

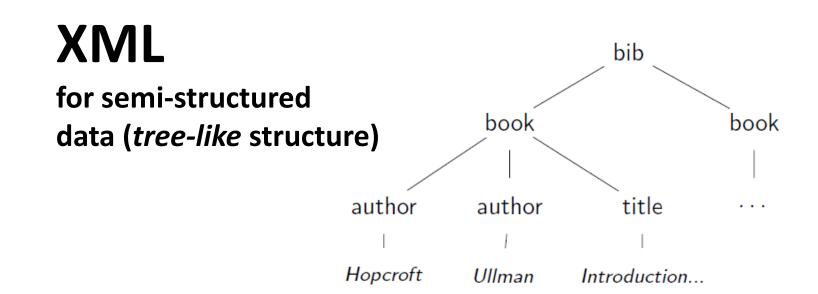
INSTITUT Mines-Télécom

Querying Probabilistic XML Databases

Sept. 21st 2012

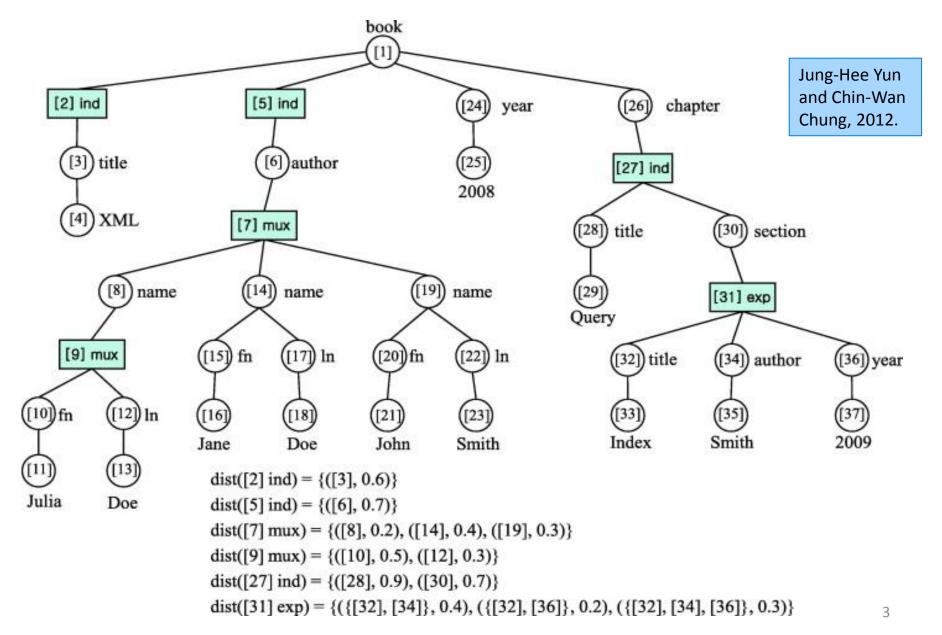
Asma Souihli

Network and Computer Science TELECON Department



```
<br/><bib> <book year="1994">
<title> TCP/IP Illustrated </title>
<author> <last> Stevens </last> <first> W. </first> </author>
<publisher> Addison-Wesley </publisher>
<price> 65.95 </price>
</book>
... <book year="2000">
<title> Data on the Web </title>
<author> <last> Abiteboul</last> <first> Serge </first> </author>
<author> <last> Buneman </last> <first> Peter </first> </author>
<author> <last> Suciu </last> <first> Dan </first> </author>
<publisher> Morgan Kaufmann Publishers </publisher>
<price> 39.95 </price>
</book> ... </bib>
```

Probabilistic Data - PrXML



Context

Uncertainty

Context

- In many of these tasks, information is described in a semi-structured manner
- Especially when the source (e.g., XML or HTML) is already in this form
- Representation by means of a hierarchy of nodes is natural

Outline

1. PrXML Models

Local Dependency Long-distance Dependency

2. Querying P-documents

Types of Queries Probabilistic Lineage Complexity of Queries

3. The ProApproX System

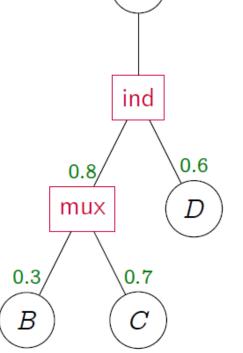
Computation Algorithms Lineage Decomposition Techniques Evaluation Plans Experiments

4. Conclusions

PrXML Models – Local Dependency

ind children of the node are chosen independently of one another, according to their probabilities

mux children of the node are chosen in a mutually exclusive way, depending of their probabilities, that must sum up to 1 or less

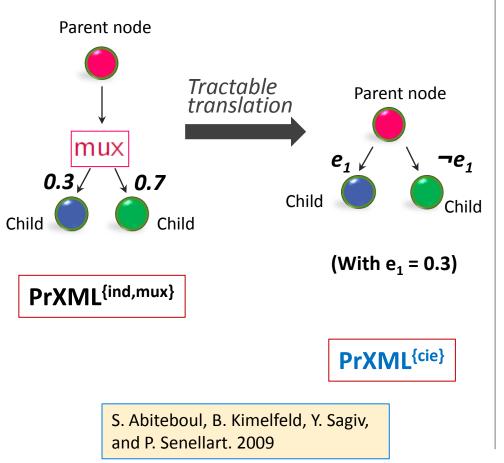


Α

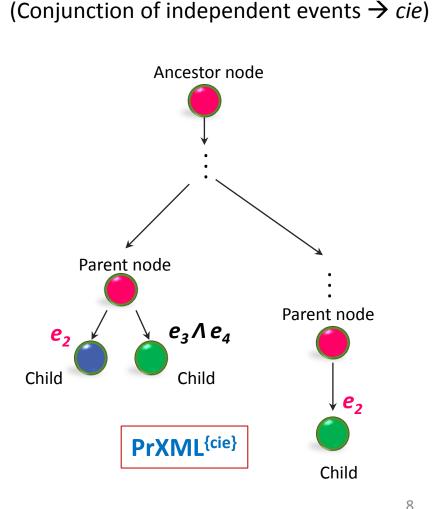
PrXML Models – Long-distance Dependency

Local dependency

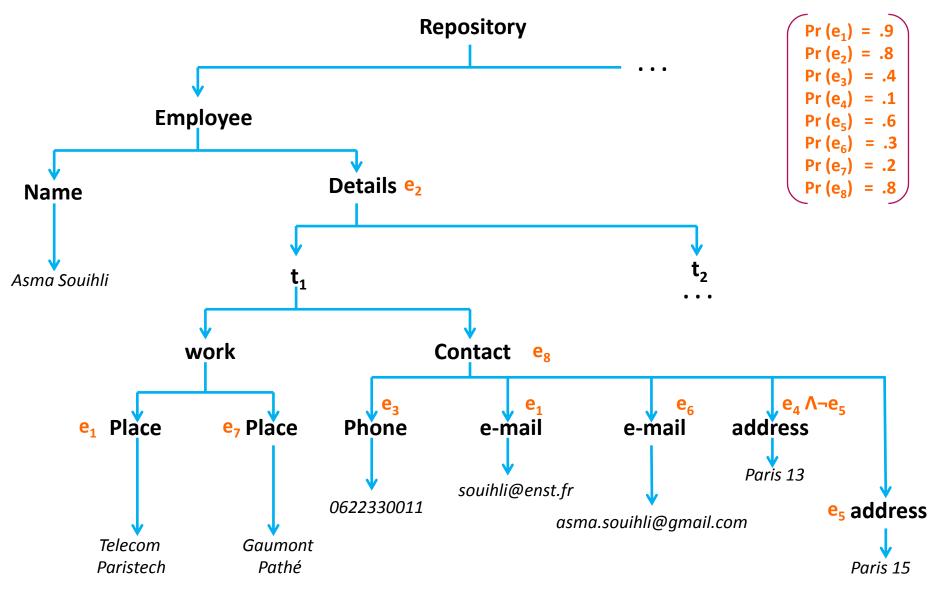
(*mux* and *ind* nodes)



Long-distance dependency



Example



Outline

1. PrXML Models Local Dependency Long-distance Dependency

2. Querying P-documents

Types of Queries Probabilistic Lineage Complexity of Queries

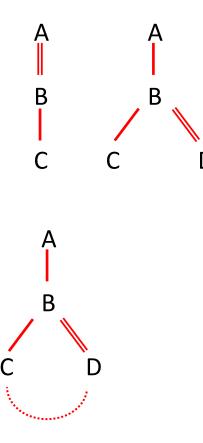
3. The ProApproX System Computation Algorithms Lineage Decomposition Techniques Evaluation Plans Experiments

4. Conclusions

Querying P-documents – Types of Queries

Tree Pattern Queries (TPQ)

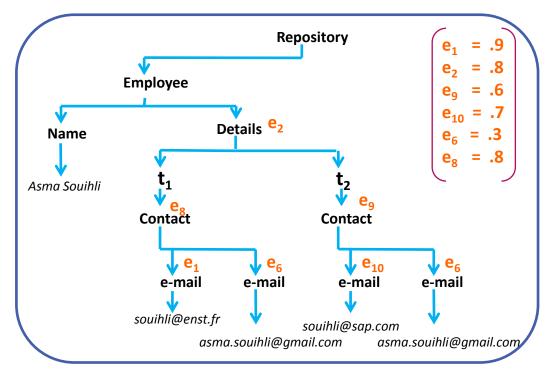
 Tree Pattern Queries with joins (TPQJ)



Example

Q1: / Employee [Name= "Asma Souihli"] // e-mail / text()

enst.fr: $e_2 \wedge e_8 \wedge e_1$ C1gmail.com: $e_2 \wedge e_8 \wedge e_6$ C2sap.com: $e_2 \wedge e_9 \wedge e_{10}$ C3gmail.com: $e_2 \wedge e_9 \wedge e_6$ C4



Querying PrXML – Probabilistic Lineage

Probability to find an e-mail:

 $Pr(Q1) = Pr(C1 \vee C2 \vee C3 \vee C4) \longrightarrow \xrightarrow{Probabilistic lineage} (DNF shape)$

Possible results:

Pr(asma.souihli@gmail.com) = Pr(C2 V C4)

Pr(*souihli@enst.fr***) = Pr(C1)**

Pr(*souihli@sap.com***) = Pr(C3)**

Querying PrXML – Probabilistic Lineage

When is a linear computation possible?

if C_1 and C_2 are independent, then: $Pr(C_1 \land C_2) = Pr(C_1) \times Pr(C_2)$ $Pr(C_1 \lor C_2) = 1 - ((1 - Pr(C_1)) \times (1 - Pr(C_2)))$

 if C₁ and C₂ are inconsistent (mutually exclusive), then:

$$Pr(C_1 \lor C_2) = Pr(C_1) + Pr(C_2)$$

Back to the Example

$$Pr(@enst.fr) = Pr(C1) = Pr(e_2 \land e_8 \land e_1) = .8 \times .8 \times .9$$

= 0.576

$$e_{1} = .9$$

$$e_{2} = .8$$

$$e_{9} = .6$$

$$e_{10} = .7$$

$$e_{6} = .3$$

$$e_{8} = .8$$

Pr(@sap.com) = Pr(C3) = 0.336

 $Pr(@gmail.com) = Pr(C2 \vee C4) = (e_2 \wedge e_8 \wedge e_6) \vee (e_2 \wedge e_9 \wedge e_6)$

→ Factorization:

$$Pr(@gmail.com) = (e_2 \land e_6) \land (e_8 \lor e_9) = .8 \times .3 \times (1 - (1 - .8)(1 - .6))$$
$$= 0.2208$$

Querying PrXML – Probabilistic Lineage $\begin{pmatrix}
e_1 &= .9 \\
e_2 &= .8 \\
e_9 &= .6 \\
e_{10} &= .7 \\
e_6 &= .3 \\
e_8 &= .8
\end{pmatrix}$ Pr(Q1) = Pr(C1 V C2 V C3 V C4) = Pr[(e_2 \land e_8 \land e_1) V (e_2 \land e_8 \land e_6) V (e_2 \land e_9 \land e_{10}) V (e_2 \land e_9 \land e_6)]

= $\Pr[e_2 \land ((e_8 \land (e_1 \lor e_6)) \lor (e_9 \land (e_{10} \lor e_6))))]$

→ Difficult to evaluate !

Solutions..

 One possible (naïve) way, is to find the truth value assignments that satisfy the propositional formula (probabilistic lineage)

(out of 2^{#literals} possible assignments/worlds !)

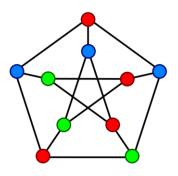
 And sum the probabilities of these satisfying assignments to get the answer

e ₁	e ₂	е ₆	e ₈	e ₉	e ₁₀	Probability	C1 V C2 V C3 V C4
false	false	false	false	false	false	0.0845	false
false	false	false	false	false	true	0.3345	false
false	false	false	false	true	false	0.87	false

Querying PrXML – Complexity of Queries

- Probabilities of the satisfying assignments for the DNF (lineage formula) : #P-Hard problem
 - No polynomial time algorithm for the exact solution if P≠NP
 - #P problems ask "how many" rather than "are there any"

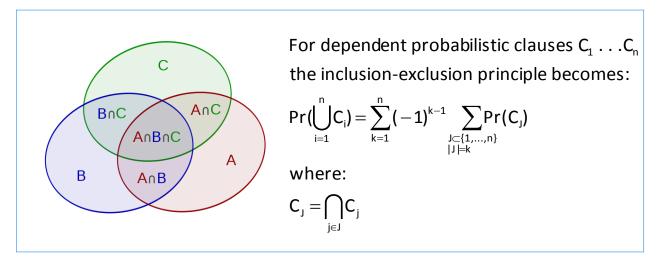
How many graph coloring using k colors are there for a particular graph G?



Querying PrXML – Complexity of Queries

A union of sets (clauses) problem: #P-Hard problem

 $Pr(C_1) = Pr(e_1) \cdot Pr(e_2)$ $Pr(C_2) = Pr(e_2) \cdot Pr(e_3)$ $Pr(C_1 \cap C_2) = Pr(e_1) \cdot Pr(e_2) \cdot Pr(e_3)$ $Pr(C_1 \cup C_2) = Pr(C_1) + Pr(C_2) - Pr(C_1 \cap C_2)$



Outline

1. PrXML Models

Local Dependency Long-distance Dependency

2. Querying P-documents Types of Queries Probabilistic Lineage

Complexity of Queries

3. The ProApproX System

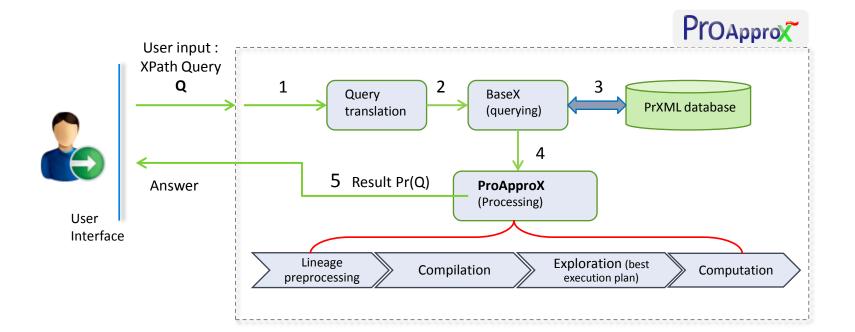
Computation Algorithms Lineage Decomposition Techniques Evaluation Plans Experiments

4. Conclusions

The ProApproX System

[CIKM 2012, SIGMOD 2011]

- Translates into a probabilistic database with only *cie* nodes
- Translates the user query into a lineage query



Back to the Example

Q1: / Employee [Name= "Asma Souihli"] // e-mail / text()

• To get the lineage for the boolean projection :

for \$x1 in /employee
for \$x2 in \$x1/name[.="Asma Souihli"]
for \$x3 in \$x1//email/text()
let \$leaves:=(\$x2,\$x3)
let \$atts:=(for \$i in \$leaves return \$i/ancestor-or-self::*/attribute(event))
return text{distinct-values(for \$att in \$atts return string(\$att))}

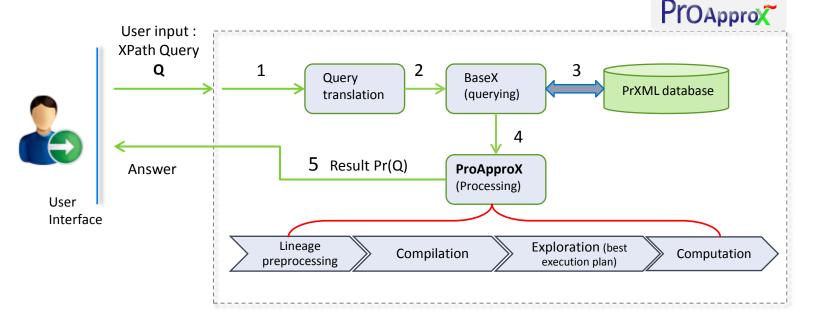
To get lineages of answers:

for \$val in distinct-values(/employee [name="Asma Souihli"]//email/text()) order by \$val return <match> {\$val}{ for \$x1 in /employee for \$x2 in \$x1/name[.="Asma Souihli "] for \$x3 in \$x2 in

The ProApproX System

[CIKM 2012, SIGMOD 2011]

- Translates into a probabilistic database with only *cie* nodes
- Translates the user query into a lineage query
- Is built on top of a native XML DBMS BASE
- Processes the lineage formula to get the probability of the query (and of each matching answer)



Additive approximation:

For a fixed error ε and a DNF F, A(F) is an additive
 ε-approximation of Pr(F) with a probability of at least δ (a fixed reliability factor) if:

$\Pr(\mathbf{F}) - \varepsilon \leq A(\mathbf{F}) \leq \Pr(\mathbf{F}) + \varepsilon$

Multiplicative Approximation

• For a fixed error ε, a DNF F, A(F) is an multiplicative ε-approximation of Pr(F) with a probability of at least δ if:

 $(1-\varepsilon) \operatorname{Pr}(\mathbf{F}) \leq \operatorname{A}(\mathbf{F}) \leq (1+\varepsilon) \operatorname{Pr}(\mathbf{F})$

DEMO 1

[SIGMOD 2011]

Exact Computations:

The naïve algorithm – Possible worlds
 Finding the satisfying assignments out of 2^{#variables} possible truth value assignments
 O(2ⁿ)

• The sieve algorithm – The inclusion-exclusion principle

Exponential in the number of clauses **m**

*O***(2^m)**

Approximations:

• Naïve Monte Carlo sampling for additive app. :

Linear but could take exponentially many samples to converge to a good approximation for low probabilities

 Biased Monte Carlo sampling for multiplicative app. :
 Running time grows in O(n³ ln n) in the number of clauses

Kimelfeld, Kosharovsky, and Sagiv. 2009

Self-Adjusting Coverage Algorithm for the DNF probability

problem: M. Karp, M. Luby, and N. Madras. 1989

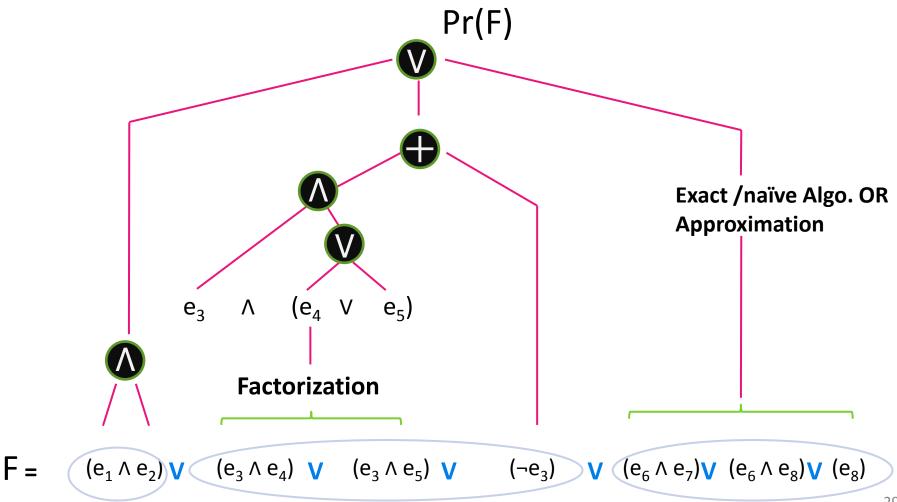
Linear in the length of F times $\ln(1/\delta)/\epsilon^2$

 Possibility to derive a multiplicative approximation from an additive approximation (and vice versa)

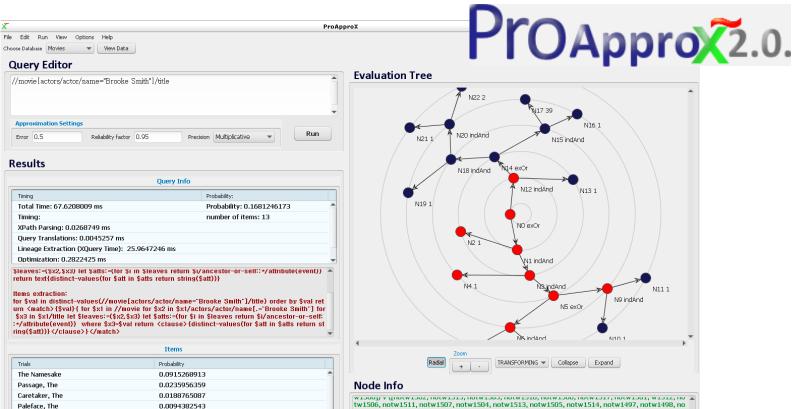
Cost models and cost constants:

Algorithm alg	$\mathrm{cost}_{\mathrm{alg}}$	$C_{ m alg} \ (m ms)$
naïve	$C_{ m na\"ive} imes 2^N imes L$	$4 \cdot 10^{-5}$
sieve	$C_{\text{sieve}} \times 2^m \times \frac{L}{m}$	$5 \cdot 10^{-5}$
AddMC	$C_{\rm AddMC} imes \ln rac{2}{\delta} imes rac{L}{\epsilon^2}$	$4 \cdot 10^{-5}$
MulMC	$C_{\rm AddMC} imes \ln rac{2}{\delta} imes rac{L}{\ell^2 \epsilon^2}$	$4 \cdot 10^{-5}$
coverage	$C_{\text{coverage}} \times \ln \frac{2}{\delta} \times \frac{(1+\varepsilon) \times L}{\varepsilon^2}$	10^{-3}

The ProApproX System – Lineage Decomposition Techniques



DEMO 2 [CIKM 2012]



0.0047191272

0.0047191272

0.0047191272

0.0047191272

0.0042696605

0 003735926

Nemesis, The

Kot v meshke

Yardsale, The

She Hate Me

Games The

Homemaker, The

The ProApproX System – Evaluation Plans

• Propagation of ε (and δ) :

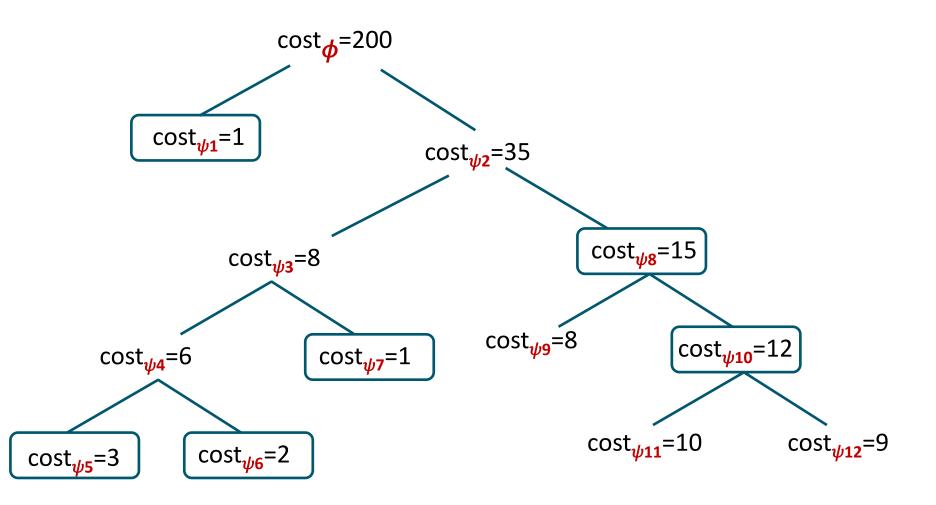
Proposition1. Let $\phi = \psi_1 \bigvee \psi_2$, and assume \tilde{p}_1 and \tilde{p}_2 are additive approximations of $Pr(\psi_1)$ and $Pr(\psi_2)$, to a factor of \mathcal{E}_1 and \mathcal{E}_2 , respectively. Then $1-(1-\tilde{p}_1)(1-\tilde{p}_2)$ is an additive approximation of $Pr(\phi)$ to a factor of \mathcal{E} if:

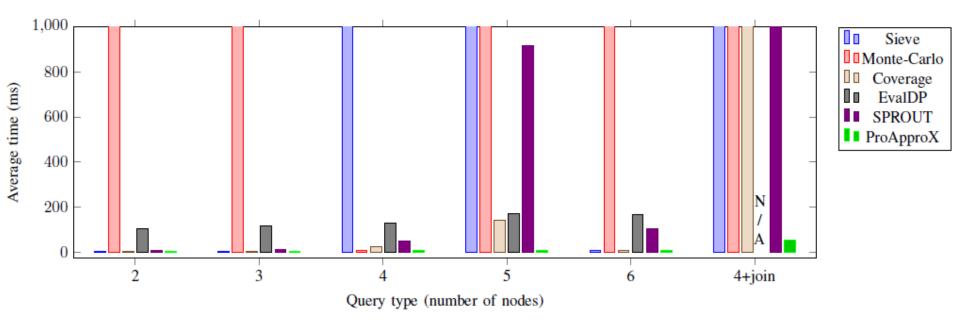
 $\varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2 \le \varepsilon$

- Many possible values for \mathcal{E}_1 and \mathcal{E}_2 can be found
- Best assignments are not always obvious

The ProApproX System – Possible Evaluation Plans

Deterministic exploration:

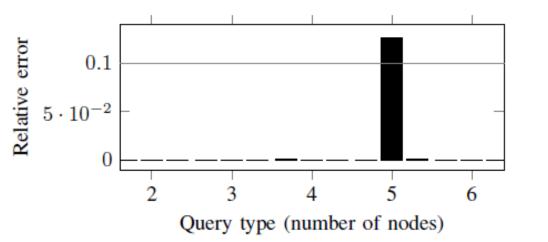




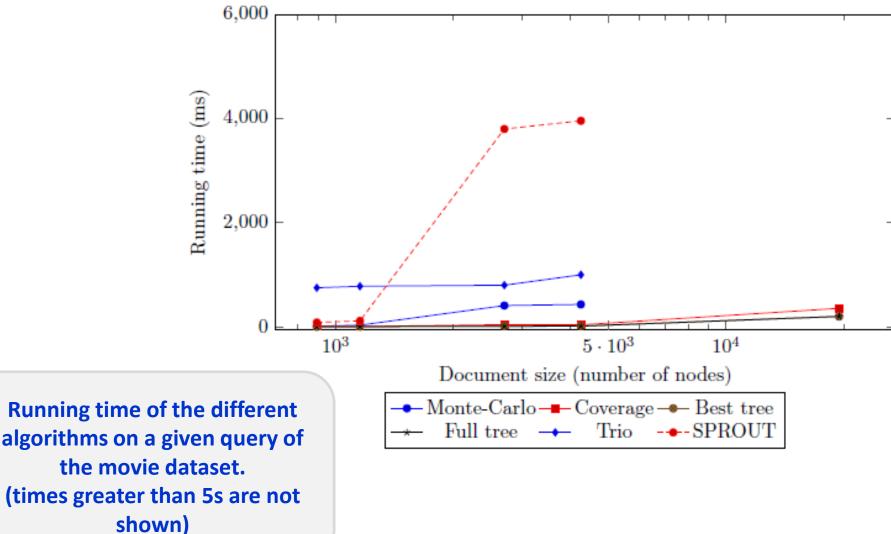
Running time of the different algorithms on the MondialDB dataset

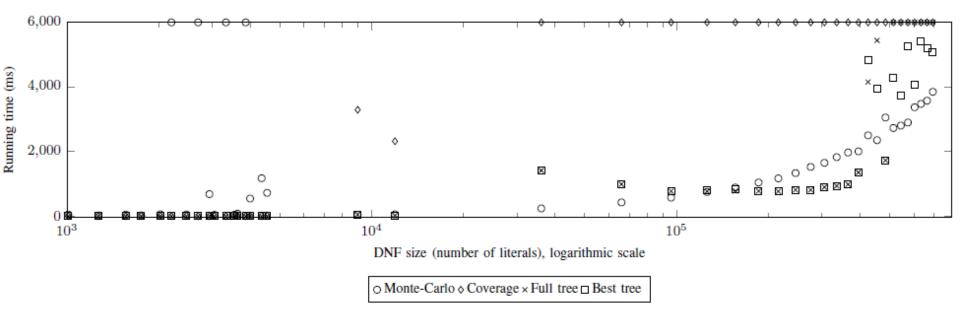
Query type	Avg DNF size	XQuery	Comp	Exp+Eval	•
2	6	96.82%	2.47%	0.71%	
3	5	98.19%	1.38%	0.42%	
4	43	97.41%	2.01%	0.58%	
5	252	64.47%	33.76%	1.78%	
6	6	99.69%	0.29%	0.03%	
4+join	3656	61.49%	36.12%	2.39%	

Proportion of time (MondialDB - Best Tree)



Relative error on the probabilities computed by the algorithm on the MondialDB over each non join query with respect to the exact probability values $(\varepsilon = 0.1, \delta = 95\%)$





Running time of the different algorithms on the synthetic dataset

Outline

1. PrXML Models

Local Dependency Long-distance Dependency

2. Querying P-documents Types of Queries Probabilistic Lineage Complexity of Queries

3. The ProApproX System
 Lineage Decomposition Techniques
 Computation Algorithms
 Demo
 Evaluation Plans
 Experiments

4. Conclusions

Contributions

- We have introduced an original optimizer-like approach to evaluating query results over probabilistic XML
- Over a more expressive PrXML model
- Positive tree-pattern queries, possibly with joins

[Submitted ICDE 2013]

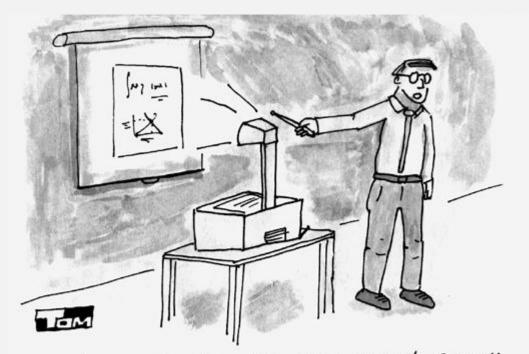
Contributions

- Main observation optimal probability evaluation algorithm to use depends on the characteristics of the formula:
 - Few variables naïve algorithm
 - Few clauses sieve algorithm
 - Monte-Carlo is very good at approximating high probabilities
 - Sometimes the structure of a query makes the probability of a query easy to evaluate (EvalDP)
 - Refined approximation methods best when everything else fails (coverage)

Perspectives

- Exploiting the structure of the query to obtain factorized lineage
- Most evaluation algorithms scale effortlessly (with the exception of the self-adjusting coverage algorithm, which requires synchronization)
 - distribute the probability computation over multi-core or distributed architectures
- Processing DNFs, but the technique could probably be extended to arbitrary formulas
- Define the range of negated TPQ queries having a DNF lineage

Thank you.



ACTUALLY, THAT ASSUMPTION ISN'T REALLY NECESSARY. WE CAN SEE HERE THAT THE POINT-COW APPROXIMATION WORKS EQUALLY WELL.

