Enumerating Tree Decompositions

Nofar Carmeli Batya Kenig Benny Kimelfeld
Technion - Israel Institute of Technology
Technion
Israel Institute of
Technology

Motivation

- Q1: Is there a manager with a relative in the company?

Works:		Manages:		Relative:	
Employee	Project	Employee	Project	Emp1	Emp2
Alice	A	Ester	A	Barak	Hava
Anna	A	Fady	B	Anna	Ester
Bob	B	Gil	C	Carl	Clement
Barak	B	Hava	D	David	Dan

works(Emp1,Proj1) ^ manages(Emp2, Proj2) ^relative(Emp1, Emp2)

Motivation

- Q2: Is there an employee managed by a relative?

Motivation

- Evaluating a general conjunctive query is NP-complete [Chandra\&Merlin77]
- Efficient algorithm for acyclic conjunctive queries [Yannakakis81]
- A tree decomposition allows applying Yannakakis's to general conjunctive queries [Chekuri\&Rajaraman97]

Tree Decompositions

Tree decomposition

Tree Decompositions

- Many applications beyond join optimization:
- Games
- Nash equilibria computation [Gottlob+05]
- Bioinformatics
- prediction of RNA secondary structure [Zhao+06]
- Probabilistic graphical models
- statistical inference [Lauritzen\&Spiegelhalter88]
- Constraint-satisfaction problems [Kolaitis\&Vardi00]
- Weighted model counting [Li+08]

Which TD to use?

- A graph can have many TDs

Tree decompositions

- We want the 'best' decomposition
- Common - minimize the cardinality of the largest bag (smallest width)

Which TD to use?

- Smallest width is NP-hard [Arnborg+87]
- Common: Use heuristics
- Width isn’t enough

- Different applications - different requirements

TD enumeration is needed

- Related work:
- Query plans using generalized hypertree decompositions [Tu\&Ré15]
- Generate all, choose one
- No complexity guarantees
- Works for small graphs
- Improving the efficiency of dynamic programing on tree decompositions using machine learning [Abseher+15]
- Heuristically generate a pool, choose using machine learning
- Limited pool, may not contain the best
- Can we enumerate the TDs with efficiency guarantees?

Goal

Problem: Enumerating allTDs of a graph

1. Complexity guarantees
2. Effective practical solution

There can be exponentially many TDs!

Which TDs to Generate?

Graph

Tree decomposition

Proper TDs

- We define "proper" TDs
- Intuitively, in a proper TD you cannot:
- Split bags
- Remove bags

Goal: Enumerating all proper TDs of a graph

Problem: exponentially many TDs, what is an "efficient" algorithm?

Efficiency of enumeration algorithms

[Johnson,Papadimitriou,Yannakakis 88]
polynomial total time

incremental polynomial time

polynomial delay

The main theoretical result

Main Theorem:

Given a graph, it is possible to enumerate in incremental polynomial time:

- The proper tree decompositions
- The minimal triangulations

Goal: Enumerate Proper TDs

- Chord: An edge between two non-adjacent nodes in a cycle
- Chordal graph: Every cycle of length>3 has a chord

Not Chordal

Chordal

Goal: Enumerate Proper TDs

- Chord: An edge between two non-adjacent nodes in a cycle
- Chordal graph: Every cycle of length>3 has a chord
- Finding proper TDs of a chordal graph is easy
- The bags are the maximal cliques
- These TDs can be enumerated in polynomial delay

Goal: Enumerate Proper TDs

- Triangulation of a graph: Adding edges to make it chordal
- Minimal triangulation:

Adding a proper subset of the edges does not make it chordal

Goal: Enumerate Proper TDs

- A bijection:
classes of bag equivalent proper TDs \leftrightarrow min triangulations

Goal: Enumerate Proper TDs

Goal: Enumerating all proper TDs of a graph

Goal: Enumerating all min triangulations of a graph

Goal: Enumerate Minimal Triangulations

- Minimal Separator:

Removing these nodes separates some u and v No proper subset separates u and v

- Crossing separators:

One of them separates nodes of the other

- Minimal separators:

- Crossing separators:

Goal: Enumerate Minimal Triangulations

- A bijection [Parra\&Scheffler97]: minimal triangulations \leftrightarrow maximal sets of non crossing minimal separators

Goal: Enumerate Proper TDs

Goal: Enumerating all min triangulations of a graph

Goal: Enumerating all max independent sets of a graph

Goal: Enumerate Maximal Independent Sets

The Algorithm (Enumerating max independent sets)

```
1: J:= Extend (x,\emptyset)
print J
Q :={J}
:\mathcal{P}:=\emptyset
V:\mathcal{V}:=\emptyset
: iterator := A ( 
: while \mathcal{Q}\not=\emptyset do
    J:=Q.pop()
    P.push(J)
    for all v\in\mathcal{V}\mathrm{ do}
        Jv}:={v}\cup{u\inJ|\neg\mp@subsup{A}{\textrm{E}}{}(x,v,u)
        K:= Extend (x, Jv)
        if K\not\in\mathcal{Q}\cup\mathcal{P}\mathrm{ then}
        print K
        \mathcal{Q}:=\mathcal{Q}\cup{K}
    while }\mathcal{Q}=\emptyset\mathrm{ and iterator.hasNext() do
    v:= iterator.next()
    \mathcal { V } : = \mathcal { V } \cup \{ v \}
    for all }\mp@subsup{J}{}{\prime}\in\mathcal{P}\mathrm{ do
        Jv
        K:= Extend( }x,\mp@subsup{J}{v}{\prime}\mathrm{ )
        if }K\not\in\mathcal{Q}\cup\mathcal{P}\mathrm{ then
            print K
            Q :=\mathcal{Q}\cup{K}
```

- Redesign of an algorithm for hereditary graph properties [Cohen+08]
- Assuming:
- Efficiently enumerating nodes
- Efficiently checking edges
- Efficiently extending an independent set
- Polynomial size of max independent sets
- Extends all nodes in the direction of all independent sets.
- Runs in incremental poly time

The Algorithm (Enumerating max independent sets)

```
1: \(J:=\operatorname{Extend}(x, \emptyset)\)
2: print \(J\)
: \(\mathcal{Q}:=\{J\}\)
: \(\mathcal{P}:=\emptyset\)
: \(\mathcal{V}:=\emptyset\)
: iterator \(:=A_{\mathrm{V}}(x)\)
: while \(\mathcal{Q} \neq \emptyset\) do
    \(J:=\mathcal{Q} \cdot \operatorname{pop}()\)
    \(\mathcal{P} . \operatorname{push}(J)\)
    for all \(v \in \mathcal{V}\) do
    \(J_{v}:=\{v\} \cup\left\{u \in J \mid \neg A_{\mathrm{E}}(x, v, u)\right\}\)
    \(K:=\) Extend \(\left(x, J_{v}\right)\)
    if \(K \notin \mathcal{Q} \cup \mathcal{P}\) then
        print \(K\)
        \(\mathcal{Q}:=\mathcal{Q} \cup\{K\}\)
    while \(\mathcal{Q}=\emptyset\) and iterator.hasNext() do
    \(v:=\) iterator.next()
    \(\mathcal{V}:=\mathcal{V} \cup\{v\}\)
    for all \(J^{\prime} \in \mathcal{P}\) do
        \(J_{v}^{\prime}:=\{v\} \cup\left\{u \in J^{\prime} \mid \neg A_{\mathrm{E}}(x, v, u)\right\}\)
        \(K:=\operatorname{Extend}\left(x, J_{v}^{\prime}\right)\)
        if \(K \notin \mathcal{Q} \cup \mathcal{P}\) then
            print \(K\)
            \(\mathcal{Q}:=\mathcal{Q} \cup\{K\}\)
```

- In our case, extending = triangulating
- We can use any triangulation or tree decomposition algorithm
- First result = algorithm's result

Goal: Enumerating max independent sets

Goal: Enumerating all max independent sets of a graph

Find a single minimal triangulation

Solution Summary

Enumerate

proper TDs \Rightarrow\begin{tabular}{l}
Enumerate min

triangulations

\Rightarrow

Enumerate max

independent sets

\Rightarrow

Single min

triangulation
\end{tabular}

Experiments

- Goals: check efficiency and quality
- C++ implementation
- Triangulation algorithms:
- MCS-M [Berry+02]
- LB-Triang [Berry+06] with min fill heuristics
- Benchmarks:
- DunceCap [Tu\&Ré15]
- Heuristics (First result)

Experiments

- Datasets:
- Database queries
- TPC-H (LogicBlox translation)
- 2-19 nodes, 1-46 edges
- Probabilistic graphical models
- UAI inference challenge
- 60-1039 nodes, 135-1696 edges
- Random
- 30-200 nodes, 131-13955 edges

Experiments

- A single run (UAI, 414 nodes, 801 edges, MCS-M, 30 minutes)
—min width results
$— \leq w 1$ results

- Queries, completed within 5 seconds
- 11 graphs: triangulated
- 9 graphs: 2-5 triangulations
- 1 graph: 588 triangulations
- 1 graph: 700 triangulations

Experiments

- Random (30 minutes)

MCS-M

LB-Triang

- Probabilistic graphical models (30 minutes)

alg.	measure	avg \#results	avg \#sfirst	avg min	avg \%improv	max \%improv
MCS-M	width	33635.0	12733.4	20.2	2.6%	26.3%
MCS-M	fill	33635.0	12724.9	2043.8	14.4%	55.8%
LB-T(fill)	width	11998.3	4744.1	18.5	3.4%	20.7%
LB-T(fill)	fill	11998.3	1013.6	965.8	2.2%	27.6%

Future Work

- Practical
- Parallelized implementation
- Heuristics for ranked enumeration
- Theoretical
- Polynomial delay
- Restricted versions

Questions?

