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➢ Motivation

➢ Case study: Personalized Maneuver Prediction at Intersections

➢ Handling of Heterogeneous Concept Drift
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Motivation

➢ Personalization
− adaptation to user habits / environments

➢ Lifelong-learning
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➢ Concept drift

➢ Cooperation between average and personalized model

Challenges - Personalized online learning



Change is everywhere
➢ Coping with „arbitrary“ changes



Change of taste / interest



Seasonal changes



Change of context



Rialto task: Change of lighting conditions



Setting
➢ Supervised stream classification
− Predict for an incoming stream of features x1, … , xj, xi ℝ

n

the corresponding labels y1, … yj, yi ∈ {1,… , c}

➢ On-line learning scheme
− After each touple xi, yi generate a newmodel hi to predict the

next incoming example
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Setting
➢ Supervised stream classification
− Predict for an incoming stream of features x1, … , xj, xi ℝ

n

the corresponding labels y1, … yj, yi ∈ {1,… , c}

➢ On-line learning scheme
− After each touple xi, yi generate a newmodel hi to predict the

next incoming example
Preconditions for application:
− Obtainable labels in retrospective
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Related work
➢ Dynamic sliding windows techniques
− PAW Bifet et al. “Efficient Data Stream Classification Via Probabilistic Adaptive Windows“, ACM 2013

➢ Ensemble methods with various weighting schemes
− LVGB Bifet et al. “Leveraging Bagging for Evolving Data Streams“, ECML-PKDD 2010

− Learn++.NSE Elwell et al. “Incremental Learning in Non-Stationary Environments“, IEEE-TNN 2011

− DACC Jaber et  al. “Online Learning: Searching for the Best Forgetting Strategy Under Concept Drift“, ICONIP-2013
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➢ Drawbacks:
− Target specific drift types

− Require hyperparameter setting according to the expected drift

− Discard former knowledge that still may be valuable
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Moving squares dataset
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Adaptive compression

Long Term Memory

cleaning

class-wise clustering

STM-consistent data
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Moving squares by SAM



Results: Error rates / ranks



SAM achieves best results



SAM is robust



Reasons for robustness
➢ Adaptation guided through error minimization
− Dynamic size of the STM

− Model selection for prediction

− Reduction of hyperparameters

➢ Consistency between STM and LTM

➢ LTM acts as safety net



Q & A


