Enumerating Tree Decompositions

Nofar Carmeli

Batya Kenig

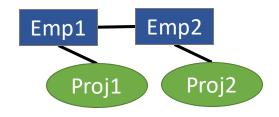
Benny Kimelfeld

Technion – Israel Institute of Technology

Motivation

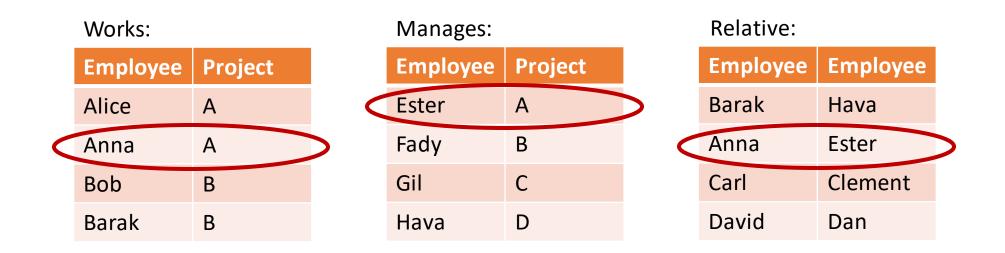
• Q1: Is there a manager with a relative in the company?

works(Emp1, Proj1) ^ manages(Emp2, Proj2) ^ relative(Emp1, Emp2)

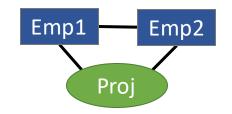


Motivation

• Q2: Is there an employee managed by a relative?



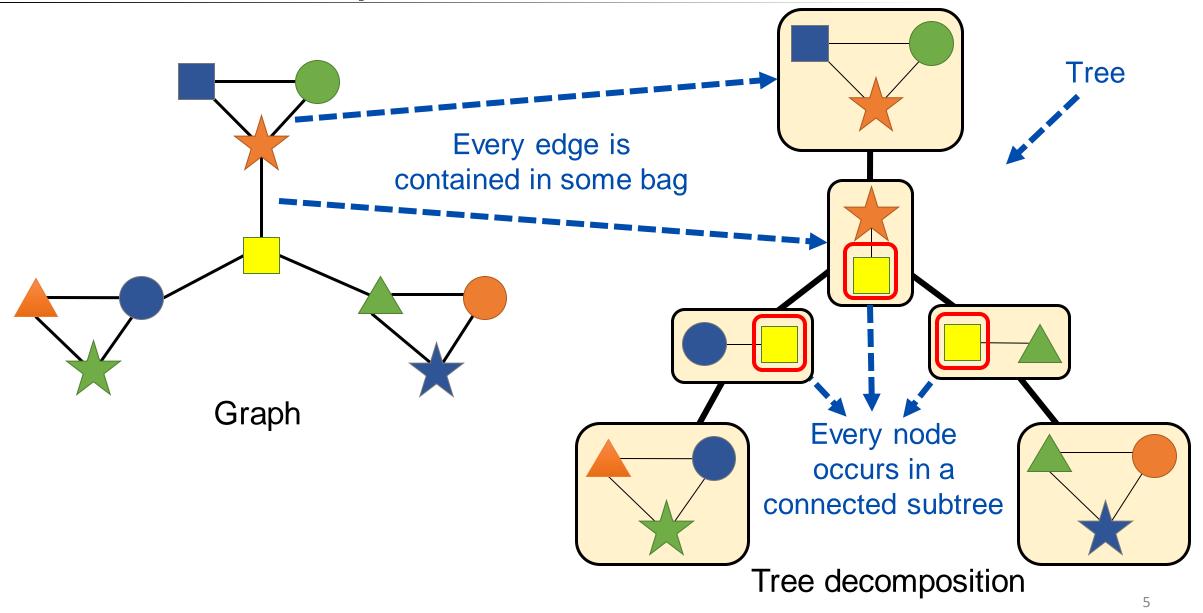
works(Emp1, Proj) ∧ manages(Emp2, Proj) ∧ relative(Emp1, Emp2)



Motivation

- Evaluating a general conjunctive query is NP-complete [Chandra&Merlin77]
- Efficient algorithm for acyclic conjunctive queries [Yannakakis81]
- A tree decomposition allows applying Yannakakis's to general conjunctive queries [Chekuri&Rajaraman97]

Tree Decompositions

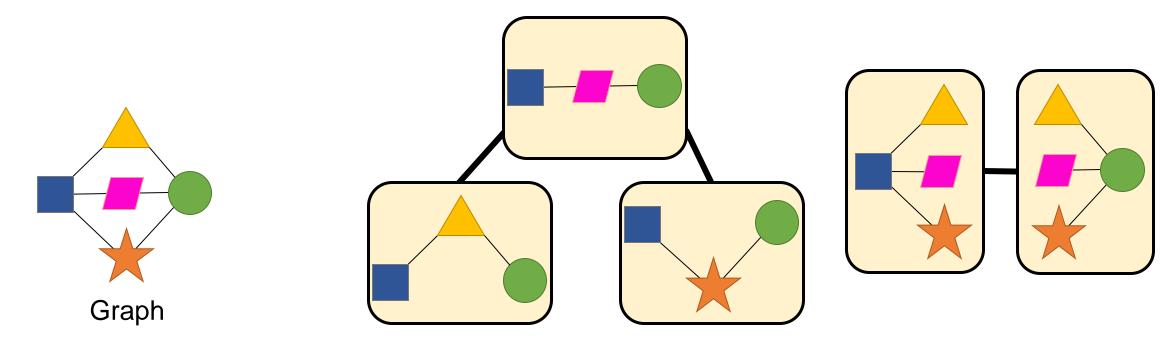


Tree Decompositions

- Many applications beyond join optimization:
 - Games
 - Nash equilibria computation [Gottlob+05]
 - Bioinformatics
 - prediction of RNA secondary structure [Zhao+06]
 - Probabilistic graphical models
 - statistical inference [Lauritzen&Spiegelhalter88]
 - Constraint-satisfaction problems [Kolaitis&Vardi00]
 - Weighted model counting [Li+08]

Which TD to use?

• A graph can have many TDs

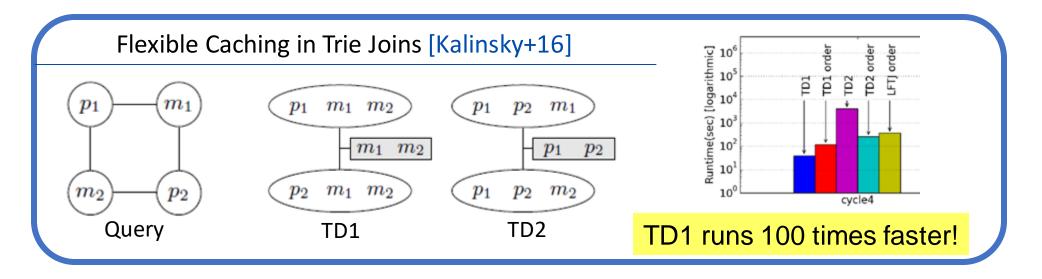


Tree decompositions

- We want the 'best' decomposition
- Common minimize the cardinality of the largest bag (smallest width)

Which TD to use?

- Smallest width is NP-hard [Arnborg+87]
- Common: Use heuristics
- Width isn't enough



• Different applications – different requirements

TD enumeration is needed

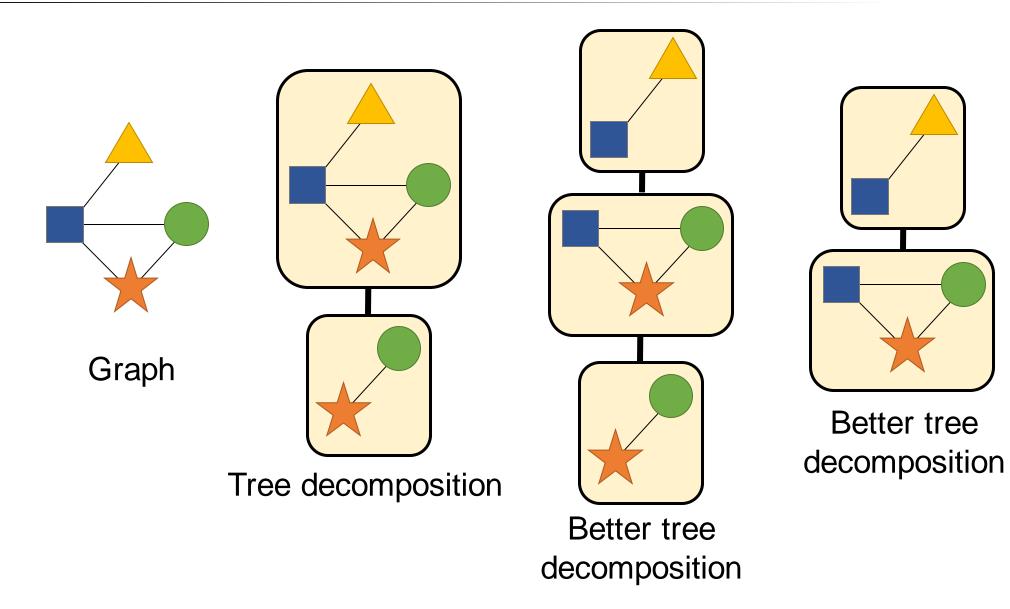
- Related work:
 - Query plans using generalized hypertree decompositions [Tu&Ré15]
 - Generate all, choose one
 - No complexity guarantees
 - Works for small graphs
 - Improving the efficiency of dynamic programing on tree decompositions using machine learning [Abseher+15]
 - Heuristically generate a pool, choose using machine learning
 - Limited pool, may not contain the best
 - Can we enumerate the TDs with efficiency guarantees?

Problem: Enumerating all TDs of a graph

Complexity guarantees
Effective practical solution

There can be exponentially many TDs!

Which TDs to Generate?



Proper TDs

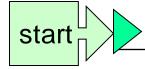
- We define "proper" TDs
- Intuitively, in a proper TD you cannot:
 - Split bags
 - Remove bags

Goal: Enumerating all proper TDs of a graph

Problem: exponentially many TDs, what is an "efficient" algorithm?

Efficiency of enumeration algorithms [Johnson, Papadimitriou, Yannakakis 88]

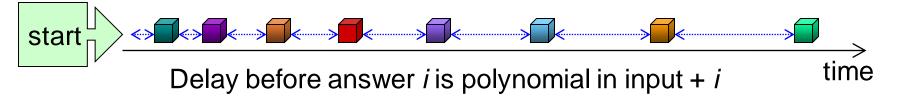
polynomial total time



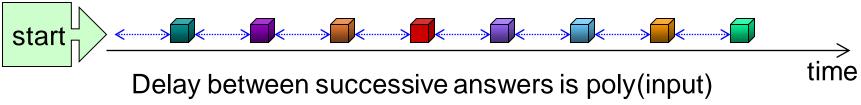
time

Running time is polynomial in input + output

incremental polynomial time



polynomial delay



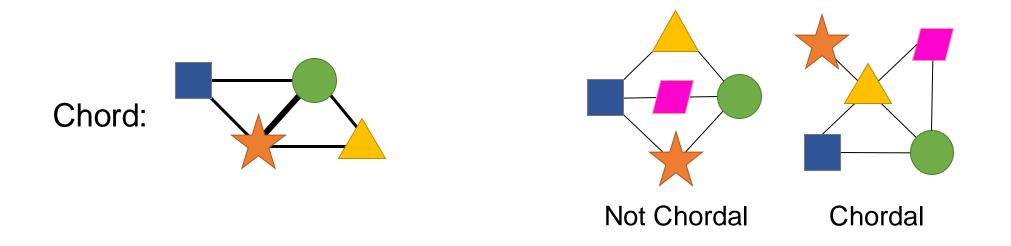
The main theoretical result

Main Theorem:

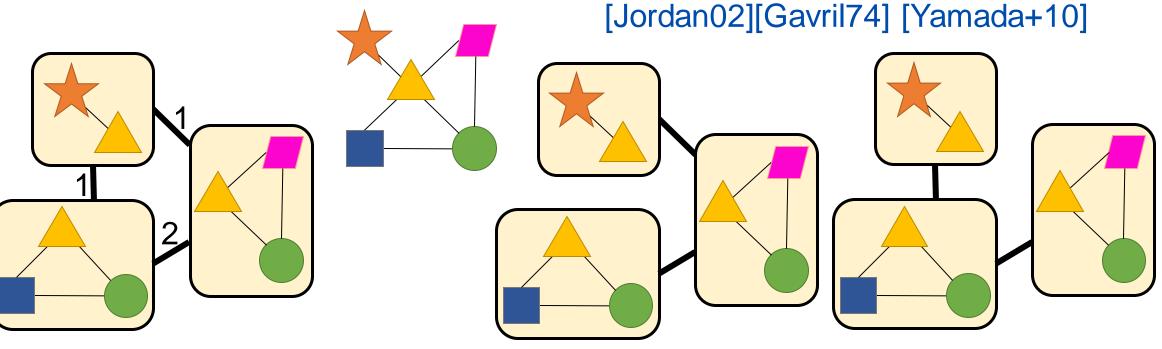
Given a graph, it is possible to enumerate in incremental polynomial time:

- The proper tree decompositions
- The minimal triangulations

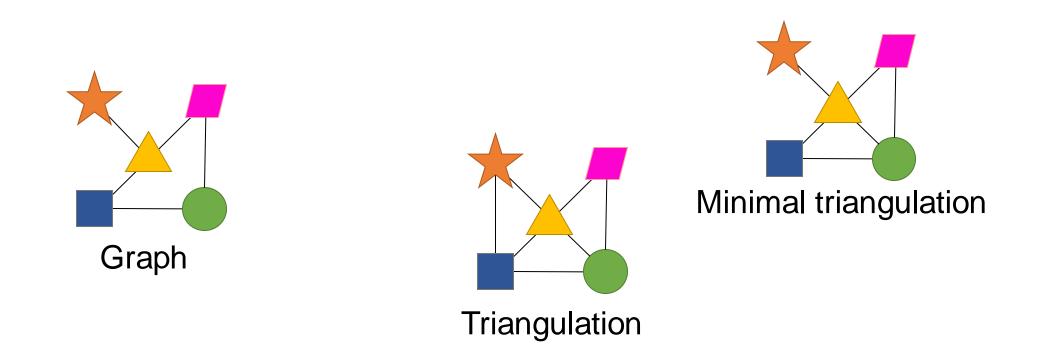
- Chord: An edge between two non-adjacent nodes in a cycle
- Chordal graph: Every cycle of length>3 has a chord



- Chord: An edge between two non-adjacent nodes in a cycle
- Chordal graph: Every cycle of length>3 has a chord
- Finding proper TDs of a chordal graph is easy
 - The bags are the maximal cliques
 - These TDs can be enumerated in polynomial delay

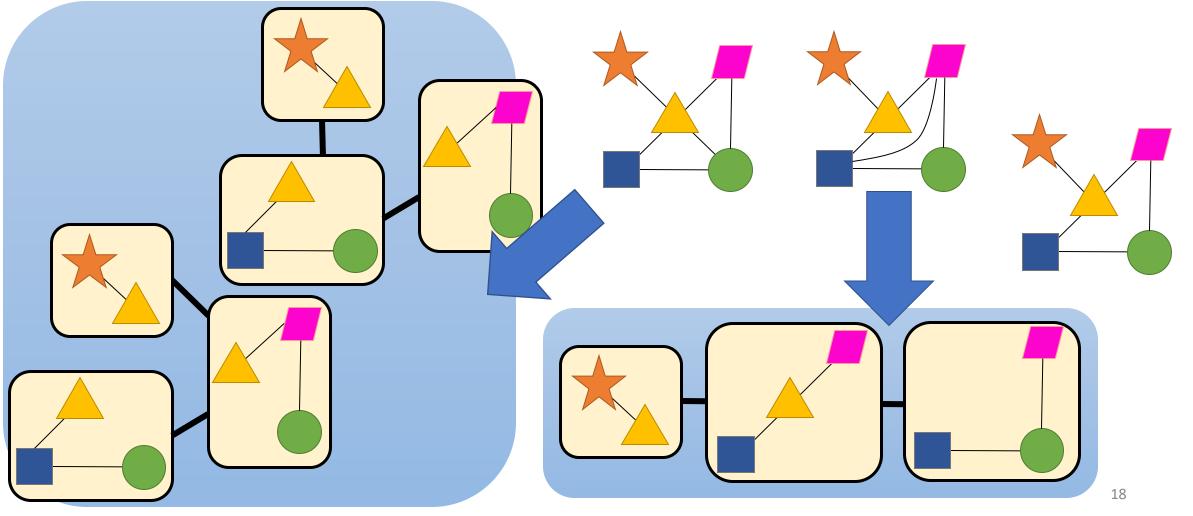


- Triangulation of a graph: Adding edges to make it chordal
- Minimal triangulation: Adding a proper subset of the edges does not make it chordal



• A bijection:

classes of bag equivalent proper TDs \leftrightarrow min triangulations

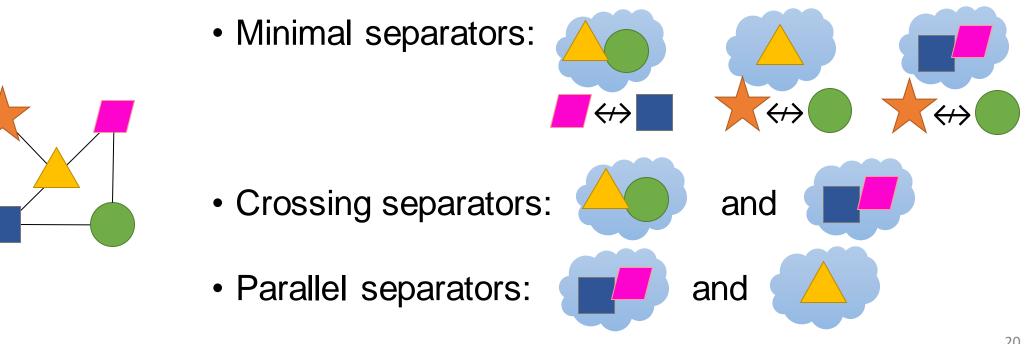


Goal: Enumerating all proper TDs of a graph

Goal: Enumerating all min triangulations of a graph

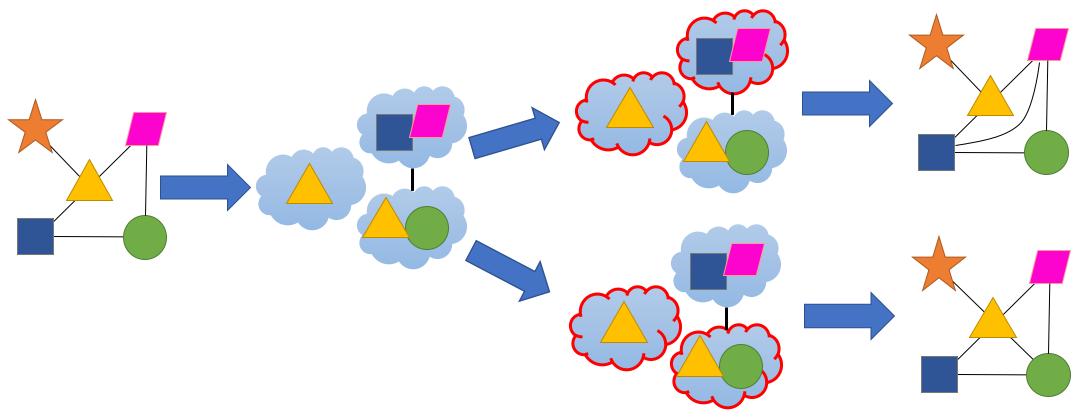
Goal: Enumerate Minimal Triangulations

- Minimal Separator: Removing these nodes separates some u and v No proper subset separates u and v
- Crossing separators: One of them separates nodes of the other



Goal: Enumerate Minimal Triangulations

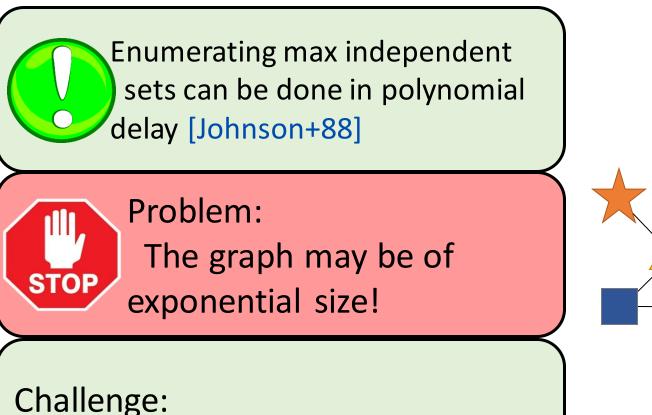
 A bijection [Parra&Scheffler97]: minimal triangulations ↔ maximal sets of non crossing minimal separators



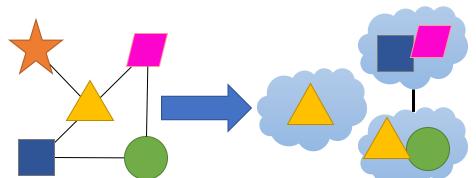
Goal: Enumerating all min triangulations of a graph

Goal: Enumerating all max independent sets of a graph

Goal: Enumerate Maximal Independent Sets



Solve without generating the graph



The Algorithm (Enumerating max independent sets)

- $1: \ J := \mathsf{Extend}(x, \emptyset)$
- 2: print J
- 3: $Q := \{J\}$
- 4: $\mathcal{P} := \emptyset$ 5: $\mathcal{V} := \emptyset$
- 6: iterator := $A_V(x)$
- 7: while $\mathcal{Q} \neq \emptyset$ do
- 8: $J := \mathcal{Q}.\mathsf{pop}()$
- 9: $\mathcal{P}.\mathsf{push}(J)$
- 10: for all $v \in \mathcal{V}$ do
- 11: $J_v := \{v\} \cup \{u \in J \mid \neg A_{\mathsf{E}}(x, v, u)\}$
- 12: $K := \mathsf{Extend}(x, J_v)$
- 13: if $K \notin \mathcal{Q} \cup \mathcal{P}$ then
- 14: print K
- 15: $\mathcal{Q} := \mathcal{Q} \cup \{K\}$
- 16: while $Q = \emptyset$ and iterator.hasNext() do
- 17: v := iterator.next()
- 18: $\mathcal{V} := \mathcal{V} \cup \{v\}$
- 19: for all $J' \in \mathcal{P}$ do
- 20: $J'_v := \{v\} \cup \{u \in J' \mid \neg A_{\mathsf{E}}(x, v, u)\}$
- 21: $K := \mathsf{Extend}(x, J'_v)$
- 22: if $K \notin \mathcal{Q} \cup \mathcal{P}$ then
- 23: print K
- $24: \qquad \mathcal{Q} := \mathcal{Q} \cup \{K\}$

• Redesign of an algorithm for hereditary graph properties [Cohen+08]

• Assuming:

- Efficiently enumerating nodes
- Efficiently checking edges
- Efficiently extending an independent set
- Polynomial size of max independent sets
- Extends all nodes in the direction of all independent sets.
- Runs in incremental poly time

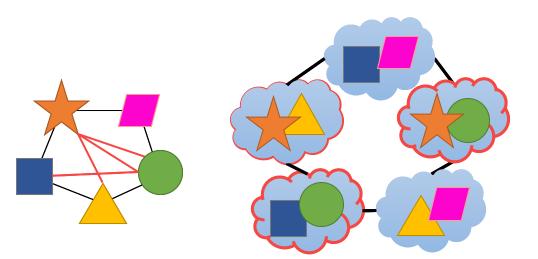
The Algorithm (Enumerating max independent sets)

- 1: $J := \mathsf{Extend}(x, \emptyset)$
- 2: print J
- 3: $\mathcal{Q} := \{J\}$
- 4: $\mathcal{P} := \emptyset$ 5: $\mathcal{V} := \emptyset$
- 6: iterator := $A_V(x)$
- 7: while $\mathcal{Q} \neq \emptyset$ do
- 8: $J := \mathcal{Q}.\mathsf{pop}()$
- 9: $\mathcal{P}.\mathsf{push}(J)$
- 10: for all $v \in \mathcal{V}$ do
- 11: $J_v := \{v\} \cup \{u \in J \mid \neg A_{\mathsf{E}}(x, v, u)\}$
- 12: $K := \mathsf{Extend}(x, J_v)$ 12: if $K \not \in \mathcal{O} \cup \mathcal{D}$ then
- 13: if $K \notin \mathcal{Q} \cup \mathcal{P}$ then 14: print K
- 14: 15:
 - : $Q := Q \cup \{K\}$
- 16: while $Q = \emptyset$ and iterator.hasNext() do
- 17: v := iterator.next()
- 18: $\mathcal{V} := \mathcal{V} \cup \{v\}$
- 19: for all $J' \in \mathcal{P}$ do

20:
$$J'_v := \{v\} \cup \{u \in J' \mid \neg A_{\mathsf{E}}(x, v, u)\}$$

- 21: $K := \mathsf{Extend}(x, J'_v)$ 22: if $K \notin \mathcal{Q} \cup \mathcal{P}$ then
- 23: print K
- 24: $\mathcal{Q} := \mathcal{Q} \cup \{K\}$

- In our case, extending = triangulating
- We can use **any** triangulation or tree decomposition algorithm
- First result = algorithm's result



Goal: Enumerating max independent sets

Goal: Enumerating all max independent sets of a graph

Find a single minimal triangulation

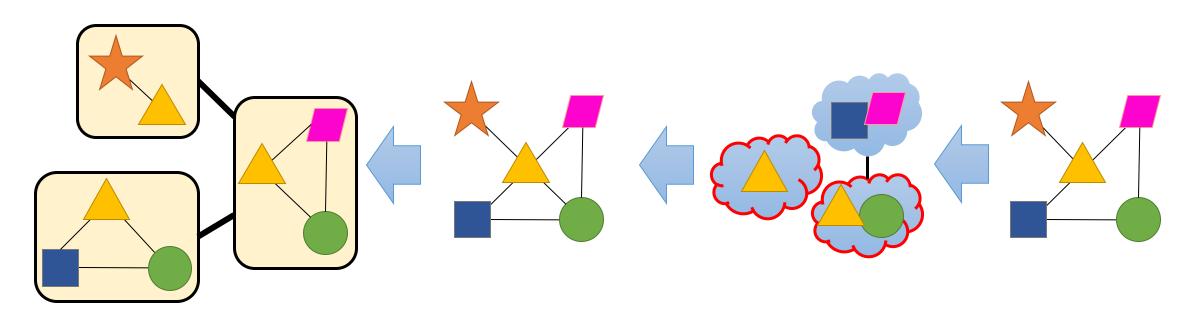
Solution Summary

Enumerate proper TDs

Enumerate min triangulations

Enumerate max independent <u>sets</u>

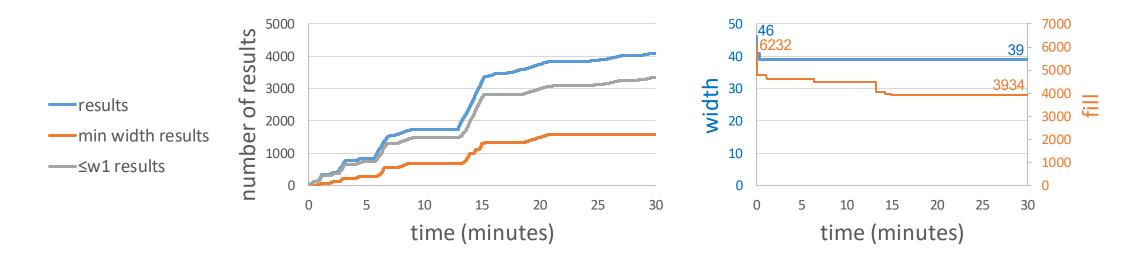
Single min triangulation



- Goals: check efficiency and quality
- C++ implementation
- Triangulation algorithms:
 - MCS-M [Berry+02]
 - LB-Triang [Berry+06] with min fill heuristics
- Benchmarks:
 - DunceCap [Tu&Ré15]
 - Heuristics (First result)

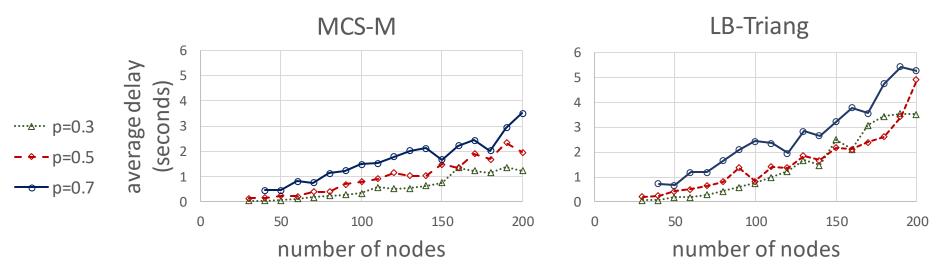
- Datasets:
 - Database queries
 - TPC-H (LogicBlox translation)
 - 2-19 nodes, 1-46 edges
 - Probabilistic graphical models
 - UAI inference challenge
 - 60-1039 nodes, 135-1696 edges
 - Random
 - 30-200 nodes, 131-13955 edges

• A single run (UAI, 414 nodes, 801 edges, MCS-M, 30 minutes)



- Queries, completed within 5 seconds
 - 11 graphs: triangulated
 - 9 graphs: 2-5 triangulations
 - 1 graph: 588 triangulations
 - 1 graph: 700 triangulations

• Random (30 minutes)



• Probabilistic graphical models (30 minutes)

alg.	measure	avg #results	avg #≤first	avg min	avg %improv	max %improv
MCS-M	width	33635.0	12733.4	20.2	2.6%	26.3%
MCS-M	fill	33635.0	12724.9	2043.8	14.4%	55.8%
LB-T(fill)	width	11998.3	4744.1	18.5	3.4%	20.7%
LB-T(fill)	fill	11998.3	1013.6	965.8	2.2%	27.6%

Future Work

Practical

- Parallelized implementation
- Heuristics for ranked enumeration
- Theoretical
 - Polynomial delay
 - Restricted versions

Questions?