explaining the predictions of any classifier

Explaining predictions in streaming setting

- Idea behind LIME is to use simple models to explain predictions
- Use already interpretable models - Decision trees
- Build Decision tree in the neighbourhood of the example
- Use the paths to leaves to generate explanations
- Use Hoeffding Adaptive Tree in streaming setting and explain how predictions evolve based on changes in the tree
Integration of First-order logic and Deep Learning
Integration of FOL and Deep Learning

- Ultimate goal of Artificial Intelligence: enable machines to think as humans
- Humans possess some knowledge and are able to reason on top of it
Integration of FOL and Deep Learning

- There are several questions that we want to answer through this research:
 - How can KBs be used to inject meaning into complex and uninterpretable models, especially deep neural networks?
 - How can KBs be used more effectively as (additional) input for deep learning models?
 - How can we adjust all these improvements for streaming settings?
Main Idea

- Explore symbiosis of crisp knowledge in Knowledge Bases and sub-symbolic knowledge in Deep Neural Networks
- Approaches that combined crisp logic and soft reasoning:
 - Fuzzy logic
 - Markov logic
 - Probabilistic soft logic
Fuzzy logic - Fuzzy set
Fuzzy logic - Fuzzy relation and Fuzzy graph

<table>
<thead>
<tr>
<th>close to</th>
<th>Chicago</th>
<th>Sydney</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>London</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Beijing</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

![Fuzzy graph]

N - 0.9, 0.1
L - 0.5, 0.3
B - 0.2, 0.7
C
S
Markov Logic and Probabilistic Soft Logic

- First-order logic as template language
- Example:
 - Predicates: friend, spouse, votesFor
 - Rules:
 \[
 \text{friend}(Bob, Ann) \land \text{votesFor}(Ann, P) \rightarrow \text{votesFor}(Bob, P) \\
 \text{spouse}(Bob, Ann) \land \text{votesFor}(Ann, P) \rightarrow \text{votesFor}(Bob, P)
 \]
Markov Logic

- Add weights to first-order logic rules:
 \[\text{friend}(Bob, Ann) \land \text{votesFor}(Ann, P) \rightarrow \text{votesFor}(Bob, P) : [3] \]
 \[\text{spouse}(Bob, Ann) \land \text{votesFor}(Ann, P) \rightarrow \text{votesFor}(Bob, P) : [8] \]

- **Interpretation**: Every atom (\text{friend}(Bob, Ann), \text{votesFor}(Ann, P), \text{votesFor}(Bob, P), \text{spouse}(Bob, Ann)) is considered as random variable which can be: True or False

- To calculate probability of an interpretation:
 \[
P(I) = \frac{\exp(\sum_{r \in I} \text{weight})}{\sum_{all \ I} \exp(\sum_{r \in I} \text{weight})}
\]
Probabilistic Soft Logic

- Add weights to first-order logic rules:
 \[
 \text{friend}(Bob, Ann) \land \text{votesFor}(Ann,P) \rightarrow \text{votesFor}(Bob, P) : [3]
 \[
 \text{spouse}(Bob, Ann) \land \text{votesFor}(Ann,P) \rightarrow \text{votesFor}(Bob, P) : [8]
 \]

- **Interpretation**: Every atom (\text{friend}(Bob, Ann), \text{votesFor}(Ann,P), \text{votesFor}(Bob, P), \text{spouse}(Bob, Ann)) is mapped to soft truth values in range [0, 1]

- For every rule we compute distance to satisfaction:
 \[
 d_r(I) = \max\{0, I(r_{\text{body}}) - I(r_{\text{head}})\}
 \]

- Probability density function over \(I\):
 \[
 f(I) = \frac{1}{Z} \exp\left[- \sum_{r \in R} \text{weight} \left(d_r(I)\right)\right],
 Z = \int \exp\left[- \sum_{i} \text{weight} \left(d_r(I)\right)\right] \]
Detecting vandalism in Knowledge bases based on correction history
Detecting vandalism in KBs based on correction history

- Collaboration with Thomas Pellissier Tanon
- Based on a paper: “Learning How to Correct a Knowledge Base from Edit History”
- Wikidata project
- Wikidata is a collaborative KB with more than 18000 active contributors
- Huge edit history: over 700 millions edits
- Method uses previous users corrections to infer possible new ones
Detecting vandalism in KBs based on correction history

- Prospective work in this project:
 - Release history querying system for external use
 - Try to use external knowledge (Wikipedia articles) to learn to fix more constraints violations
 - Use Machine Learning to suggest new updates
 - Use data stream mining techniques
Thank you!

Questions, ideas... ?
Research avenues

- Explainability
- Integration of first-order logic and Deep Learning
- Detecting vandalism in Knowledge Bases based on correction history