Top-k Queries over Uncertain Scores

Qing Liu, Debabrota Basu, Talel Abdessalem, Stéphane Bressan

 Modern recommendation systems leverage some forms of collaborative user (crowd) sourced collection of information.

- Modern recommendation systems leverage some forms of collaborative user (crowd) sourced collection of information.
- Crowdsourcing Platforms
 - easily announce their needs to the crowd / get access to the information they need
 - choose the highest quality / most competitively priced

- Modern recommendation systems leverage some forms of collaborative user (crowd) sourced collection of information.
- Crowdsourcing Platforms
 - easily announce their needs to the crowd / get access to the information they need
 - choose the highest quality / most competitively priced

Examples: TripAdvisor

2/19

CoopIS 2016 Qing Liu et.al. Top-k Queries over Uncertain Scores

- ◀ ◻ ▶ ◀ @ ▶ ◀ 둘 ▶ ◀ 둘 ▶ ~ 둘 ~ 옷

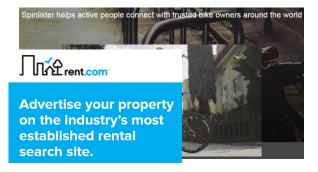
- Modern recommendation systems leverage some forms of collaborative user (crowd) sourced collection of information.
- Crowdsourcing Platforms
 - easily announce their needs to the crowd / get access to the information they need
 - choose the highest quality / most competitively priced
- Examples: TripAdvisor
 - collaborative user or crowdsourced collection of information, e.g., user generated ratings and reviews, to recommend travel plans and hotels, vacation rentals and restaurants.

- Crowdsourcing and Collaborative Economy:
 - communities or crowds rent, share, sell products or services

- Crowdsourcing and Collaborative Economy:
 - communities or crowds rent, share, sell products or services

Crowdsourcing and Collaborative Economy:

communities or crowds rent, share, sell products or services



Crowdsourcing and Collaborative Economy:

communities or crowds rent, share, sell products or services

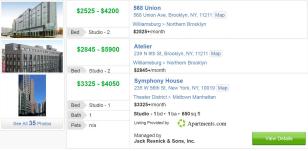
► Independent collection of information → uncertainty and diversity.

- ► Independent collection of information → uncertainty and diversity.
- Objects (services, vacation rentals and restaurants...) have uncertain scores (quality, price...).

- ► Independent collection of information → uncertainty and diversity.
- Objects (services, vacation rentals and restaurants...) have uncertain scores (quality, price...).

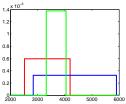
- ► Independent collection of information → uncertainty and diversity.
- Objects (services, vacation rentals and restaurants...) have uncertain scores (quality, price...).

- ► Independent collection of information → uncertainty and diversity.
- Objects (services, vacation rentals and restaurants...) have uncertain scores (quality, price...).

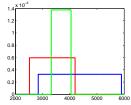


- Ranking is one of the building blocks of recommendation.
- A top-k query returns the sequence of the k objects with the highest scores, given a database of objects ranked by their scores for the feature of interest.

- Ranking is one of the building blocks of recommendation.
- A top-k query returns the sequence of the k objects with the highest scores, given a database of objects ranked by their scores for the feature of interest.
- Price of the apartments.



- Ranking is one of the building blocks of recommendation.
- A top-k query returns the sequence of the k objects with the highest scores, given a database of objects ranked by their scores for the feature of interest.
- Price of the apartments.



 With uncertain scores, a top-k query can only return an uncertain result.

Related Work

 Soliman, Hyas and Ben-David [Soliman and Ilyas, 2009] study top-k queries over objects with uncertain scores given as probability distributions.

Related Work

- Soliman, Hyas and Ben-David [Soliman and Ilyas, 2009] study top-k queries over objects with uncertain scores given as probability distributions.
- In this paper, we consider probabilistic top-k queries under the top-k semantics as in [Soliman and Ilyas, 2009].

O: a set of n objects;

- \mathcal{O} : a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;

- ▶ O: a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;
- X_i : a random variable, equals to $s(o_i)$;

- O: a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;
- ► X_i: a random variable, equals to s(o_i);
- f_i : bounded continuous probability density function of X_i ;

- O: a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;
- ► X_i: a random variable, equals to s(o_i);
- ► *f_i*: bounded continuous probability density function of *X_i*;
- $\pi^{(k)} = [o_1, \cdots, o_k]$: sequence of k objects in \mathcal{O} ;

- O: a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;
- ► X_i: a random variable, equals to s(o_i);
- ► *f_i*: bounded continuous probability density function of *X_i*;
- $\pi^{(k)} = [o_1, \cdots, o_k]$: sequence of k objects in \mathcal{O} ;
- $Pr(\pi^{(k)}): \text{ probability of } \pi^{(k)} \text{ be the top-}k \text{ sequence;}$ $Pr(\pi^{(k)}) = \int_{-\infty}^{\infty} \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_k} f_1(x_1) \cdots f_n(x_n) \ dx_n \cdots dx_1$ (1)

- O: a set of n objects;
- $s(o_i)$: the score of an object $o_i \in \mathcal{O}$;
- ► X_i: a random variable, equals to s(o_i);
- ► *f_i*: bounded continuous probability density function of *X_i*;
- $\pi^{(k)} = [o_1, \cdots, o_k]$: sequence of k objects in \mathcal{O} ;
- $Pr(\pi^{(k)})$: probability of $\pi^{(k)}$ be the top-k sequence; $Pr(\pi^{(k)}) = \int_{-\infty}^{\infty} \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_k} f_1(x_1) \cdots f_n(x_n) \ dx_n \cdots dx_1$ (1)
- (Objective:) **Probabilistic top**-k sequence: the $\pi^{(k)}$ that maximizes $Pr(\pi^{(k)})$.

▶ Naive: calculate $Pr(\pi^{(k)})$ for every possible sequence $\pi^{(k)}$ and returning the $\pi^{(k)}$ with the highest $Pr(\pi^{(k)})$.

• $\frac{n!}{(n-k)!}$ possible sequences to examine.

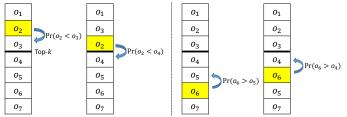
- ▶ Naive: calculate $Pr(\pi^{(k)})$ for every possible sequence $\pi^{(k)}$ and returning the $\pi^{(k)}$ with the highest $Pr(\pi^{(k)})$.
 - $\frac{n!}{(n-k)!}$ possible sequences to examine.
- Branch-and-Bound [Soliman et al., 2010]: Prune some $\pi^{(k)}$ s.
 - Worst case: $\frac{n!}{(n-k)!}$ possible sequences to examine.

- ▶ Naive: calculate $Pr(\pi^{(k)})$ for every possible sequence $\pi^{(k)}$ and returning the $\pi^{(k)}$ with the highest $Pr(\pi^{(k)})$.
 - $\frac{n!}{(n-k)!}$ possible sequences to examine.
- ▶ Branch-and-Bound [Soliman et al., 2010]: Prune some $\pi^{(k)}$ s.
 - Worst case: $\frac{n!}{(n-k)!}$ possible sequences to examine.
- Soliman's Algorithm [Soliman et al., 2010]: searches the space of candidate probabilistic top-k sequences using a Markov chain Monte Carlo algorithm.

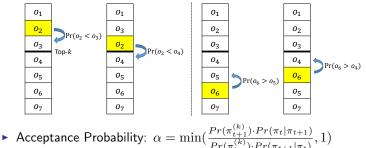
- ▶ Naive: calculate $Pr(\pi^{(k)})$ for every possible sequence $\pi^{(k)}$ and returning the $\pi^{(k)}$ with the highest $Pr(\pi^{(k)})$.
 - $\frac{n!}{(n-k)!}$ possible sequences to examine.
- ▶ Branch-and-Bound [Soliman et al., 2010]: Prune some $\pi^{(k)}$ s.
 - Worst case: $\frac{n!}{(n-k)!}$ possible sequences to examine.
- Soliman's Algorithm [Soliman et al., 2010]: searches the space of candidate probabilistic top-k sequences using a Markov chain Monte Carlo algorithm.
- In this paper, we explore the variants of Markov chain Monte Carlo algorithms.

- Soliman's Algorithm
 - Initial state: a rank over the n objects

- Soliman's Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:

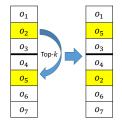


- Soliman's Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:

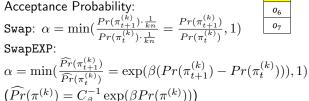


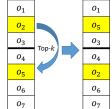
- Swap and SwapEXP Algorithm
 - Initial state: a rank over the n objects

- Swap and SwapEXP Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:

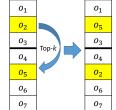


- Swap and SwapEXP Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:





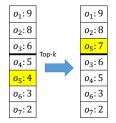
- Swap and SwapEXP Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:



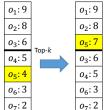
- $\begin{array}{l} \begin{array}{l} \begin{array}{c} \text{Acceptance Probability:} & & & & \\ \text{Swap: } \alpha = \min(\frac{Pr(\pi_{t+1}^{(k)}) \cdot \frac{1}{kn}}{Pr(\pi_{t}^{(k)}) \cdot \frac{1}{kn}} = \frac{Pr(\pi_{t+1}^{(k)})}{Pr(\pi_{t}^{(k)})}, 1) & & \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \sigma_{6} \\ \sigma_{7} \end{array} \\ \text{SwapEXP:} \\ \alpha = \min(\frac{\widehat{Pr}(\pi_{t+1}^{(k)})}{\widehat{Pr}(\pi_{t}^{(k)})} = \exp(\beta(Pr(\pi_{t+1}^{(k)}) Pr(\pi_{t}^{(k)}))), 1) \\ (\widehat{Pr}(\pi^{(k)}) = C_{\beta}^{-1} \exp(\beta Pr(\pi^{(k)}))) \end{array} \end{array}$
- SwapEXP is more likely to reject the "worse" candidate state.

- ReSample and ReSampleEXP Algorithm
 - Initial state: a rank over the n objects

- ReSample and ReSampleEXP Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:

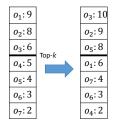


- ReSample and ReSampleEXP Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:
 - ► Acceptance Probability: ReSample: $\alpha = \min(\frac{Pr(\pi_{t+1}^{(k)}) \cdot Pr(\pi_t | \pi_{t+1})}{Pr(\pi_t^{(k)}) \cdot Pr(\pi_{t+1} | \pi_t)}, 1)$ ReSampleEXP: $\alpha = \min(\frac{Pr(\pi_t | \pi_{t+1})}{Pr(\pi_{t+1} | \pi_t)} \cdot \exp(\beta(Pr(\pi_{t+1}^{(k)}) - Pr(\pi_t^{(k)}))), 1).$

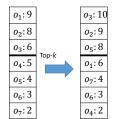


- ReSampleAll Algorithm
 - Initial state: a rank over the n objects

- ReSampleAll Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:



- ReSampleAll Algorithm
 - Initial state: a rank over the n objects
 - Candidate State:
 - Acceptance Probability: ReSample: $\alpha = 1$



Datasets: synthetic datasets

		Λ				
	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\sim	U[0, 1]	

Datasets: synthetic datasets

Table: Distributions

	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\langle	U[0, 1]	

• default: uniform score distributions, median score of o_i : $\frac{l_i+u_i}{2}$, width: $u_i - l_i$

Datasets: synthetic datasets

	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\langle	U[0, 1]	

- default: uniform score distributions, median score of o_i : $\frac{l_i+u_i}{2}$, width: $u_i l_i$
- Metrics

Datasets: synthetic datasets

		Λ				
	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\langle	U[0, 1]	

- default: uniform score distributions, median score of o_i : $\frac{l_i+u_i}{2}$, width: $u_i l_i$
- Metrics
 - Probability of the Probabilistic top-k sequence (higher \rightarrow better)

Datasets: synthetic datasets

		Λ				
	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\langle	U[0, 1]	

- default: uniform score distributions, median score of o_i : $\frac{l_i+u_i}{2}$, width: $u_i l_i$
- Metrics
 - Probability of the Probabilistic top-k sequence (higher \rightarrow better)
 - Convergence of the Markov chains (Gelman-Rubin Convergence Diagnostic)

Datasets: synthetic datasets

Table: Distributions

		Λ				
	Setting 1		Setting 2		Setting 3	
median score	G(0.5, 0.05)		G(0.5, 0.2)		U[0, 1]	
width	G(0.5, 0.05)		G(0.5, 0.2)	\langle	U[0, 1]	

▶ default: uniform score distributions, median score of o_i : $\frac{l_i+u_i}{2}$, width: $u_i - l_i$

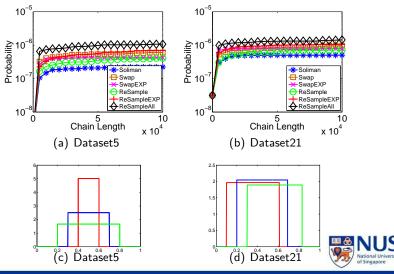
13/19

- Metrics
 - Probability of the Probabilistic top-k sequence (higher \rightarrow better)
 - Convergence of the Markov chains (Gelman-Rubin Convergence Diagnostic)
 - Efficiency (Complexity and runtime)

Top-k Queries over Uncertain Scores

- Performance Evaluation
 - Effectiveness of Six Algorithms

Effectiveness of Six Algorithms (Probability)

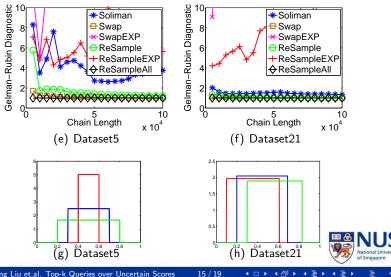


CoopIS 2016 Qing Liu et.al. Top-k Queries over Uncertain Scores

14/19 < 🗆 🕨 < 🗇

Top-k Queries over Uncertain Scores

Convergence of the Markov Chains



< □ ▶ - ∢ 🗗

CoopIS 2016 Qing Liu et.al. Top-k Queries over Uncertain Scores

Top-k Queries over Uncertain Scores Performance Evaluation Efficiency

Table: Worst Case Time Complexity of Generating Next State

	Soliman	Swap(EXP)	ReSample(EXP)	ReSampleAll
Time Complexity	O(nk)	O(1)	O(n)	O(nlogk)

Table: Runtime Per Step of the Algorithms (seconds)

	Soliman	Swap	SwapEXP	ReSample	ReSampleEXP	ReSampleAll
Runtime Per Step	0.0058	1.9128	0.1163	0.0523	0.0071	0.9056

Conclusion

We explore the design space for Metropolis-Hastings Markov chain Monte Carlo algorithms.

Conclusion

- We explore the design space for Metropolis-Hastings Markov chain Monte Carlo algorithms.
- We verify through extensive experiments that the proposed algorithms are more effective than the state of the art approach.

Conclusion

- We explore the design space for Metropolis-Hastings Markov chain Monte Carlo algorithms.
- We verify through extensive experiments that the proposed algorithms are more effective than the state of the art approach.
- ReSampleAll is the best, since it samples directly from the target distribution instead of depending on "local" information.

Thank you! Questions? Top-k Queries Uncertain Scores MCMC liuqing@u.nus.edu

References I

Soliman, M. A. and Ilyas, I. F. (2009).
Ranking with uncertain scores.
In *ICDE*, pages 317–328.

 Soliman, M. A., Ilyas, I. F., and Ben-David, S. (2010).
Supporting ranking queries on uncertain and incomplete data. *The VLDB Journal*, 19(4):477–501.

