Query-driven Data Completeness Assessment

Simon Razniewski Free University of Bozen-Bolzano, Italy

Part I joint work with Flip Korn, Werner Nutt, Divesh Srivastava

Background

Freie Universität Bozen

Libera Università di Bolzano

Università Liedia de Bulsan

unibz

- 2011 2014: PhD (on reasoning about data completeness)
- 2014 now: Assistant professor
- Research visits at UCSD (2012), AT&T Labs-Research (2013), UQ (2015), MPII (now)

Background (2)

• Research centered on data completeness

- Completeness often a problem in
 - Data integration
 - Complex data-generating processes
 - Large data/knowledge bases

Outline

Part I: Completeness reasoning in databases

Part II: Assessing completeness of general-purpose knowledge bases (=Wikidata, Google Knowledge Graph, YAGO, ..)

Part I: Reasoning in databases

• Make data more complete

- Missing value imputation
- Information extraction
- Data fusion
- ...

• Reason about (in-)completeness information

- Missing records in relational databases (VLDB 2011)
- Null values (CIKM 2012)
- RDF databases (ISWC 2013)
- Derivations from process states (BPM 2013)
- Spatial data (SIGSPATIAL 2014)
- An algebra for completeness information (SIGMOD 2015)

Motivation: Data warehouse of a telecommunication company

Admin John knows

- Team table is complete (HR says so)
- Maintenance is complete for teams A, B and C
 - their reporting systems export data automatically
- Warnings is complete for all of Week 1, and Monday and Wednesday of Week 2
 - Potential data loss due to a system failure on Tuesday
 - Data further than Wednesday maybe not fully loaded

Teams					
name	specialization				
А	hardware				
В	hardware				
С	network				
С	software				
D	network				

Maintenance						
ID	resp	reason				
tw37	А	disk failure				
tw59	D	software crash				
tw83	В	unknown				
tw91	С	update failure				
tw91	С	network error				

Warnings						
day	week	ID	message			
Mon	1	tw37	high voltage			
Fri	1	tw37	high voltage			
Wed	2	tw37	overheat			
Tue	1	tw59	auto restart			
Fri	1	tw59	overheat			
Mon	2	tw83	high voltage			
Tue	2	tw83	auto restant			

John wants to know

W.Day	W.week	W.ID	W.message	M.ID	M.resp	M.reason	T.name	T.specialization
Wed	2	tw37	overheat	tw37	А	disk failure	А	hardware
Mon	2	tw83	high voltage	tw83	В	unknown	В	hardware
Tue	2	tw83	auto restart	tw83	В	unknown	В	hardware

John reasons

"Give me all warnings in Week 2 that are generated by objects in maintenance with a hardware team."

- Warnings is complete for Week 1 and Monday and Wednesday of Week 2
- Maintenance is complete for teams A, B and C
- Team is complete

ightarrow The query result definitely contains all warnings from

- Monday for team A
- Monday for team B
- Monday for team C
- Wednesday for team A
- Wednesday for team B
- Wednesday for team C

John looks at the data

"Give me all warnings in Week 2 that are generated by objects in maintenance with a **hardware team**."

ightarrow The query result definitely contains all warnings from

- Monday for team A
 Monday for team B
 - = All data from Monday
- Monday for team C
- Wednesday for team A
- Wednesday for team B
- Wednesday for team C
-] = All data from Wednesday

Teams				
name	specialization			
Α	hardware			
В	hardware			
С	network			
С	software			
D	network			

• HR says: The team table is complete!

Problems

"Warnings are complete for Week 1"

(Input)

1. How can we formally describe complete parts of a database?

"The query result contains all warnings from Monday of Week 2 for Team A" (Output)

2. How can we use database completeness information to identify complete parts of query answers?

Formalism: Patterns

We have all warnings from Week 1	Warnings				
	day	week	ID	message	
We have all warpings from	Mon	1	tw37	high voltage	
Monday of Week 2	Fri	1	tw37	high voltage	
	Wed	2	tw37	overheat	
	Tue	1	tw59	auto restart	
	Fri	1	tw59	overheat	
	Mon	2	tw83	high voltage	
	Tue	2	tw83	auto restart	
```````````````````````````````````````	*	1	*	*	
	Mon	2	*	*	

- Less expressive than previously known formalisms (views, Datalog/first-order queries, ..)
- Can be expressed in the same schema as the data
- Efficient reasoning

#### John's knowledge expressed by patterns

#### Team table is complete

Maintenance is complete for teams A, B and C Warnings is complete for all of Week 1, and Monday and Wednesday of Week 2

Teams					
name	specialization				
А	hardware				
В	hardware				
С	network				
С	software				
D	network				
*	*				

Maintenance						
ID	resp	reason				
tw37	А	disk failure				
tw59	D	software crash				
tw83	В	unknown				
tw91	С	update failure				
tw91	С	network error				
*	А	*				
*	В	*				
*	С	*				

Warnings						
day	week	ID	message			
Mon	1	tw37	high voltage			
Fri	1	tw37	high voltage			
Wed	2	tw37	overheat			
Tue	1	tw59	auto restart			
Fri	1	tw59	overheat			
Mon	2	tw83	high voltage			
Tue	2	tw83	auto restart			
*	1	*	*			
Mon	2	*	*			
Wed	2	*	*			

#### John's conclusions expressed by patterns

#### "Give me all warnings in week 2 that are generated by objects in maintenance with a hardware team."

W.Day	W.week	W.ID	W.message	M.ID	M.resp	M.reason	T.name	T.specialization
Wed	2	tw37	overheat	tw37	А	disk failure	А	hardware
Mon	2	tw83	high voltage	tw83	В	unknown	В	hardware
Tue	2	tw83	auto restart	tw83	В	unknown	В	hardware
Mon	*	*	*	*	А	*	А	*
Mon	*	*	*	*	В	*	В	*
Mon	*	*	*	*	С	*	С	*
Wed	*	*	*	*	A	*	A	*
Wed	*	*	*	*	В	*	В	*
Wed	*	*	*	*	С	*	С	*

ightarrow The query result contains all warnings from

• Monday for team A

•

How to compute the completeness patterns for queries?

Queries are computed by relational algebra Here: Select, project, equijoin



 Apply algebra operators to completeness patterns (analogous to query result computation)

#### Reasoning about selections



Rule 1: Statements with * survive



#### Reasoning about selections (2)

	warnings		
day	week	ID	message
Mon	1	tw37	high voltage
Fri	1	tw37	high voltage
Wed	2	tw37	overheat
Tue	1	tw59	auto restart
Fri	1	tw/59	overheat
Man	- -	tw02	high voltage
won	Z	tw83	nign voltage
Tue	2	tw83	auto restart
*	1	*	*
Mon	2	*	*
Wed	2	*	*

Rule 2: Irrelevant constants are ignored

Rule 3: Selected constants survive and are promoted



#### Reasoning about joins

	Maintenance					
ID	resp	reason				
tw37	А	disk failure				
tw59	D	software crash				
tw83	В	unknown				
tw91	С	update failure				
tw91	С	network error				
*	А	*				
*	В	*				
*	С	*				

M.ID	M.resp	M.reason	T.name	T.specialization
tw37	А	disk failure	А	hardware
tw83	В	unknown	В	hardware
*	А	*	*	*
*	В	*	*	*
*	С	*	*	*
*	*	*	А	*
*	*	*	В	*
*	*	*	С	*

M.resp=	T.name
T.specialization	
hardware	Rule 1. Con

$\sigma_{spec="hw"}(T)$				
name specializatio				
А	hardware			
В	hardware			
*	*			

Rule 1: Constants join with equal constants Rule 2: Wildcards join with anything Rule 3: Constants can be promoted

# Algorithmic completeness

#### **Proven**: Extended algebra gives all conclusions that hold on the schema level (reasoning only with the yellow metadata)

• Independent of the algebra tree chosen

## Looking at the data



# So much about the theory, but...

1. How can we implement this?

- 2. How fast is this?
  - In comparison with query evaluation

3. How can we manage large sets of statements?

# How can we implement this?

• Ideally, a plugin inside a DBMS

Promotion procedure benefits from fast access to data

• So far: Separate Java tool

Schema-level algebra can also be encoded in SQL
 → Could compile normal queries into metadata queries

#### How fast is this? (1)

- Synthetic data
- Wikipedia has around 1000 lists declared as complete (using a template or in natural language)

This is a complete list of the 72 communities in Carmarthenshire. ^[Community 1]					
Abergwili	<ul> <li>Llanarthney</li> </ul>	<ul> <li>Llangadog</li> </ul>			
Abernant	<ul> <li>Llanboidy</li> </ul>	<ul> <li>Llangain</li> </ul>			
<ul> <li>Ammanford</li> </ul>	<ul> <li>Llanddarog</li> </ul>	<ul> <li>Llangathen</li> </ul>			
Betws	<ul> <li>Llanddeusant</li> </ul>	<ul> <li>Llangeler</li> </ul>			
Bronwydd	<ul> <li>Llanddowror</li> </ul>	<ul> <li>Llangennech</li> </ul>			
Carmarthen	Llandeilo	<ul> <li>Llangunnor</li> </ul>			
Cenarth	<ul> <li>Llandovery</li> </ul>	<ul> <li>Llangyndeyrn</li> </ul>			
Cilycwm	<ul> <li>Llandybie</li> </ul>	<ul> <li>Llangynin</li> </ul>			
- Cilumooplluud	- Llondyfoolog	Llongunog			

http://en.wikipedia.org/wiki/List_of_places_in_Carmarthenshire_%28categorised%29

## How fast is this? (2)

- Manually extracted some and grouped them by topic
  - Recurrent topics: Sports teams, political assemblies, geographical features, songs, operas and other pieces of art
- Generated one table each about cities, schools and countries (21 statements)

city					
name	country	state	county		
*	USA	Virginia	*		
*	Germany	*	*		
*	Ukraine	*	*		
*	Bulgaria	*	*		
*	USA	New York	*		
*	UK	Carmarthenshire	*		
*	USA	West Virginia	Hampshire County		
*	Czech	Moravian-Silesia	Nový Jičín		
*	Slovenia	*	*		

### How fast is this? (3)

SELECT *
FROM country, city, school
WHERE country.capital=city.name
AND city.state=school.state

"All schools in capital states"

SQL runtime: 2 seconds (25891 records) Completeness pattern runtime: 0.9 seconds (46 patterns)

Median over 7 join queries:

- SQL runtime: 2 seconds
- Completeness pattern runtime: 0.5 seconds

#### How to manage large sets of patterns?

Redundancies in workflows may lead to redundant patterns

John reports first that all data for Monday of Week 2 is complete, later, that the data for the whole Week 2 is complete

(Monday, 2) (*, 2)

Redundancies introduce overhead and restrict comprehensibility

 $\rightarrow$  Should be identified and possibly removed

#### Trivial?

- (Monday, *, hardware)
   (Wedr

   (Tuesday, 2, software)
   (*, *, h

   (Monday, 2, *)
   (*, 2, s)
  - (Wednesday, *, software) (*, *, hardware) (*, 2, software)

#### How to manage large sets of patterns? (2)

- Similar problems occur in term indexing for unification in classic AI
- Compared proposed data structures with classic hashing
- Time/space tradeoff:
  - Discrimination trees are most time-efficient (60 seconds for minimizing 800k patterns)
  - Hashing is marginally better in terms of space

# Summary Part I

- Introduced completeness patterns to describe complete parts of databases and query answers
  - Can be expressed in the same schema as the data
- Modified the relational algebra to manipulate completeness patterns
  - Implemented join operator and evaluated scalability
- Limitation: No complete algorithm for data-dependent promotion

#### PART II: ASSESSING COMPLETENESS OF GENERAL-PURPOSE KNOWLEDGE BASES

(=Wikidata, Google Knowledge Graph, YAGO, ..)

#### How complete are knowledge bases?

# KBs are pretty incomplete

DBpedia: contains 6 out of 35 Dijkstra Prize winners 😕





YAGO: the average number of children per person is **0.02** ⊗



Google Knowledge Graph: ``Points of Interest'' – Completeness? 😕

## KBs are pretty complete



DBpedia: 167 out of 199 Nobel laureates in Physics 🙂

All     Images     Values     News     Elberger     News     Exception       Constant Formation of Movies       Constant formation of Movies <td co<="" colspan="4" th=""><th>G<mark>oogle</mark></th><th colspan="7">tarantino movies</th></td>	<th>G<mark>oogle</mark></th> <th colspan="7">tarantino movies</th>				G <mark>oogle</mark>	tarantino movies						
Cuentin Tarantho / Movies		All Images Videos News Shopping More + Search tools										
- F 🔂 🖄 🐝 🗍 🔭		Quentin Tarantino / Movies										
7 📷 🎑 🔛 🎆 🚹												

child	Malia Obama	
		▼ 0 references
		Sasha Obama
		<ul> <li>0 references</li> </ul>

Wikidata: 2 out of 2 children of Obama 😳

Google Knowledge Graph: 36 out of 48 Tarantino movies 🙂

# So, how complete are KBs?



Name	# Entity types	# Entity instances	# Relation types	# Confident facts (relation instances)
Knowledge Vault (KV)	1100	$45\mathrm{M}$	4469	$271\mathrm{M}$
DeepDive [32]	4	$2.7\mathrm{M}$	34	$7 \mathrm{M}^{a}$
NELL [8]	271	$5.19\mathrm{M}$	306	$0.435 \mathrm{M}^{b}$
PROSPERA [30]	11	N/A	14	$0.1\mathrm{M}$
YAGO2 [19]	350,000	$9.8\mathrm{M}$	100	$4\mathrm{M}^{c}$
Freebase [4]	1,500	$40\mathrm{M}$	35,000	$637 \mathrm{M}^{d}$
Knowledge Graph (KG)	1,500	$570\mathrm{M}$	35,000	$18,000\mathrm{M}^e$

KB engineers have only tried to make KBs bigger. The point, however is to **understand** what they are actually trying to approximate.

There are **known knowns**; there are things we know we know. We also know there are **known unknowns**; that is to say we know there are some things we do not know. But there are also **unknown unknowns** – the ones we don't know we don't know.

#### [Dong et al., KDD 2014]



#### http://www.how-complete-are-kbs.today



# How can we get there?

- Find patterns in data that tell about completeness
  - Extended AMIE system to mine rules about completeness
     [WSDM 2017]

```
hockeyPlayer(x) \rightarrow Incomplete(x, hasChild)
scientist(x), hasWonNobelPrize(x) \rightarrow Complete(x, graduatedFrom)
```

- Extract cardinality information from texts
  - Manually created patterns that allow to find information about 178% more children than Wikidata currently contains [ISWC 2016 Poster]

"John lives with his spouse and **five** children on a farm in Alabama."

#### Are we done soon?

#### Challenge 1 – Modelling incompleteness

**Google** Knowledge Graph *knows 6 out of 7 children of President Garfield* 

• RDF blank node for the 7th child?

→No identity, thus no way to say that the 7th child is different from the previous 6

• Creating a new nameless entity?

→Not known that the 7th child is different from all other entities in the KB

Wikidata: New property nr_of_children(Garfield, 7)?
 → Semantic relation between ``hasChild'' and ``nr_of_children'' lost

# Challenge 2 – Beyond triples

These are facts for humans:

Galileo Galilei:

Contrary to the dogma of the time, postulates that the earthorbits the sun[http://discovermagazine.com/2007/jul/20-things-you-didn2019t-know-about-galileo]

Reinhold Messner:

 First person to climb all mountains >8000mt without

 supplemental oxygen
 [http://www.telegraph.co.uk/travel/lists/reinhold-messner-tribute-quotes-facts/]

Toothbrush? MP3-Player?

These are not KB triples

FirstPersonToClimbAllMountainsAbove8000Without(Supplemental oxygen, Reinhold Messner)

 $\rightarrow$  How incomplete are KB models?

#### Challenge 3 – Aggregating completeness

Can we say whether a KB knows more about Obama than about Trump?

Or about Ronaldo than about Justin Bieber?







 $\rightarrow$  Need to understand relevance, interestingness

https://www.wikidata.org/wiki/User:Ls1g/Recoin

# Outlook

- 1. KBs contain a lot of knowledge, but little is known about how much they actually know
- 2. Completeness can be assessed from within KBs using pattern mining, or using external sources
- 3. Big challenges ahead
  - How to model incompleteness in KBs?
  - How incomplete are KB models?
  - How to aggregate completeness?