
Query-driven Data Completeness Assessment

Simon Razniewski
Free University of Bozen-Bolzano, Italy

Part I joint work with
Flip Korn, Werner Nutt, Divesh Srivastava

Background
– 2011 - 2014: PhD (on reasoning about data completeness)

– 2014 - now: Assistant professor

– Research visits at UCSD (2012), AT&T Labs-Research (2013), UQ (2015), MPII (now)

Bolzano

Trilingual Ötzi 1/8th of EU apples 2

Background (2)

• Research centered on data completeness

• Completeness often a problem in

– Data integration

– Complex data-generating processes

– Large data/knowledge bases

3

Outline

Part I: Completeness reasoning in databases

Part II: Assessing completeness of
general-purpose knowledge bases

4

(=Wikidata, Google Knowledge Graph, YAGO, ..)

Part I: Reasoning in databases

• Make data more complete
– Missing value imputation
– Information extraction
– Data fusion
– …

• Reason about (in-)completeness information
– Missing records in relational databases (VLDB 2011)
– Null values (CIKM 2012)
– RDF databases (ISWC 2013)
– Derivations from process states (BPM 2013)
– Spatial data (SIGSPATIAL 2014)
– An algebra for completeness information (SIGMOD 2015)

5

Motivation: Data warehouse of a
telecommunication company

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

Maintenance

ID resp reason

tw37 A disk failure

tw59 D software crash

tw83 B unknown

tw91 C update failure

tw91 C network error

Teams

name specialization

A hardware

B hardware

C network

C software

D network

Admin John knows
• Team table is complete (HR says so)
• Maintenance is complete for teams A, B and C

• their reporting systems export data automatically

• Warnings is complete for all of Week 1,

and Monday and Wednesday of Week 2
• Potential data loss due to a system failure on Tuesday
• Data further than Wednesday maybe not fully loaded

6

John wants to know

“Give me all warnings in Week 2 that are generated
by objects in maintenance with a hardware team.”

SELECT *

FROM Warnings W

JOIN Maintenance M ON W.ID = M.ID

JOIN Teams T ON M.responsible = T.name

WHERE W.week = 2

AND T.specialization = 'hardware'

W.Day W.week W.ID W.message M.ID M.resp M.reason T.name T.specialization

Wed 2 tw37 overheat tw37 A disk failure A hardware

Mon 2 tw83 high voltage tw83 B unknown B hardware

Tue 2 tw83 auto restart tw83 B unknown B hardware

Is this all that
hardware

teams have
done?

7

John reasons

“Give me all warnings in Week 2 that are generated
by objects in maintenance with a hardware team.”

• Warnings is complete for Week 1 and Monday and Wednesday of Week 2
• Maintenance is complete for teams A, B and C
• Team is complete

 The query result definitely contains all warnings from
– Monday for team A
– Monday for team B
– Monday for team C
– Wednesday for team A
– Wednesday for team B
– Wednesday for team C

Warnings

day week ID message

Maintenance

ID resp reason

Teams

name specialization

8

John looks at the data

“Give me all warnings in Week 2 that are generated

by objects in maintenance with a hardware team.”

 The query result definitely contains all warnings from

– Monday for team A

– Monday for team B

– Monday for team C

– Wednesday for team A

– Wednesday for team B

– Wednesday for team C

• HR says: The team table is complete!

Teams

name specialization

A hardware

B hardware

C network

C software

D network

= All data from Monday

= All data from Wednesday

9

Problems

“Warnings are complete for Week 1”

1. How can we formally describe
complete parts of a database?

“The query result contains all warnings
from Monday of Week 2 for Team A”

2. How can we use database completeness
information to identify
complete parts of query answers?

(Output)

(Input)

10

Formalism: Patterns

We have all warnings from Week 1

We have all warnings from
Monday of Week 2

• Less expressive than previously known formalisms
(views, Datalog/first-order queries, ..)

• Can be expressed in the same schema as the data

• Efficient reasoning

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Mon 2 * *

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Mon 2 * *

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Mon 2 * *

11

John’s knowledge expressed by patterns

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Mon 2 * *

Wed 2 * *

Maintenance

ID resp reason

tw37 A disk failure

tw59 D software crash

tw83 B unknown

tw91 C update failure

tw91 C network error

* A *

* B *

* C *

Teams

name specialization

A hardware

B hardware

C network

C software

D network

* *

Team table is complete Maintenance is complete

for teams A, B and C
Warnings is complete for all of Week 1,

and Monday and Wednesday of Week 2

12

John’s conclusions expressed by patterns

“Give me all warnings in week 2 that are generated
by objects in maintenance with a hardware team.”

W.Day W.week W.ID W.message M.ID M.resp M.reason T.name T.specialization

Wed 2 tw37 overheat tw37 A disk failure A hardware

Mon 2 tw83 high voltage tw83 B unknown B hardware

Tue 2 tw83 auto restart tw83 B unknown B hardware

W.Day W.week W.ID W.message M.ID M.resp M.reason T.name T.specialization

Wed 2 tw37 overheat tw37 A disk failure A hardware

Mon 2 tw83 high voltage tw83 B unknown B hardware

Tue 2 tw83 auto restart tw83 B unknown B hardware

Mon * * * * A * A *

 The query result contains all warnings from
• Monday for team A
• …

W.Day W.week W.ID W.message M.ID M.resp M.reason T.name T.specialization

Wed 2 tw37 overheat tw37 A disk failure A hardware

Mon 2 tw83 high voltage tw83 B unknown B hardware

Tue 2 tw83 auto restart tw83 B unknown B hardware

Mon * * * * A * A *

Mon * * * * B * B *

Mon * * * * C * C *

Wed * * * * A * A *

Wed * * * * B * B *

Wed * * * * C * C *

13

How to compute the completeness patterns for queries?

Queries are computed by relational algebra

Here: Select, project, equijoin

𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝜎𝑤𝑒𝑒𝑘=2

⋈𝑊.𝐼𝐷=𝑀.𝐼𝐷

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

⋈𝑀.𝑟𝑒𝑠𝑝=𝑇.𝑛𝑎𝑚𝑒

𝜎𝑠𝑝𝑒𝑐= "ℎ𝑤"

𝑇𝑒𝑎𝑚𝑠

14

Reasoning idea:
- Apply algebra operators to completeness patterns
(analogous to query result computation)

?
?

𝝈𝒔𝒑𝒆𝒄= "𝒉𝒘" (𝑻)
Teams

name specialization

A hardware

B hardware

C network

C software

D network

* *

name specialization

A hardware

B hardware

* *

Rule 1: Statements with * survive

Reasoning about selections

name specialization

A hardware

B hardware

15

𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝜎𝑤𝑒𝑒𝑘=2

⋈𝑊.𝐼𝐷=𝑀.𝐼𝐷

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

⋈𝑀.𝑟𝑒𝑠𝑝=𝑇.𝑛𝑎𝑚𝑒

𝜎𝑠𝑝𝑒𝑐= "ℎ𝑤"

𝑇𝑒𝑎𝑚𝑠

16

day week ID message

Wed 2 tw37 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

?

𝝈𝒘𝒆𝒆𝒌=𝟐(𝑾)

Rule 2: Irrelevant constants are ignored
Rule 3: Selected constants survive and are promoted

Warnings

day week ID message

Mon 1 tw37 high voltage

Fri 1 tw37 high voltage

Wed 2 tw37 overheat

Tue 1 tw59 auto restart

Fri 1 tw59 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

* 1 * *

Mon 2 * *

Wed 2 * *

day week ID message

Wed 2 tw37 overheat

Mon 2 tw83 high voltage

Tue 2 tw83 auto restart

Mon 2 * *

Wed 2 * *

Reasoning about selections (2)

*
*

17

𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝜎𝑤𝑒𝑒𝑘=2

⋈𝑊.𝐼𝐷=𝑀.𝐼𝐷

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

⋈𝑀.𝑟𝑒𝑠𝑝=𝑇.𝑛𝑎𝑚𝑒

𝜎𝑠𝑝𝑒𝑐= "ℎ𝑤"

𝑇𝑒𝑎𝑚𝑠

18

M.ID M.resp M.reason T.name T.specialization

tw37 A disk failure A hardware

tw83 B unknown B hardware

?

⋈𝑴.𝒓𝒆𝒔𝒑=𝑻.𝒏𝒂𝒎𝒆

𝝈𝒔𝒑𝒆𝒄= "𝒉𝒘" (𝑻)

name specialization

A hardware

B hardware

* *

Maintenance

ID resp reason

tw37 A disk failure

tw59 D software crash

tw83 B unknown

tw91 C update failure

tw91 C network error

* A *

* B *

* C *

M.ID M.resp M.reason T.name T.specialization

tw37 A disk failure A hardware

tw83 B unknown B hardware

* A * A *

* B * B *

* C * C *

Reasoning about joins

Rule 1: Constants join with equal constants
Rule 2: Wildcards join with anything
Rule 3: Constants can be promoted

M.ID M.resp M.reason T.name T.specialization

tw37 A disk failure A hardware

tw83 B unknown B hardware

* A * * *

* B * * *

* C * * *

* * * A *

* * * B *

* * * C *
19

Algorithmic completeness

Proven: Extended algebra gives all conclusions
that hold on the schema level

(reasoning only with the yellow metadata)

• Independent of the algebra tree chosen

20

𝝈𝒔𝒑𝒆𝒄= "𝒉𝒘" (𝑻)

name specialization

A hardware

B hardware

* *

Maintenance

ID resp reason

tw37 A disk failure

tw59 D software crash

tw83 B unknown

tw91 C update failure

tw91 C network error

* A *

* B *

* C *

Looking at the data

M.ID M.resp M.reason T.name T.specialization

tw37 A disk failure A hardware

tw83 B unknown B hardware

* A * * *

* B * * *

* C * * *

* * * A *

* * * B *

* * * C *

There
cannot be

other hardware
teams than

A and B

M.ID M.resp M.reason T.name T.specialization

tw37 A disk failure A hardware

tw83 B unknown B hardware

* * * * *

Database instance
allows for more promotion!

Possibly complex
(coNP-complete) 21

⋈𝑴.𝒓𝒆𝒔𝒑=𝑻.𝒏𝒂𝒎𝒆

So much about the theory, but…

1. How can we implement this?

2. How fast is this?

– In comparison with query evaluation

3. How can we manage large sets of
statements?

22

How can we implement this?

• Ideally, a plugin inside a DBMS

– Promotion procedure benefits from fast access to data

• So far: Separate Java tool

• Schema-level algebra can also be encoded in SQL

 Could compile normal queries into metadata queries

23

How fast is this? (1)

• Synthetic data

• Wikipedia has around 1000 lists declared as complete
(using a template or in natural language)

http://en.wikipedia.org/wiki/List_of_places_in_Carmarthenshire_%28categorised%29

24

• Manually extracted some and grouped them by topic
– Recurrent topics: Sports teams, political assemblies, geographical features,

songs, operas and other pieces of art

• Generated one table each about cities, schools and countries
(21 statements)

city
name country state county

* USA Virginia *

* Germany * *

* Ukraine * *
* Bulgaria * *

* USA New York *
* UK Carmarthenshire *
* USA West Virginia Hampshire County
* Czech Moravian-Silesia Nový Jičín
* Slovenia * *

How fast is this? (2)

25

SELECT *
FROM country, city, school
WHERE country.capital=city.name

AND city.state=school.state

SQL runtime: 2 seconds (25891 records)
Completeness pattern runtime: 0.9 seconds (46 patterns)

Median over 7 join queries:
• SQL runtime: 2 seconds
• Completeness pattern runtime: 0.5 seconds

How fast is this? (3)

“All schools in capital states”

26

How to manage large sets of patterns?

Redundancies in workflows may lead to redundant patterns

John reports first that all data for Monday of Week 2 is complete,
later, that the data for the whole Week 2 is complete

(Monday, 2) (*, 2)

Redundancies introduce overhead and restrict comprehensibility

 Should be identified and possibly removed

Trivial?

(Monday, *, hardware) (Wednesday, *, software)

(Tuesday, 2, software) (*, *, hardware)

(Monday, 2, *) (*, 2, software) 27

How to manage large sets of patterns? (2)

28

• Similar problems occur in term indexing for
unification in classic AI

• Compared proposed data structures with
classic hashing

• Time/space tradeoff:

• Discrimination trees are most time-efficient (60
seconds for minimizing 800k patterns)

• Hashing is marginally better in terms of space

Summary Part I

• Introduced completeness patterns to describe complete parts
of databases and query answers
– Can be expressed in the same schema as the data

• Modified the relational algebra to manipulate completeness
patterns
– Implemented join operator and evaluated scalability

• Limitation: No complete algorithm for data-dependent
promotion

29

PART II: ASSESSING COMPLETENESS OF
GENERAL-PURPOSE KNOWLEDGE BASES

30

(=Wikidata, Google Knowledge Graph, YAGO, ..)

How complete are knowledge bases?

31

KBs are pretty incomplete

DBpedia: contains 6 out of 35
Dijkstra Prize winners 

YAGO: the average number of children
per person is 0.02

Google Knowledge Graph:
``Points of Interest’’ – Completeness? 

32

KBs are pretty complete

Wikidata: 2 out of 2
children of Obama 

Google Knowledge Graph: 36 out of 48 Tarantino movies 

DBpedia: 167 out of 199 Nobel laureates in Physics 

33

So, how complete are KBs?

34

[Dong et al., KDD 2014]
KB engineers have only tried to

make KBs bigger. The point, however
is to understand what they are
actually trying to approximate.

There are known knowns; there are
things we know we know. We also

know there are known unknowns; that
is to say we know there are some things

we do not know. But there are also
unknown unknowns – the ones we

don't know we don't know.

35

hasChild
date of birth
party membership
….

Facets

Occupation
 Politician 7.5%
 Soccer player 3.3%
 Lawyer 8.1%
 Other 2.2%

Nationality
 USA 3.8%
 India 2.7%
 China 2.2%
 England 5.5%
 …

Century of birth
 <15th century 1.1%
 16th century 1.4%
 …

Gender
 Male 4.3%
 Female 3.9%

Select attribute to analyse

Completeness: 2.7%

Based on:
• There are 5371 people of this kind
• For these, 231 have children
• For these, Wikipedia says there should be 750 children
• Average number of children of complete entities is 2.3
• Average number of children of unknown people is 0.01
• …..

36

http://www.how-complete-are-kbs.today

How can we get there?

• Find patterns in data that tell about completeness

– Extended AMIE system to mine rules about completeness
[WSDM 2017]

hockeyPlayer(x)  Incomplete(x, hasChild)
scientist(x), hasWonNobelPrize(x)  Complete(x, graduatedFrom)

• Extract cardinality information from texts
– Manually created patterns that allow to find information

about 178% more children than Wikidata currently
contains [ISWC 2016 Poster]

“John lives with his spouse and five children on a farm in Alabama.”

37

Are we done soon?

38

Challenge 1 – Modelling incompleteness

Knowledge Graph knows 6 out of 7 children of
President Garfield

• RDF blank node for the 7th child?
No identity, thus no way to say that the 7th child is different from

the previous 6

• Creating a new nameless entity?
Not known that the 7th child is different from all other entities in

the KB

• Wikidata: New property nr_of_children(Garfield, 7)?
 Semantic relation between ``hasChild’’ and ``nr_of_children’’ lost

39

Challenge 2 – Beyond triples

These are facts for humans:

Galileo Galilei:
Contrary to the dogma of the time, postulates that the earth

orbits the sun

Reinhold Messner:
First person to climb all mountains >8000mt without

supplemental oxygen

These are not KB triples
FirstPersonToClimbAllMountainsAbove8000Without(Supplemental oxygen, Reinhold Messner)

40

Toothbrush? MP3-Player?

 How incomplete are KB models?

[http://www.telegraph.co.uk/travel/lists/reinhold-messner-tribute-quotes-facts/]

[http://discovermagazine.com/2007/jul/20-things-you-didn2019t-know-about-galileo]

Challenge 3 – Aggregating completeness

Can we say whether a KB knows more
about Obama than about Trump?

Or about Ronaldo than about Justin Bieber?

 Need to understand relevance, interestingness

https://www.wikidata.org/wiki/User:Ls1g/Recoin

Outlook

1. KBs contain a lot of knowledge, but little is
known about how much they actually know

2. Completeness can be assessed from within KBs
using pattern mining, or using external sources

3. Big challenges ahead
– How to model incompleteness in KBs?
– How incomplete are KB models?
– How to aggregate completeness?

