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•  May	  help	  to	  find	  	  
– Relevant	  and	  personalized	  informaFon	  by	  
following/exploring	  the	  Fes	  between	  elements	  	  

•  Groups	  and	  communiFes	  within	  a	  network	  

•  InfluenFal	  actors	  in	  a	  group/network	  

•  Network	  evoluFon	  and	  predicFon	  

•  etc.	  
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AnalyFcs	  in	  
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•  Knowing	  the	  groups	  and	  communiFes	  
– Helps	  understand	  the	  shared	  interests,	  status,	  …	  

•  what	  kind	  of	  products	  or	  services	  to	  suggest?	  
•  How	  to	  communicate	  with	  actors?	  

•  IdenFfying	  the	  	  influenFal	  actors	  	  
–  Can	  enable	  to	  gauge	  their	  impact	  (or	  influence)	  on	  the	  
other	  employees	  or	  clients	  	  

–  Predict	  the	  consequences	  of	  their	  departure	  

•  Understanding	  the	  dynamics	  of	  the	  network	  
structure	  
–  allows	  to	  forecast	  the	  behavior	  of	  clients	  and	  plan	  
new	  changes	  and	  products	  



MoFvaFon	  	  (I)	  
•  The	  network	  structure	  is	  very	  dynamic	  

–  enFFes	  and	  links	  appear	  and	  disappear	  frequently	  
–  Ex:	  social	  networking	  sites,	  companies,	  school,	  …	  

•  Some	  nodes	  have	  more	  influence	  than	  others	  (i.e.	  central	  nodes)	  
–  they	  have	  the	  best	  ability	  to	  spread	  the	  informaFon	  flow	  within	  the	  

network	  	  

•  The	  disappearance	  of	  a	  central	  node	  does	  not	  have	  	  the	  same	  
impact	  as	  the	  deleFon	  of	  a	  rather	  peripheral	  one	  

•  Non-‐influenFal	  nodes,	  grouped	  as	  a	  set,	  	  may	  play	  an	  important	  
role	  in	  the	  informaFon	  flow	  or	  the	  network	  connecFvity.	  
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ObjecFves	  

•  Predict	  the	  network	  evoluFon	  aaer	  a	  	  node/
group	  disappearance	  
– Manage	  the	  network	  structure	  in	  such	  a	  way	  that	  
a	  breakdown	  will	  never	  happen	  even	  if	  an	  actor	  
set	  disappears	  
•  add	  new	  links	  	  
•  select	  a	  group/node	  subsFtute	  based	  on	  the	  leaving	  
group	  configuraFons	  (or	  node	  role)	  
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Related	  work	  
•  Several	  studies	  deal	  with	  link	  predicFon	  and/or	  network	  evoluFon	  in	  a	  

social	  network	  	  
–  Liben-‐Nowell	  &	  Kleinberg	  (2003)	  	  

•  Exploit	  the	  proximity	  of	  nodes	  within	  a	  network	  to	  predict	  network	  
structure	  by	  adding	  new	  edges.	  	  

•  Find	  a	  subsFtute	  to	  the	  deleted	  node	  provided	  it	  plays	  a	  role	  in	  the	  
network.	  New	  links	  can	  then	  be	  established	  according	  to	  some	  predefined	  
opFons	  (e.g.	  clique,	  ring).	  

–  Missaoui	  et	  al.	  (2011)	  Sarr	  et	  Missaoui	  (2012)	  
•  predict	  the	  new	  structure	  of	  a	  social	  network	  once	  a	  node	  disappears	  
•  possibly	  find	  a	  subsFtute	  for	  the	  leaving	  node	  provided	  it	  plays	  a	  role	  in	  
the	  network	  and/or	  the	  informaFon	  flow	  quality.	  

•  Most	  of	  the	  proposed	  soluFons	  	  
–  can	  explode	  the	  number	  of	  links	  within	  the	  network.	  
–  do	  not	  deal	  with	  a	  group	  disappearance	  that	  can	  happen	  in	  any	  social	  network	  
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Basic	  concepts	  	  
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Some	  definiFons	  
•  Degree	  centrality	  

–  provides	  the	  number	  of	  direct	  links	  of	  a	  node	  
•  it	  helps	  idenFfy	  leaders	  which	  have	  the	  highest	  number	  of	  links	  within	  the	  

network.	  

•  Betweenness	  centrality	  	  
–  expresses	  the	  amount	  of	  control	  that	  a	  node	  (or	  a	  group	  of	  verFces)	  

possesses	  over	  the	  interacFons	  of	  other	  nodes	  in	  the	  network.	  
•  It	  is	  high	  for	  mediators	  (or	  brokers)	  which	  are	  nodes	  that	  act	  as	  intermediaries	  

between	  other	  nodes	  or	  as	  joins	  between	  communiFes.	  

•  Closeness	  centrality	  
–  indicates	  how	  a	  node	  is	  close	  to	  the	  other	  nodes	  in	  the	  network	  and	  

hence	  how	  fast	  informaFon	  circulates	  from	  a	  given	  node	  to	  other	  
reachable	  nodes	  in	  the	  network.	  
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	  Node	  Classes	  
•  Nodes	  inside	  a	  group	  are	  classified	  into	  two	  categories	  based	  on	  

their	  centrality	  measures	  (degree,	  betweenness,	  and	  closeness	  
centrality)	  
–  CriFcal	  nodes	  

•  Nodes	  playing	  central	  roles:	  i.e.	  nodes	  with	  the	  highest	  centrality	  
measures	  

•  Three	  types	  of	  criFcal	  nodes	  :	  leader,	  mediator	  and	  witness	  
•  criFcal	  disappearance	  :	  criFcal	  nodes	  that	  are	  unique	  in	  their	  class	  	  	  

	  
–  Non	  criFcal	  nodes	  

•  Nodes	  playing	  less	  central	  roles	  
•  Two	  possible	  types	  

–  Finger	  :	  node	  whose	  centrality	  measure	  deviates	  slightly	  from	  the	  one	  of	  a	  criFcal	  node	  	  
–  Follower	  :	  neither	  criFcal	  nor	  finger	  node	  

•  non-‐criFcal	  disappearance	  :	  either	  non-‐criFcal	  deleted	  node	  or	  a	  criFcal	  
node	  which	  is	  not	  unique	  in	  its	  class	  
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6 Idrissa Sarr, Rokia Missaoui

Fig. 1 A modified version of the KITE social network.

Degree Betweenness Closeness Eccen-
centrality centrality centrality tricity

1 0.214 0 0.424 4
2 0.357 0.371 0.482 4
3 0.357 0.322 0.518 3
4 0.428 0.067 0.466 4
5 0.285 0.439 0.482 4
6 0.214 0.06 0.368 5
7 0.142 0 0.285 6
8 0.285 0.036 0.437 4
9 0.357 0.146 0.466 4
10 0.214 0 0.388 4
11 0.214 0.263 0.368 5
12 0.142 0 0.280 6
13 0.142 0 0.280 6
14 0.285 0.203 0.378 5
15 0.07 0 0.280 6

Table 1 The centrality and eccentricity values of the KITE nodes.

eccentricity of nodes computed through UCINET software. One may first observe
that nodes 3, 4, and 5 are critical nodes in that network since they represent a
witness, a leader and a mediator, respectively. If we consider a deviation χ equal
to 20%, we get three fingers of the leader 4 which correspond to nodes 2, 3 and 9.
Moreover, we have node 2 as the only finger of the mediator and six fingers of the
witness (2, 5, 4, 9, 8 and 1 in decreasing order). For each of the tree centrality mea-
sures, a node which is neither on the critical node list nor fingers list is a follower.
Based on the eccentricity values of the nodes, we observe that node 3 has the
lowest value, i.e., it is the node which disseminates more rapidly the information.
Hence, it is trivial to understand that the disappearance of node 3 does not have
the same impact in the information flow quality than the disappearance of node
15. Thus, the disappearance of any node must be managed based on its role in the
network.

Node	  Classes	  

11	  

Leader	  

Mediator	  

Witness	  

If	  we	  set	  a	  deviaFon	  of	  20%,	  then	  node	  2,	  3	  and	  9	  will	  be	  
the	  fingers	  of	  the	  leader	  node	  4.	  	  



InformaFon	  Flow	  Quality	  
•  Hypothesis	  

–  Assume	  S	  a	  connected,	  	  undirected	  and	  unweighted	  network	  

•  Eccentricity	  of	  a	  node	  i	  :	  ε	  (i)	  
–  Greatest	  geodesic	  distance	  between	  i	  and	  any	  other	  node	  j	  in	  the	  network	  

•  InformaFon	  flow	  degree	  of	  S	  :	  λF	  (S)	  
•  Total	  number	  N	  of	  nodes	  that	  can	  receive	  the	  informaFon	  

–  InformaFon	  flow	  (IF)	  quality	  of	  S	  :	  ΥF	  (S)	  
•  ΥF	  (S)	  =	  	  <	  λF	  (S),	  ε	  (w)	  >	  
•  ε	  (w)	  is	  the	  eccentricity	  of	  the	  witness	  that	  is	  the	  best	  entry	  of	  the	  

network	  based	  on	  its	  closeness	  centrality	  
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Dealing	  with	  single	  node	  
disappearance	  
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Managing	  a	  single	  node	  
disappearance?	  

•  Main	  idea	  
–  Aaer	  the	  disappearance	  of	  a	  node,	  add	  new	  links	  and	  possibly	  
find	  a	  subsFtute	  if	  the	  informaFon	  flow	  quality	  is	  not	  ensured	  
(e.g.,	  disconnected	  network,	  delays	  in	  informaFon	  propagaFon)	  

14	  

Aaer	  the	  disappearance	  of	  node	  3,	  
we	  do	  not	  need	  to	  add	  new	  links	  
since	  the	  network	  is	  sFll	  connected	  
	  	  



Managing	  a	  single	  node	  
disappearance?	  

•  Main	  idea	  
–  Aaer	  the	  disappearance	  of	  a	  node,	  add	  new	  links	  and	  possibly	  
find	  a	  subsFtute	  if	  the	  informaFon	  flow	  quality	  is	  not	  ensured	  
•  i.e.	  if	  	  the	  network	  is	  disconnected	  
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Aaer	  the	  disappearance	  of	  node	  2,	  
we	  add	  only	  one	  link	  	  



Requirements	  
•  Let	  S’	  be	  the	  network	  obtained	  aaer	  	  

–  (i)	  deleFng	  node	  Ni	  from	  S,	  	  
–  (ii)	  removing	  links	  alached	  to	  Ni,	  	  
–  and	  (iii)	  adding	  new	  links.	  

•  The	  idea	  is	  to	  minimize	  the	  number	  of	  added	  links	  while	  
maintaining	  the	  following	  compound	  condiFon:	  
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Managing Node Disappearance Based on Information Flow in Social Networks 7

Our objective is to determine the “optimal” update to conduct in the network
in such a way that the overall information dissemination within the network stays
quite similar to the one before the node disappearance. One may compute the vari-
ation of some measures such as the density or the degree distribution of a network,
or the distance between two nodes like the geodesic distance or the eccentricity.
Indeed, these measures give a good understanding and quantification of the net-
work changes but they can not give indices about the QoS of the information flow.
For instance, these measures can not show whether the information flow is still
the same after a node disappearance. Hence, we introduce a qualitative measure
to assess the impact of a node disappearance and predict the new structure of the
network.

With this in mind, we assume that the network is connected and we define
λF (S), the information flow degree within S as the overall number N of nodes
that can receive the information. Furthermore, we define the information flow
quality, γF , of S as:

γF (S) = �λF (S), �S(w)�,

where �S(w) is the eccentricity of the witness in the network. We claim that com-
bining the information flow degree and the witness eccentricity is enough to mea-
sure the quality of the information flow. Since the witness node is the closest node
to any other node in the network, it is the best entry to the network for putting
new information, its eccentricity determines how long it takes to an information
to reach any node of S. Moreover, λF (S) gives the total number of nodes that can
receive an information introduced into the network from the witness.

Let S� be the network obtained after (i) deleting node Ni from S, (ii) removing
links attached to Ni, and (iii) adding new links. We compute the impact of a node
deletion as the difference between the information flow quality of S and S�, i.e.,
γF (S)− γF (S

�). The idea is to minimize the number of added links in such a way
that the following inequalities hold:

λF (S)− λF (S
�)

λF (S)
≤ ε1 ∧ �S�(w)− �S(w)

�S(w)
≤ ε2 (1)

Our approach is an impact-based one since we use the expected impact thresholds
ε1 and ε2 defined by the user for deciding how to structure the network.

The following sections describe algorithms and mechanisms devised to deal
with node disappearance and to maintain an acceptable level of the information
flow quality.

4 Dealing with node disappearance

As pointed out earlier, we have two main types of nodes within the network: critical
and non-critical nodes. Hence, we consider two kinds of node disappearance: criti-
cal disappearance and non-critical one. A node disappearance is called non-critical
when the corresponding node is a non-critical one. It is a critical disappearance if
the deleted node is a critical and unique one in its category.

Our algorithm is based on both geodesic distance between nodes and the degree
of nodes to determine the new structure of the network after a node disappearance.
In fact, after a node disappearance, there may be many alternatives to restructure

In	  other	  words,	  aaer	  a	  node	  disappearance,	  what	  is	  the	  “opFmal”	  update	  that	  	  	  
maintains	  the	  IF	  quality	  w.r.t	  	  some	  given	  deviaFons	  ε1	  and	  ε2	  	  	  



Dealing	  with	  	  criFcal	  disappearance	  
•  A	  criFcal	  disappearance	  of	  Nc	  is	  handled	  as	  follows:	  

1.  Nc	  has	  some	  fingers	  (at	  least	  one).	  In	  this	  case,	  the	  first	  finger	  (F1	  )	  
(	  finger	  with	  the	  highest	  centrality	  measure)	  is	  chosen	  as	  the	  
subsFtute	  

2.  There	  is	  no	  finger	  to	  replace	  the	  leaving	  criFcal	  node.	  Then,	  one	  of	  
the	  remaining	  criFcal	  nodes	  is	  selected	  as	  a	  subsFtute	  	  	   	  	  
•  The	  criFcal	  node	  with	  the	  shortest	  geodesic	  distance	  to	  Nc	  is	  used	  as	  a	  

subsFtute	  	  	  
3.  There	  is	  no	  other	  criFcal	  nodes,	  which	  means	  that	  the	  leaving	  node	  

was	  the	  only	  criFcal	  node	  (e.g.,	  a	  central	  node	  of	  a	  star	  network).	  
Then,	  one	  of	  the	  Nc	  neighbors	  with	  the	  highest	  centrality	  measure	  is	  
selected	  as	  the	  subsFtute.	  

•  For	  each	  one	  of	  the	  three	  cases,	  any	  neighbor	  of	  Nc	  is	  linked	  to	  
the	  subsFtute	  if	  ever	  it	  has	  not	  been	  already	  linked	  

17	  



CriFcal	  disappearance	  –	  JOAN-‐C	  	  
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Node	  3	  is	  the	  subsFtute	  since	  it	  may	  be	  the	  finger	  and/or	  the	  neighbor	  
with	  the	  highest	  centrality	  measure	  	  	  



Dealing	  with	  non-‐criFcal	  
disappearance	  

•  A	  non-‐criFcal	  disappearance	  of	  Ni	  is	  handled	  as	  follows:	  
	  

1.  The	  degree	  of	  Ni	  is	  equal	  to	  one,	  i.e.,	  Ni	  has	  one	  neighbor.	  	  
•  Nothing	  to	  do	  because	  both	  condiFons	  in	  the	  previous	  Formula	  	  are	  

true	  for	  a	  network	  of	  size	  at	  least	  equal	  to	  1/ε1	  .	  

2.  The	  degree	  of	  Ni	  is	  greater	  than	  one.	  	  
•  While	  the	  tolerated	  informaFon	  flow	  degree	  is	  not	  ensured,	  a	  link	  

between	  two	  neighbors	  Nj	  and	  Nk	  of	  Ni	  is	  added	  as	  follows:	  
1.  A	  direct	  link	  is	  added	  if	  Nj	  or	  Nk	  is	  a	  criFcal	  node.	  
2.  An	  indirect	  link	  (between	  Nj	  and	  Nk	  )	  is	  added	  if	  neither	  Nj	  nor	  Nk	  is	  a	  

criFcal	  one.	  The	  indirect	  link	  is	  set	  between	  Nj	  and	  Nk	  through	  another	  
neighbor	  Ns	  which	  has	  the	  shortest	  path	  to	  a	  criFcal	  node	  Nc.	  
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Non-‐criFcal	  disappearance	  -‐	  JOAN	  (1)	  
A	  cri1cal	  node	  is	  in	  the	  	  
neighborhood	  of	  the	  leaving	  node	  B	  
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Our	  
approach	  

With	  clique	  opFon	  to	  
link	  the	  neighbors	  of	  B	  



Non-‐criFcal	  disappearance	  -‐	  JOAN	  (2)	  

A	  criFcal	  node	  is	  not	  in	  the	  	  
neighborhood	  of	  the	  leaving	  node	  7	  
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CriFcal	  
node	  



Managing	  a	  group	  disappearance	  
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ConfiguraFons	  of	  a	  	  group	  

•  A	  group	  G,	  can	  have	  one	  of	  the	  3	  configuraFons	  
–  Scalered	  	  

•  there	  is	  no	  direct	  link	  for	  any	  couple	  of	  nodes	  in	  G	  

–  ConFnuous	  group	  
•  there	  exists	  a	  direct	  link	  for	  any	  couple	  of	  nodes	  (Ni,	  Nk)	  	  
•  There	  exists	  an	  indirect	  link	  between	  Ni	  and	  Nk	  through	  only	  
nodes	  inside	  G.	  

– Hybrid	  group	  
•  CombinaFon	  of	  both	  previous	  configuraFons	  coexist	  
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Example	  
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sca6ered	   grouped	  

hybrid	  



Scalered	  group	  

•  each	  node	  Ni	  in	  G	  is	  far	  from	  the	  other	  ones	  
–  its	  disappearance	  will	  not	  involve	  another	  node	  Nk	  
in	  the	  group.	  
•  i.e.	  by	  using	  JOAN	  or	  JOAN-‐C,	  we	  can	  face	  the	  
disappearance	  of	  Ni	  without	  using	  any	  Nk	  ∈	  G	  as	  a	  
subsFtute	  or	  linking	  directly	  Ni	  to	  Nk.	  	  

•  For	  each	  node	  Ni	  ∈	  G,	  
– apply	  the	  JOAN	  or	  JOAN-‐C	  algorithm	  based	  on	  the	  
class	  of	  Ni	  to	  manage	  its	  disappearance.	  
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ConFguous	  group	  
•  disappearance	  of	  a	  conFguous	  group	  is	  handled	  in	  one	  

shot.	  
–  JOAN	  or	  JOAN-‐C	  not	  efficient	  

•  	  may	  lead	  to	  Fe	  two	  nodes	  that	  will	  leave	  aaerwards	  because	  they	  
belong	  to	  the	  same	  leaving	  group	  	  

•  Every	  leaving	  group	  is	  replaced	  by	  another	  one	  to:	  
–  preserve	  the	  overall	  shape	  of	  the	  network	  	  
–  and	  ensure	  the	  informaFon	  disseminaFon	  

•  To	  replace	  a	  group	  G,	  we	  consider	  all	  neighbors	  Γ(G)	  of	  any	  
node	  in	  G.	  	  
–  Let	  	  Γ(Ni)	  be	  	  the	  set	  of	  neighbors	  of	  a	  node	  Ni	  
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neighbors of any node in G. Formally, let Γ(G) be the set of
neighbors of G, and Γ(Ni) be the set of neighbors of a node
Ni,

Γ(G) = {
�

i

Γ(Ni) \G | Ni ∈ G}

Moreover, we define the total common neighbors ΓT (G) of a
group G as the set of nodes that belong to each neighborhood
of a node in G.

ΓT (G) = {
�

i

Γ(Ni) | Ni ∈ Γ(G)}

We define the partial common neighbors (ΓP (G)) of the
group as the union of the intersections of the neighbors of
any couple of nodes in G.

ΓP (G) =
�

i,k

{Γ(Ni) ∩ Γ(Nk) | (Ni, Nk) ∈ Γ(G)}

Total and partial common neighbors are defined in order
to know what are the nodes we have to consider first when
we look for a substitute. Therefore, once the neighbors of a
leaving group are determined, the following cases happen :

• ΓT (G) �= ∅, which means that there is at least one
common neighbor for all nodes in G. In such a case,
ΓT (G) is used as a substitute group (i.e., G� = ΓT (G)).
Hence, we add direct links between any couple of nodes
in G� if ever they are not yet directly or indirectly linked.
Furthermore, for any node Ni ∈ Γ(G) and Ni /∈ G� we
add a link between Ni and only one of the nodes in the
substitute group G�.

• ΓT (G) = ∅ ∧ ΓP (G) �= ∅, which means that there is no
common neighbor to all nodes in the group while some
couples of nodes have some common neighbors. In this
case, we try to find a substitute group G�, which contains
the same number of nodes as G, by including some nodes
in ΓP (G). Since we can get several combinations if the
number of partial common neighbors is higher than the
number of nodes in G, then we choose the combination
that has the highest group degree centrality. Choosing
the combination with the highest degree centrality has
the advantage to select the most leading group. We get
the group with the highest group centrality by considering
first nodes with the highest centrality metrics. Once G� is
defined, we use the same process as in the first case to link
nodes in G� and to link the remaining nodes in Γ(G) to
G�. We note that even if a group of nodes with less nodes
than G� may have a degree centrality higher than the one
of G, we choose G� with the same number of nodes as G
to avoid connecting all the elements in Γ(G) to a smaller
set. Moreover, choosing a group substitute with at least
the same cardinality as �G� has the advantage to limit
the number of links to add for maintaining the network
connected after the disappearance of G. In fact, let us
define pNi(G) as the probability that Ni /∈ G be linked

to a group G thats contains n nodes V1, V2, ..., Vn. Since
once Ni is linked to one of the nodes in G it becomes
linked to any other node because the group is contiguous,
thus,

pNi(G) = (pNi(
n�

k=1

Vk)) ≤
n�

k=1

pNi(Vk)

Suppose we have G� ⊆ G��, which means that n� ≤ n”
and assume n” = n and both G� and G�� can be used as
a substitute of G. Thus we obtain,

n���

k=1

pNi(Vk) ≥
n��

k=1

pNi(Vk) ⇒ pNi(G
��) ≥ pNi(G

�).

This inequality means that using G” as a substitute is
more optimal than using G� since it is more likely that
a node Nj ∈ Γ(G) is linked to G” than to G�. In other
words, G” minimizes more the number of links to add
than G� since it is already linked to most of other nodes
in Γ(G) than G� does. This assertion is well confirmed
by our experimental results (see Section VI).

• ΓT (G) = ∅ ∧ ΓP (G) = ∅. This case is the extreme one
since even if the leaving group is contiguous, its nodes
do not even share a single neighbor. To find a substitute
group, G�, we gather a set of nodes from Γ(G) in order
to get a centrality value similar to or higher than the
degree centrality of G. To this end, we choose the same
number of nodes as in G and we consider first the nodes
with the highest centrality measures. Thus, we compute
the group degree centrality and compare it with the one
of G. If the degree centrality of G� is less than the one for
G, we create a new group G” by adding a new node to
G� and check its group degree once again and we repeat
this process until we get a group degree centrality quite
similar to the one of G. However, using a group G� with
the same cardinality as G is enough if |Γ(G)| = |Γ(G�)|
since the group degree centrality of G� will be greater
than the one of G, i.e., CS

D(G) ≤ CS
D(G�). In fact,

CS
D(G�) = |Γ(G�)|

N �−|G�| =
|Γ(G�)|

(N−|G|)−|G�| .

So, if |Γ(G)| = |Γ(G�)| ⇒ CS
D(G�) = |Γ(G)|

(N−|G|)−|G| .

which means that, |Γ(G)|
(N−|G|)−|G| ≥ |Γ(G)|

N−|G| and thus,
CS

D(G) ≤ CS
D(G�).

For instance, let G be the group 2, 4, 8 in Figure 3,
which has a group degree centrality equal to 0, 857.
After the disappearance of G, we observe that ΓT (G) =
∅∧ΓP (G) = ∅. Thus, let us form a group G� = {3, 6, 10}
and compute its group degree centrality, we find that
the value is 1, which is higher than the group degree
of G. Therefore G� is considered as the substitute and
the network looks like the one depicted by Figure 4 after
adding links between node of G� and links between G�

and the remaining node in the neighborhood of G.



ConFguous	  group	  :	  common	  neighbors	  

•  To	  know	  the	  nodes	  to	  consider	  first	  when	  finding	  the	  
subsFtute	  of	  a	  leaving	  group,	  we	  define	  common	  
neighbors.	  

•  Total	  common	  neighbors	  ΓT	  (G)	  
–  the	  set	  of	  nodes	  that	  belong	  to	  each	  neighborhood	  of	  a	  
node	  in	  G	  	  

	  
	  
•  ParFal	  common	  neighbors	  ΓP	  (G)	  

–  The	  union	  of	  the	  intersecFons	  of	  the	  neighbors	  of	  any	  
couple	  of	  nodes	  in	  G.	  	  
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neighbors of any node in G. Formally, let Γ(G) be the set of
neighbors of G, and Γ(Ni) be the set of neighbors of a node
Ni,

Γ(G) = {
�

i

Γ(Ni) \G | Ni ∈ G}

Moreover, we define the total common neighbors ΓT (G) of a
group G as the set of nodes that belong to each neighborhood
of a node in G.

ΓT (G) = {
�

i

Γ(Ni) | Ni ∈ Γ(G)}

We define the partial common neighbors (ΓP (G)) of the
group as the union of the intersections of the neighbors of
any couple of nodes in G.

ΓP (G) =
�

i,k

{Γ(Ni) ∩ Γ(Nk) | (Ni, Nk) ∈ Γ(G)}

Total and partial common neighbors are defined in order
to know what are the nodes we have to consider first when
we look for a substitute. Therefore, once the neighbors of a
leaving group are determined, the following cases happen :

• ΓT (G) �= ∅, which means that there is at least one
common neighbor for all nodes in G. In such a case,
ΓT (G) is used as a substitute group (i.e., G� = ΓT (G)).
Hence, we add direct links between any couple of nodes
in G� if ever they are not yet directly or indirectly linked.
Furthermore, for any node Ni ∈ Γ(G) and Ni /∈ G� we
add a link between Ni and only one of the nodes in the
substitute group G�.

• ΓT (G) = ∅ ∧ ΓP (G) �= ∅, which means that there is no
common neighbor to all nodes in the group while some
couples of nodes have some common neighbors. In this
case, we try to find a substitute group G�, which contains
the same number of nodes as G, by including some nodes
in ΓP (G). Since we can get several combinations if the
number of partial common neighbors is higher than the
number of nodes in G, then we choose the combination
that has the highest group degree centrality. Choosing
the combination with the highest degree centrality has
the advantage to select the most leading group. We get
the group with the highest group centrality by considering
first nodes with the highest centrality metrics. Once G� is
defined, we use the same process as in the first case to link
nodes in G� and to link the remaining nodes in Γ(G) to
G�. We note that even if a group of nodes with less nodes
than G� may have a degree centrality higher than the one
of G, we choose G� with the same number of nodes as G
to avoid connecting all the elements in Γ(G) to a smaller
set. Moreover, choosing a group substitute with at least
the same cardinality as �G� has the advantage to limit
the number of links to add for maintaining the network
connected after the disappearance of G. In fact, let us
define pNi(G) as the probability that Ni /∈ G be linked

to a group G thats contains n nodes V1, V2, ..., Vn. Since
once Ni is linked to one of the nodes in G it becomes
linked to any other node because the group is contiguous,
thus,

pNi(G) = (pNi(
n�

k=1

Vk)) ≤
n�

k=1

pNi(Vk)

Suppose we have G� ⊆ G��, which means that n� ≤ n”
and assume n” = n and both G� and G�� can be used as
a substitute of G. Thus we obtain,

n���

k=1

pNi(Vk) ≥
n��

k=1

pNi(Vk) ⇒ pNi(G
��) ≥ pNi(G

�).

This inequality means that using G” as a substitute is
more optimal than using G� since it is more likely that
a node Nj ∈ Γ(G) is linked to G” than to G�. In other
words, G” minimizes more the number of links to add
than G� since it is already linked to most of other nodes
in Γ(G) than G� does. This assertion is well confirmed
by our experimental results (see Section VI).

• ΓT (G) = ∅ ∧ ΓP (G) = ∅. This case is the extreme one
since even if the leaving group is contiguous, its nodes
do not even share a single neighbor. To find a substitute
group, G�, we gather a set of nodes from Γ(G) in order
to get a centrality value similar to or higher than the
degree centrality of G. To this end, we choose the same
number of nodes as in G and we consider first the nodes
with the highest centrality measures. Thus, we compute
the group degree centrality and compare it with the one
of G. If the degree centrality of G� is less than the one for
G, we create a new group G” by adding a new node to
G� and check its group degree once again and we repeat
this process until we get a group degree centrality quite
similar to the one of G. However, using a group G� with
the same cardinality as G is enough if |Γ(G)| = |Γ(G�)|
since the group degree centrality of G� will be greater
than the one of G, i.e., CS

D(G) ≤ CS
D(G�). In fact,

CS
D(G�) = |Γ(G�)|

N �−|G�| =
|Γ(G�)|

(N−|G|)−|G�| .

So, if |Γ(G)| = |Γ(G�)| ⇒ CS
D(G�) = |Γ(G)|

(N−|G|)−|G| .

which means that, |Γ(G)|
(N−|G|)−|G| ≥ |Γ(G)|

N−|G| and thus,
CS

D(G) ≤ CS
D(G�).

For instance, let G be the group 2, 4, 8 in Figure 3,
which has a group degree centrality equal to 0, 857.
After the disappearance of G, we observe that ΓT (G) =
∅∧ΓP (G) = ∅. Thus, let us form a group G� = {3, 6, 10}
and compute its group degree centrality, we find that
the value is 1, which is higher than the group degree
of G. Therefore G� is considered as the substitute and
the network looks like the one depicted by Figure 4 after
adding links between node of G� and links between G�

and the remaining node in the neighborhood of G.

neighbors of any node in G. Formally, let Γ(G) be the set of
neighbors of G, and Γ(Ni) be the set of neighbors of a node
Ni,

Γ(G) = {
�

i

Γ(Ni) \G | Ni ∈ G}

Moreover, we define the total common neighbors ΓT (G) of a
group G as the set of nodes that belong to each neighborhood
of a node in G.

ΓT (G) = {
�

i

Γ(Ni) | Ni ∈ Γ(G)}

We define the partial common neighbors (ΓP (G)) of the
group as the union of the intersections of the neighbors of
any couple of nodes in G.

ΓP (G) =
�

i,k

{Γ(Ni) ∩ Γ(Nk) | (Ni, Nk) ∈ Γ(G)}

Total and partial common neighbors are defined in order
to know what are the nodes we have to consider first when
we look for a substitute. Therefore, once the neighbors of a
leaving group are determined, the following cases happen :

• ΓT (G) �= ∅, which means that there is at least one
common neighbor for all nodes in G. In such a case,
ΓT (G) is used as a substitute group (i.e., G� = ΓT (G)).
Hence, we add direct links between any couple of nodes
in G� if ever they are not yet directly or indirectly linked.
Furthermore, for any node Ni ∈ Γ(G) and Ni /∈ G� we
add a link between Ni and only one of the nodes in the
substitute group G�.

• ΓT (G) = ∅ ∧ ΓP (G) �= ∅, which means that there is no
common neighbor to all nodes in the group while some
couples of nodes have some common neighbors. In this
case, we try to find a substitute group G�, which contains
the same number of nodes as G, by including some nodes
in ΓP (G). Since we can get several combinations if the
number of partial common neighbors is higher than the
number of nodes in G, then we choose the combination
that has the highest group degree centrality. Choosing
the combination with the highest degree centrality has
the advantage to select the most leading group. We get
the group with the highest group centrality by considering
first nodes with the highest centrality metrics. Once G� is
defined, we use the same process as in the first case to link
nodes in G� and to link the remaining nodes in Γ(G) to
G�. We note that even if a group of nodes with less nodes
than G� may have a degree centrality higher than the one
of G, we choose G� with the same number of nodes as G
to avoid connecting all the elements in Γ(G) to a smaller
set. Moreover, choosing a group substitute with at least
the same cardinality as �G� has the advantage to limit
the number of links to add for maintaining the network
connected after the disappearance of G. In fact, let us
define pNi(G) as the probability that Ni /∈ G be linked

to a group G thats contains n nodes V1, V2, ..., Vn. Since
once Ni is linked to one of the nodes in G it becomes
linked to any other node because the group is contiguous,
thus,

pNi(G) = (pNi(
n�

k=1

Vk)) ≤
n�

k=1

pNi(Vk)

Suppose we have G� ⊆ G��, which means that n� ≤ n”
and assume n” = n and both G� and G�� can be used as
a substitute of G. Thus we obtain,

n���

k=1

pNi(Vk) ≥
n��

k=1

pNi(Vk) ⇒ pNi(G
��) ≥ pNi(G

�).

This inequality means that using G” as a substitute is
more optimal than using G� since it is more likely that
a node Nj ∈ Γ(G) is linked to G” than to G�. In other
words, G” minimizes more the number of links to add
than G� since it is already linked to most of other nodes
in Γ(G) than G� does. This assertion is well confirmed
by our experimental results (see Section VI).

• ΓT (G) = ∅ ∧ ΓP (G) = ∅. This case is the extreme one
since even if the leaving group is contiguous, its nodes
do not even share a single neighbor. To find a substitute
group, G�, we gather a set of nodes from Γ(G) in order
to get a centrality value similar to or higher than the
degree centrality of G. To this end, we choose the same
number of nodes as in G and we consider first the nodes
with the highest centrality measures. Thus, we compute
the group degree centrality and compare it with the one
of G. If the degree centrality of G� is less than the one for
G, we create a new group G” by adding a new node to
G� and check its group degree once again and we repeat
this process until we get a group degree centrality quite
similar to the one of G. However, using a group G� with
the same cardinality as G is enough if |Γ(G)| = |Γ(G�)|
since the group degree centrality of G� will be greater
than the one of G, i.e., CS

D(G) ≤ CS
D(G�). In fact,

CS
D(G�) = |Γ(G�)|

N �−|G�| =
|Γ(G�)|

(N−|G|)−|G�| .

So, if |Γ(G)| = |Γ(G�)| ⇒ CS
D(G�) = |Γ(G)|

(N−|G|)−|G| .

which means that, |Γ(G)|
(N−|G|)−|G| ≥ |Γ(G)|

N−|G| and thus,
CS

D(G) ≤ CS
D(G�).

For instance, let G be the group 2, 4, 8 in Figure 3,
which has a group degree centrality equal to 0, 857.
After the disappearance of G, we observe that ΓT (G) =
∅∧ΓP (G) = ∅. Thus, let us form a group G� = {3, 6, 10}
and compute its group degree centrality, we find that
the value is 1, which is higher than the group degree
of G. Therefore G� is considered as the substitute and
the network looks like the one depicted by Figure 4 after
adding links between node of G� and links between G�

and the remaining node in the neighborhood of G.



Finding	  a	  subsFtute	  	  
•  Let	  G’	  =	  subsFtute	  of	  a	  leaving	  group	  G	  

•  ΓT(G)	  ≠	  ∅	  	  :	  	  there	  is	  at	  least	  one	  common	  neighbor	  for	  all	  nodes	  in	  G	  
–  ΓT	  (G)	  is	  used	  as	  a	  subsFtute	  group	  

•  ΓT(G)	  =	  ∅	  ∧	  ΓP(G)	  ≠	  ∅	  	  
–  Set	  G’	  by	  choosing	  n	  nodes	  in	  ΓP(G)	  in	  such	  a	  way	  that	  

•  |G|	  =	  |G’|	  
•  G’	  has	  the	  highest	  group	  degree	  centrality	  

•  ΓT(G)	  =	  ∅	  ∧	  ΓP(G)	  =	  ∅	  
–  Set	  G’	  by	  gathering	  a	  set	  of	  nodes	  from	  Γ(G)	  in	  order	  to	  get	  a	  centrality	  

value	  similar	  to	  or	  higher	  than	  the	  group	  degree	  centrality	  of	  G	  
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ConnecFng	  G’	  to	  G	  neighborhood	  

•  Aaer	  finding	  G’:	  
– add	  direct	  links	  between	  any	  couple	  of	  nodes	  in	  Gʹ′	  
if	  ever	  they	  are	  not	  yet	  directly	  or	  indirectly	  
linked.	  	  

–  for	  any	  node	  Ni	  ∈	  Γ(G)	  and	  Ni	  	  ∉	  Gʹ′,	  we	  add	  a	  link	  
between	  Ni	  and	  only	  one	  of	  the	  nodes	  in	  the	  
subsFtute	  group	  Gʹ′.	  
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Example	  
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Other	  group	  configuraFons	  
•  Hybrid	  

–  first	  idenFfy	  the	  scalered	  and	  conFguous	  subgroups,	  	  
•  for	  each	  subgroup,	  we	  apply	  one	  of	  the	  procedures	  presented	  earlier.	  

•  Group	  disappearance	  with	  idenFfied	  communiFes	  
–  a	  leaving	  group	  	  can	  be	  localized	  either	  in	  one	  single	  community	  
or	  	  spread	  over	  many	  communiFes	  
•  When	  the	  group	  is	  distributed	  over	  several	  communiFes,	  we	  first	  
idenFfy	  such	  communiFes	  and	  the	  corresponding	  subgroups.	  	  
–  For	  each	  subgroup	  within	  a	  community,	  we	  apply	  the	  procedure	  based	  on	  its	  

nature	  (e.g.,	  scalered)	  

•  When	  the	  overall	  group	  of	  the	  leaving	  node	  belongs	  to	  the	  same	  
community,	  apply	  the	  procedure	  described	  above	  for	  a	  subgroup	  
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ValidaFon	  
•  Goal	  

–  Evaluate	  the	  performance	  in	  terms	  of	  execuFon	  Fme	  and	  number	  of	  added	  
links	  when	  node	  disappearance	  becomes	  more	  frequent	  and	  group	  
configuraFons	  vary.	  

•  Data	  sets	  
–  Autonomous	  systems	  AS-‐733	  of	  the	  Stanford	  University	  dataset	  (2009)	  

•  Undirected	  and	  unweighted	  network	  with	  6474	  nodes	  and	  13233	  edges.	  
•  describes	  a	  graph	  of	  Internet	  routers	  with	  a	  communicaFon	  network	  model	  of	  who-‐talks-‐

to-‐whom	  
	  

•  Playorm	  
–  A	  prototype	  that	  uses	  NetworkX	  and	  the	  Python	  language.	  
–  Intel	  Core	  i5	  with	  8	  GB	  of	  RAM	  and	  3.20	  GHz	  running	  under	  Linux	  Ubuntu	  
–  cloud	  infrastructure	  PiCloud	  	  
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Single	  node	  disappearance	  results	  
•  Overall	  performance	  

–  For	  a	  deviaFon	  =	  0	  and	  sparse	  graphs	  
•  Average	  added	  links	  :	  5	  links	  per	  disappearance	  	  
•  Average	  response	  Fme	  :	  less	  than	  80	  ms	  

•  Impact	  of	  the	  informaFon	  flow	  deviaFon	  
–  beyond	  a	  deviaFon	  of	  2,5%	  

•  Average	  added	  links	  is	  less	  than	  1	  per	  disappearance	  
•  The	  eccentricity	  	  decreases	  at	  least	  by	  a	  factor	  of	  60%	  	  
•  For	  more	  than	  60%	  of	  deleFons,	  no	  network	  update	  because	  the	  
requirements	  are	  already	  ensured.	  
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Group	  disappearance	  results	  	  
•  Overall	  performance	  

–  Low	  increase	  of	  the	  number	  of	  added	  links	  
•  Average	  added	  links	  :	  0,2	  links	  per	  disappearance	  with	  40%	  of	  
disappearance.	  	  

–  Response	  Fme	  depends	  on	  the	  network	  density:	  
•  sparse	  graph	  (with	  hybrid	  group	  )	  leads	  to	  less	  added	  links	  	  and	  is	  
less	  Fme	  consuming	  than	  dense	  graph.	  

–  Community	  idenFficaFon	  gives	  more	  performances	  
•  CommuniFes	  lead	  to	  parallelism	  and	  require	  less	  than	  5ms	  where	  
lack	  of	  communiFes	  consume	  50ms	  to	  update	  network	  aaer	  a	  
group	  disappearance	  .	  
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ValidaFon	  graphs	  
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Future	  work	  
	  

•  Ongoing	  work:	  	  
–  we	  plan	  a	  more	  pro-‐acFve	  	  to	  noFfy	  and	  recommend	  ways	  
to	  strengthen	  the	  weak	  links.	  

•  Consider	  addiFonal	  features	  such	  as	  the	  intensity	  of	  
interacFons	  among	  nodes	  and	  the	  direcFon	  of	  links	  to	  
beler	  capture	  the	  role	  of	  nodes	  in	  informaFon	  
disseminaFon	  

•  Characterize	  influenFal	  actors	  in	  the	  network	  based	  on	  
the	  roles	  we	  defined	  earlier	  (e.g.,	  a	  witness	  and	  its	  top	  
ranked	  fingers).	  
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