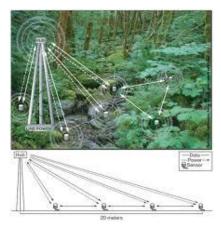


Institut Mines-Telecom

Topology of wireless networks


L. Decreusefond

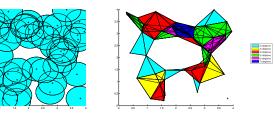
Also starring (by chronological order of appearance)

P. Martins, E. Ferraz, F. Yan, A. Vergne, I. Flint, N.K. Le, A. Vasseur, (T. Bonis, B. Robert)

GANDI: Graphs ANalysis for Data and Information

Applications : intelligent vehicle, agriculture, house,

. . .


Algebraic topology

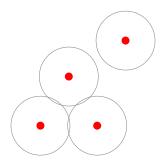
Poisson homologies

Persistence

4/4February, 2017 Institut Mines-Telecom

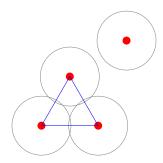
Topology of wireless networks

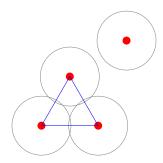
Mathematical framework

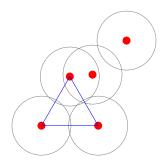

Geometry leads to a combinatorial object Combinatorial object is equipped with a Linear algebra structure

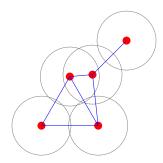
Coverage and connectivity reduce to compute the rank of a matrix

Localisation of hole: reduces to the computation of a basis of a vector matrix, obtained by matrix reduction (as in Gauss algorithm).

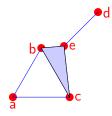








-



Cech complex

$$\begin{array}{l} \mathsf{Vertices}: \ \{ \ \mathsf{a}, \ \mathsf{b}, \ \mathsf{c}, \ \mathsf{d}, \ \mathsf{e} \ \} = \mathcal{C}_0 \\ \\ \mathsf{Edges}: \ \{\mathsf{ab}, \ \mathsf{bc}, \ \mathsf{ca}, \ \mathsf{be}, \ \mathsf{ec}, \ \mathsf{ed} \ \} = \mathcal{C}_1 \\ \\ \\ \mathsf{Triangles}: \ \{\mathsf{bec}\} = \mathcal{C}_2 \\ \\ \\ \\ \\ \mathsf{Tetrahedron}: \ \emptyset = \mathcal{C}_3 \end{array}$$

_

A simplicial complex = hypergraph = boolean monotone function

Hypergraphs

A simplicial complex = hypergraph = boolean monotone function

The Embedded Homology of Hypergraphs and Applications Stephane Bressan, Shiquan Ren, Jie Wu arXiv:1610.00890

Cech complex

k-simplices

$$\mathcal{C}_k = \bigcup \{ [x_0, \cdots, x_{k-1}], \ x_i \in \omega, \cap_{i=0}^k B(x_i, \epsilon) \neq \emptyset \}$$

Nerve theorem

We can read some topological properties of $\bigcup_{x \in \omega} B(x, \epsilon)$ on $(C_k, k \ge 0)$

- Same nb of connected components
- Same nb of holes
- Same Euler characteristic

Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$

 $[v_0, \cdots, v_{k-1}] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$

Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$

 $[v_0, \cdots, v_{k-1}] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$

Example

$$\partial_2(bec) = ec - bc + be$$

Definition

$$\partial_k : C_k \longrightarrow C_{k-1}$$

 $[v_0, \cdots, v_{k-1}] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$

Example

$$\partial_2(bec) = ec - bc + be$$

 $\partial_1\partial_2(bec) = c - e - (c - b) + e - b = 0$

Theorem

$$\partial_k \circ \partial_{k+1} = 0$$

Consequence

 ${\sf Im}\,\,\partial_{k+1}\subset{\sf ker}\partial_k$

Definition

$$H_k = \ker \partial_k / \operatorname{Im} \partial_{k+1}$$
 and $\beta_k = \dim \ker \partial_k - \operatorname{range} \partial_{k+1}$

Interpretation : The magic

- β_0 : number of connected components
- β_1 : number of holes
- β_2 : number of voids
- to be continued

Example

$$\partial_0 \equiv 0, \ \partial_1 = \left(egin{array}{ccccc} -1 & 0 & 1 & -1 & 0 & 0 \ 1 & -1 & 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{array}
ight)$$

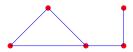
Nb of connected components

dim ker $\partial_0 = 5$, range $\partial_1 = 4$ hence $\beta_0 = 1$

$$\partial_2 = \begin{pmatrix} 0\\ -1\\ 0\\ 1\\ 1\\ 0 \end{pmatrix}$$

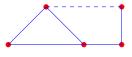
Nb of holes

dim ker
$$\partial_1 = 2$$
, range $\partial_2 = 1$ hence $\beta_1 = 1$


Polygons=cycles

$\beta_1 = \text{Nb of independent polygons} - \text{Nb of independent triangles.}$

Polygons=cycles


 $\beta_1 = \text{ Nb of independent polygons} - \text{ Nb of independent triangles.}$

Polygons=cycles

 $\beta_1 =$ Nb of independent polygons – Nb of independent triangles.

$$\beta_1 = 2 - 1 = 1.$$

Polygons=cycles

 $\beta_1 =$ Nb of independent polygons – Nb of independent triangles.

$$\beta_1 = 2 - 2 = 0.$$

What is the interpretation of the Betti numbers for hypergraphs or boolean monotone functions $\ensuremath{?}$

What is the interpretation of the Betti numbers for hypergraphs or boolean monotone functions ?

Find the single minimal triangulation = construct the minimum weight basis of H_2

Euler characteristic (S - A + F)

Definition

$$\chi = \sum_{j=0}^d (-1)^j \beta_j$$

Discrete Morse inequality

$$-|\mathcal{C}_{k-1}|+|\mathcal{C}_k|-|\mathcal{C}_{k+1}|\leq \beta_k\leq |\mathcal{C}_k|$$

Euler characteristic (S - A + F)

Definition

$$\chi = \sum_{j=0}^{d} (-1)^{j} \beta_{j} = \sum_{j=0}^{\infty} (-1)^{j} |\mathcal{C}_{j}|$$

Discrete Morse inequality

$$-|\mathcal{C}_{k-1}|+|\mathcal{C}_k|-|\mathcal{C}_{k+1}|\leq \beta_k\leq |\mathcal{C}_k|$$

Alternative complex

Cech complex


$$[v_0,\cdots,v_{k-1}]\in \mathcal{C}_k \iff \cap_{j=0}^k B(x_j,\,\epsilon)\neq \emptyset$$

Rips-Vietoris complex

$$[v_0, \cdots, v_{k-1}] \in \mathcal{R}_k \Longleftrightarrow B(x_j, \epsilon) \cap B(x_l, \epsilon) \neq \emptyset$$

k simplex = clique of k + 1 points

For the I^{∞} distance

RV = Cech

Euclidean norm : false negative

Rips complex may miss some holes

For the I^{∞} distance

RV = Cech

Euclidean norm : false negative

Rips complex may miss some holes <

Cech vs Rips

$$\mathcal{R}_{\epsilon'}(\mathcal{V}) \subset \check{\mathrm{C}}_{\epsilon}(\mathcal{V}) \subset \mathcal{R}_{2\epsilon}(\mathcal{V})$$
 whenever

- Coverage radius R_S
- Communication radius $R_C = \gamma R_S$

 $rac{\epsilon}{\epsilon'} \ge \sqrt{rac{d}{2(d+1)}}$

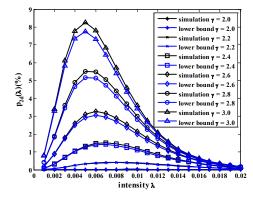
Lower-bound of the error

Theorem ($\sqrt{3} \leq \gamma \leq 2$)

$$p_{2dl}(\lambda) = 2\pi\lambda^2 \int_{R_s}^{R_c/\sqrt{3}} r_0 dr_0 \int_{\varphi_l(r_0)}^{\varphi_u(r_0)} d\varphi_1 \int_{r_0}^{R_1(r_0,\varphi_1)} e^{-\lambda\pi r_0^2}$$
(1)
 $\times e^{-\lambda|S^+(r_0,\varphi_1)|} (1 - e^{-\lambda|S^-(r_0,r_1,\varphi_1)|}) r_1 dr_1$

where

$$\varphi_{l}(r_{0}) = 2 \arccos(R_{c}/(2r_{0})), \ \varphi_{u}(r_{0}) = 2 \arcsin(R_{c}/(2r_{0})) - 2 \arccos(R_{c}/(2r_{0}))$$


$$R_{1}(r_{0},\varphi_{1}) = \min(\sqrt{R_{c}^{2} - r_{0}^{2} \sin^{2}\varphi_{1}} - r_{0}\cos\varphi_{1}$$

$$\sqrt{R_{c}^{2} - r_{0}^{2} \sin^{2}(\varphi_{1} + \varphi_{l}(r_{0}))} + r_{0}\cos(\varphi_{1} + \varphi_{l}(r_{0})))$$

Algebraic topology

Poisson homologies Persistence

Probability to miss a hole using \mathcal{R}_{R_S} and \mathcal{R}_{R_C}

Goals and related works

- Evaluate Betti nb and Euler charac. in some random settings
- ▶ Penrose : Asymptotics of E[|C_k|^m] for Euclidian-RG Rips complex on the whole space (m = 1, 2)
- Kähle : Asymptotics of E[β_k] for Euclidian-RG Cech complex (deterministic number of points) and ER

Goals and related works

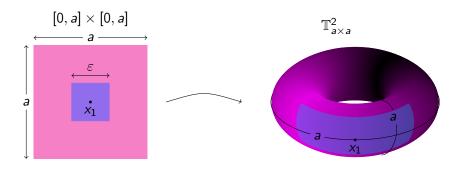
- Evaluate Betti nb and Euler charac. in some random settings
- ▶ Penrose : Asymptotics of E[|C_k|^m] for Euclidian-RG Rips complex on the whole space (m = 1, 2)
- Kähle : Asymptotics of E[β_k] for Euclidian-RG Cech complex (deterministic number of points) and ER

Our results

Exact expressions of all moments of $|C_k|$ and χ in any dimension for RG complex on a torus for the I^∞ norm

Euler characteristic Asymptotic results Robust estimate

Algebraic topology


Poisson homologies Euler characteristic Asymptotic results Robust estimate

Persistence

Euler characteristic Asymptotic results Robust estimate

Random setting

Euler characteristic Asymptotic results Robust estimate

Euler characteristic

- ▶ d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } ⇔ { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } \Leftrightarrow { domain is covered }
- ► d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } \Leftrightarrow { space is covered }

Euler characteristic Asymptotic results Robust estimate

Euler characteristic (D.-Ferraz-Randriam-Vergne)

Euler characteristic

$$\mathsf{E}\left[\chi\right] = -\frac{\lambda e^{-\theta \, a^d}}{\theta} B_d(-\theta \, a^d) \text{ where } \theta = \lambda \left(\frac{2\epsilon}{a}\right)^d$$

where B_d is the *d*-th Bell polynomial

$$B_d(x) = \left\{ \begin{array}{c} d \\ 1 \end{array} \right\} x + \left\{ \begin{array}{c} d \\ 2 \end{array} \right\} x^2 + \ldots + \left\{ \begin{array}{c} d \\ d \end{array} \right\} x^d$$

Euler characteristic Asymptotic results Robust estimate

k simplices

The key remark

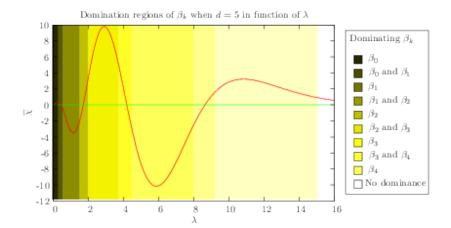
$$|\mathcal{C}_k| = \int h(x_1, \cdots, x_k) d\omega^{(k)}(x_1, \cdots, x_k)$$

where

$$h(x_1, \cdots, x_k) \triangleq \frac{1}{k!} \prod_{i \neq j} \mathbf{1}_{\{\|x_i - x_j\| < \epsilon\}}$$

First moments

$$\mathsf{E}[|\mathcal{C}_k|] = \lambda \mathsf{a}^d \; rac{(k+1)^d}{(k+1)!} \; (\mathsf{a}^d heta)^k$$



28/Aarbruary, 2017 Institut Mines-Telecom

Topology of wireless networks

Euler characteristic Asymptotic results Robust estimate

Dimension 5

Euler characteristic Asymptotic results Robust estimate

Asymptotic results

If $\lambda \to \infty$, $\beta_i(\omega) \xrightarrow{p.s.} \beta_i(\mathbb{T}^d) = \binom{d}{i}$.

Euler characteristic Asymptotic results Robust estimate

Limit theorems

CLT for Euler characteristic

distance
$$_{TV}\left(\frac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}}.$$

Euler characteristic Asymptotic results Robust estimate

Limit theorems

CLT for Euler characteristic

$$\mathsf{distance}_{\mathcal{T}V}\left(\frac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} \cdot$$

Method

- Stein method
- Malliavin calculus for Poisson process

Euler characteristic Asymptotic results Robust estimate

Concentration inequality

- Discrete gradient $D_x F(\omega) = F(\omega \cup \{x\}) F(\omega)$
- $D_x\beta_0 \in \{1, 0, -1, -2, -3\}$

Euler characteristic Asymptotic results Robust estimate

Concentration inequality

- Discrete gradient $D_x F(\omega) = F(\omega \cup \{x\}) F(\omega)$
- $D_x\beta_0 \in \{1, 0, -1, -2, -3\}$

Euler characteristic Asymptotic results Robust estimate

Concentration inequality

• Discrete gradient $D_x F(\omega) = F(\omega \cup \{x\}) - F(\omega)$

•
$$D_x\beta_0 \in \{1, 0, -1, -2, -3\}$$

$c > \mathsf{E}[\beta_0]$

$$egin{split} m{P}(eta_0 \geq c) \leq \exp\left[-rac{c-{\sf E}[eta_0]}{6}\log\left(1+rac{c-{\sf E}[eta_0]}{3\lambda}
ight)
ight] \end{split}$$

Euler characteristic Asymptotic results Robust estimate

Complexity

An important remark

Construction of the complex is exponential (worst case)

Euler characteristic Asymptotic results Robust estimate

Complexity

An important remark

- Construction of the complex is exponential (worst case)
- Computations of Betti numbers is polynomial

Euler characteristic Asymptotic results Robust estimate

Further application (D.-Martins-Vergne)

Green networking

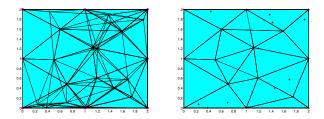
Switch off some sensors keeping the coverage

Height of an edge

Rank of the highest simplex it belongs to

Index of a vertex

Infimum of the height of its adjacent edges


Euler characteristic Asymptotic results Robust estimate

$$D[v_0, v_1, v_2] = D[v_0, v_1, v_3] = D[v_0, v_2, v_3] = D[v_1, v_2, v_3] = 3$$
$$D[v_1, v_3, v_4] = 2$$
$$I[v_0] = I[v_2] = 3 \text{ and } I[v_1] = I[v_3] = I[v_4] = 2$$

Euler characteristic Asymptotic results Robust estimate

Example

• Complexity C bounded by 2^{H}

Euler characteristic Asymptotic results Robust estimate

Complexity

$\theta_n = (r_n/a)^d$

$$\theta'_{k} = \frac{k^{\frac{1+\eta-d}{k-1}}}{n^{\frac{k}{k-1}}}, \ \theta_{k} = \frac{k^{-\frac{1+\eta+d}{k-1}}}{n^{\frac{k}{k-1}}}$$
$$\theta_{n} \in [\theta'_{k}, \theta_{k}] \Longrightarrow C \xrightarrow{n \to \infty} k$$

Euler characteristic Asymptotic results Robust estimate

Other regimes

Theorem (Critical: $n\theta_n \rightarrow 1$)

$$C = O(n^3 \ln n).$$

Euler characteristic Asymptotic results Robust estimate

Other regimes

Theorem (Critical: $n\theta_n \rightarrow 1$)

 $C = O(n^3 \ln n).$

Theorem (Super-critiqual: $n\theta_n \to \infty$)

$$C_n = O(2^n n^3)$$

Algebraic topology

Poisson homologies

Persistence

TELECOM ParisTech

39/Adbruary, 2017 Institut Mines-Telecom

Topology of wireless networks

And then ?

Topological algebra

Algebraic procedure to determine

And then ?

Topological algebra

- Algebraic procedure to determine
- $\beta_0 =$ nb of connected components

And then ?

Topological algebra

- Algebraic procedure to determine
- $\beta_0 =$ nb of connected components
- $\beta_1 = \mathsf{nb} \mathsf{ of holes}$

And then ?

Topological algebra

- Algebraic procedure to determine
- $\beta_0 =$ nb of connected components
- $\beta_1 = \mathsf{nb} \mathsf{ of holes}$

Problem

Continuous structure (the cloud)

And then ?

Topological algebra

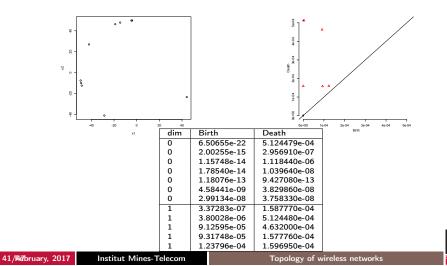
- Algebraic procedure to determine
- $\beta_0 =$ nb of connected components
- $\beta_1 = \mathsf{nb} \mathsf{ of holes}$

Problem

- Continuous structure (the cloud)
- Discrete result (Betti numbers)

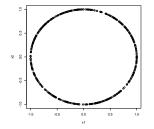
And then ?

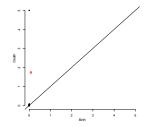
Topological algebra


- Algebraic procedure to determine
- $\beta_0 =$ nb of connected components
- $\beta_1 = \mathsf{nb} \mathsf{of} \mathsf{holes}$

Problem

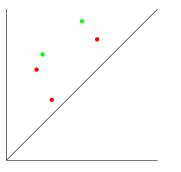
- Continuous structure (the cloud)
- Discrete result (Betti numbers)
- No continuity




Persistence diagram of 10 pts on a circle

TELECOM ParisTech

Persistence diagram of 500 pts on a circle

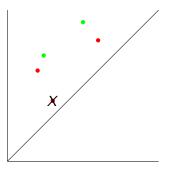

42/Adbruary, 2017 Institut Mines-Telecom

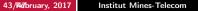
Comparison of persistence diagrams

Definition

If $|D_1| > |D_2|$, $\tilde{D}_1 = D_1 \setminus \{$ the $|D_1| - |D_2|$ pts of D_1 closest to the diagonal $\}$

$$p(D_1, D_2) = \mathfrak{T}_\infty(ilde{D}_1, D_2)$$

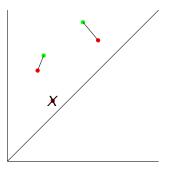



Comparison of persistence diagrams

Definition

If $|D_1| > |D_2|$, $\tilde{D}_1 = D_1 \setminus \{$ the $|D_1| - |D_2|$ pts of D_1 closest to the diagonal $\}$

$$p(D_1, D_2) = \mathfrak{T}_\infty(ilde{D}_1, D_2)$$



Comparison of persistence diagrams

Definition

If $|D_1| > |D_2|$, $\tilde{D}_1 = D_1 \setminus \{$ the $|D_1| - |D_2|$ pts of D_1 closest to the diagonal $\}$

$$p(D_1, D_2) = \mathfrak{T}_\infty(ilde{D}_1, D_2)$$

Costs on configuration space

Definition (Total variation)

$$\mathfrak{C}_{\mathsf{TV}}(\omega,\,\eta) = \sup_{A ext{ compact}} |\omega(A) - \eta(A)| = (ext{ nb of }
eq ext{ pts})$$

where

$$\omega = \sum_{j=1}^{n} \varepsilon_{\mathbf{x}_{i}}, \ \eta = \sum_{k=1}^{m} \varepsilon_{\mathbf{y}_{k}}$$

Costs on configuration space

Definition (Total variation)

$$\mathfrak{C}_{\mathsf{TV}}(\omega,\,\eta) = \sup_{A ext{ compact}} |\omega(A) - \eta(A)| = (ext{ nb of }
eq ext{pts})$$

where

44/Adbruary,

$$\omega = \sum_{j=1}^{n} \varepsilon_{x_i}, \ \eta = \sum_{k=1}^{m} \varepsilon_{y_k}$$

Definition (Quadratic cost)

$$\mathfrak{C}_{2}(\omega, \eta) = \frac{1}{2} \inf \left\{ \int d_{E}(x, y)^{2} d\beta(x, y), \ \beta \in \Sigma_{\omega, \eta} \right\},$$

$$= \begin{cases} +\infty & \text{if } m \neq n \\ \inf \frac{1}{2} \sum_{i=1}^{n} d_{E}(x_{i}, y_{\sigma(i)})^{2} & \text{if } m = n < +\infty. \end{cases}$$
2017 Institut Mines-Telecom Topology of wireless networks

1

Finite point processes on $E = R^d$

Theorem (LD'08)

 $\mathfrak{T}_{\mathfrak{C}_2}(\mu,\nu) < \infty \text{ iff }$

$$\mu(\eta(E) = n) = \nu(\omega(E) = n), \ \forall n \ge 0$$
$$\sum_{n \ge 1} \mathcal{T}_{\mathfrak{C}_e}(j_n^{\mu}, j_n^{\nu})^2 \ \mu(\eta(E) = n) < +\infty$$

Moreover, the optimal map T is described by

$$T : \Gamma_E^{(n)} \longrightarrow \Gamma_E^{(n)}$$
$$\omega = \sum_{j=1}^n \varepsilon_{x_i} \longmapsto t_{j_n^{\mu}, j_n^{\nu}}(x_1, \cdots, x_n)$$

Poisson process

Theorem

•
$$\mathfrak{T}_{e}(\sigma_{1}, \sigma_{2}) < +\infty$$

- t_{σ_1,σ_2} the transport map of MKP($\sigma_1, \sigma_2, \mathfrak{C}_e$)
- Then

$$T : \chi_E \longrightarrow \chi_E$$
$$\sum_{x \in \omega} \epsilon_x \longmapsto \sum_{x \in \omega} \epsilon_{t_{\sigma_1, \sigma_2}(x)}$$

is the transport map from π_{σ_1} to π_{σ_2} and

$$\mathfrak{T}_{\mathfrak{C}_2}(\pi_{\sigma_1},\pi_{\sigma_2})=\sigma_1(E)\,\mathfrak{T}_{\mathfrak{C}_e}(\sigma_1,\,\sigma_2).$$

Persistence diagrams of point processes

Theorem (LD, A. Vasseur'15)

- μ and ν 2 point processes
- $\mathcal{D}^{\#}\mu$ = distribution of the μ -persistence diagram

$$\mathfrak{T}_{
ho}(\mathcal{D}^{\#}\mu, \mathcal{D}^{\#}\nu) \leq \mathfrak{T}_{\mathfrak{C}_{2}}(\mu, \nu)$$

