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Context 

Uncertainty 
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Context 

 In many of these tasks, information is 
described in a semi-structured manner  

 

 Especially when the source (e.g., XML or 
HTML) is already in this form 

 

 Representation by means of a hierarchy 
of nodes is natural 
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PrXML Models – Local Dependency 

Local dependency 
(mux and ind nodes) 
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Long-distance dependency 
(Conjunction of independent events  cie) 

Local dependency 
(mux and ind nodes) 

Parent node 

Child Child 

0.3 0.7 

Ancestor node 

Child Child 

e2 
e3 Λ e4 

 

. . . 

Parent node 

Parent node 

. . . 

e2 

Parent node 

Child Child 

e1 ¬e1 

Tractable 
translation 

PrXML{ind,mux} 

PrXML{cie} 

PrXML{cie} 

S. Abiteboul, B. Kimelfeld, Y. Sagiv, 
and P. Senellart. 2009 

(With e1 = 0.3)  

Child 

PrXML Models – Long-distance Dependency 
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Repository 

t1 
t2 

Employee 

Name 
Details 

work 

Place Place 

Telecom  
Paristech 

Gaumont 
 Pathé 

Contact 

Phone address e-mail e-mail 

0622330011 
souihli@enst.fr 

asma.souihli@gmail.com 

Paris 13 

Asma Souihli 
    . . . 

    . . . 

e2 

e3 e4 Λ¬e5  

address 

Paris 15 

e5 

e1 
e1 

e6 
e7 

e8 

Example 
Pr (e1)   =   .9 
Pr (e2)   =  .8 
Pr (e3)    =  .4 
Pr (e4)    =  .1 
Pr (e5)    =  .6 
Pr (e6)   =  .3 
Pr (e7)    =  .2 
Pr (e8)    =  .8 
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Querying P-documents – Types of Queries 

 
 

o Tree Pattern Queries 
(TPQ) 

 

 

o Tree Pattern Queries 
with joins (TPQJ) 
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Example 

  Q1: / Employee [Name= "Asma Souihli"] // e-mail / text() 

 

 

 

enst.fr:          e2 Λ e8 Λ e1      C1 

gmail.com:   e2 Λ e8 Λ e6      C2 

sap.com:      e2 Λ e9 Λ e10    C3 

gmail.com :  e2 Λ e9 Λ e6      C4 

 

Repository 

t1 

Employee 

Name 
Details 

Contact 

e-mail e-mail 

souihli@enst.fr 

asma.souihli@gmail.com 

Asma Souihli 

e2 

e1 e6 

e8 

t2 

e-mail e-mail 

asma.souihli@gmail.com 

e10 e6 

Contact 

souihli@sap.com 

e9 

e1     =   .9 
e2     =  .8 
e9     =  .6 
e10   =  .7 
e6   =  .3 
e8     =  .8 
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Querying PrXML – Probabilistic Lineage   

 Probability to find an e-mail: 

  
Pr(Q1) = Pr( C1 V C2 V C3 V C4 ) 

 
 Possible results: 
 

Pr(asma.souihli@gmail.com) = Pr(C2 V C4) 
 

Pr(souihli@enst.fr) = Pr(C1) 
 

Pr(souihli@sap.com) =  Pr(C3) 

 
 

Probabilistic lineage 
(DNF shape) 
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 When is a linear computation possible?  

o if C1 and C2 are independent, then: 

                         Pr(C1 ∧ C2) = Pr(C1) × Pr(C2) 

Pr(C1 ∨ C2) = 1  −   (   (1 − Pr(C1) ) × (1 − Pr(C2))   ) 

 

o if C1 and C2 are inconsistent (mutually exclusive), 
then: 

     Pr(C1 ∨ C2) = Pr(C1) + Pr(C2) 
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Querying PrXML – Probabilistic Lineage   



Back to the Example 

Pr(@enst.fr) =  Pr(C1) =   Pr(e2 Λ e8 Λ e1 ) = .8 x .8 x.9  

                 = 0.576 
 

Pr(@sap.com) =  Pr(C3) = 0.336 

 

Pr(@gmail.com) = Pr(C2 V C4) = (e2 Λ e8 Λ e6)  V  ( e2 Λ e9 Λ e6) 

 

           Factorization: 

Pr(@gmail.com) = (e2 Λ e6)  Λ  (e8 V e9) =  .8 x .3 x (1 -(1-.8)(1-.6)) 

            = 0.2208 

 

 

e1     =   .9 
e2     =  .8 
e9     =  .6 
e10   =  .7 
e6   =  .3 
e8     =  .8 
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Pr(Q1) = Pr( C1 V C2 V C3 V C4 ) 

= Pr [ (e2 Λ e8 Λ e1) V (e2 Λ e8 Λ e6 ) V (e2 Λ e9 Λ e10 ) V (e2 Λ e9 Λ e6 ) ] 

 

 

         Factorization: 

 = Pr [e2 Λ  ( (e8 Λ (e1 V e6 ) )  V (e9 Λ (e10 V e6 ) ) )  ] 

  

         Difficult to evaluate ! 

e1     =   .9 
e2     =  .8 
e9     =  .6 
e10   =  .7 
e6   =  .3 
e8     =  .8 
 

Querying PrXML – Probabilistic Lineage   
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Solutions.. 
 One possible (naïve) way, is to find the truth value 

assignments that satisfy the propositional formula 
(probabilistic lineage) 

   (out of 2#literals possible assignments/worlds !) 
 

 And sum the probabilities of these satisfying 
assignments to get the answer 

e1 e2 e6 e8 e9 e10  Probability C1 V C2 V C3 V C4  

false false false false false false 0.0845 false 

false false false false false true 0.3345 false 

false false false false true false 0.87 false 

… … … … …  … … … 
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 Probabilities of the satisfying assignments for the 
DNF (lineage formula) : #P-Hard problem 

 

o No polynomial time algorithm for the exact solution if 
P≠NP 

o #P problems ask "how many" rather than "are there any“ 
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How many graph coloring  
using k colors are there  
for a particular graph G? 

 
 

Querying PrXML – Complexity of Queries 



 A union of sets (clauses) problem: #P-Hard problem 
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 Translates into a probabilistic database with only cie nodes 
 

 Translates the user query into a lineage query 
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Query 
translation 

BaseX 
(querying) PrXML database 

ProApproX 
(Processing) 

Lineage 
preprocessing 

Compilation Exploration (best 
execution plan) 

Computation 

User input :  
XPath Query  

Q 

5   Result Pr(Q) Answer 

1 2 3 

4 

User 
Interface 

The ProApproX System 
[CIKM 2012, SIGMOD 2011] 



Back to the Example 

Q1: / Employee [Name= "Asma Souihli"] // e-mail / text() 
 
 

 To get the lineage for the boolean projection : 

for $x1 in /employee   
for $x2 in $x1/name[.="Asma Souihli"]  
for $x3 in $x1//email/text()  
let $leaves:=($x2,$x3)  
let $atts:=(for $i in $leaves return $i/ancestor-or-self::*/attribute(event))  
return text{distinct-values(for $att in $atts return string($att))} 
 

 To get lineages of answers:  
for $val in distinct-values(/employee [name="Asma Souihli"]//email/text())  
order by $val  
return <match> 
{$val}{  
for $x1 in /employee   
for $x2 in $x1/name[.="Asma Souihli "]  
for $x3 in $x1//email/text()  
let $leaves:=($x2,$x3)  
let $atts:=(for $i in $leaves return $i/ancestor-or-self::*/attribute(event)) 
 where $x3=$val  
return <clause>{distinct-values(for $att in $atts return string($att))}</clause> 
}</match>  22 



 Translates into a probabilistic database with only cie nodes 
 

 Translates the user query into a lineage query 
 

 Is built on top of a native XML DBMS   
 

 Processes the lineage formula to get the probability of the 
query (and of each matching answer) 
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Query 
translation 

BaseX 
(querying) PrXML database 

ProApproX 
(Processing) 

Lineage 
preprocessing 

Compilation Exploration (best 
execution plan) 

Computation 

User input :  
XPath Query  

Q 

5   Result Pr(Q) Answer 

1 2 3 

4 

User 
Interface 

The ProApproX System 
[CIKM 2012, SIGMOD 2011] 



  Additive approximation: 
 
o For a fixed error ε and a DNF  F, A(F) is an additive  
     ε-approximation of Pr(F) with a probability of at least δ (a fixed 

reliability factor)  if:  

Pr(F)-ε     ≤     A(F)     ≤     Pr(F)+ε  
 
 Multiplicative Approximation 
 
o For a fixed error ε, a DNF  F, A(F) is an multiplicative  
      ε-approximation of Pr(F) with a probability of at least δ  if:  

    (1-ε) Pr(F)   ≤     A(F)     ≤   (1+ε) Pr(F)  
24 

The ProApproX System – Computation Algorithms 



DEMO 1 
 [SIGMOD 2011] 
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The ProApproX System – Computation Algorithms 

 Exact Computations: 

 

o The naïve algorithm – Possible worlds 
 Finding the satisfying assignments out of 2#variables possible truth value 

assignments  

𝑂(2n)  
 

 

o The sieve algorithm – The inclusion-exclusion principle  
Exponential in the number of clauses m 

𝑂(2m)  
 

 



 Approximations: 

o Naïve Monte Carlo sampling for additive app. : 
Linear but could take exponentially many samples 

 to converge to a good approximation for low probabilities 

 

o Biased Monte Carlo sampling for multiplicative app. : 
Running time grows in 𝑂(𝑛3

 ln 𝑛)  

in the number of clauses 

 

o Self-Adjusting Coverage Algorithm for the DNF probability 
problem: 
 

Linear in the length of F times ln(1/𝛿) /𝜀2  
27 

M. Karp, M. Luby, and N. Madras. 1989 

Kimelfeld, 
Kosharovsky, 
and Sagiv. 
2009 

The ProApproX System – Computation Algorithms 



The ProApproX System – Computation Algorithms 

28 

 Possibility to derive a multiplicative approximation 
from an additive approximation (and vice versa) 

 

 Cost models and cost constants: 
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e3       Λ      (e4    V     e5) 

Factorization 

Exact /naïve Algo. OR 
Approximation 

Pr(F) 

+ 

V 

Λ 

V 

Λ 

The ProApproX System – Lineage Decomposition Techniques 

(e6 Λ e8)  (e1 Λ e2)  (e3 Λ e4)  (e3 Λ e5)  (¬e3)  (e6 Λ e7)  (e8)   V  V  V  V  V  V  F =  



DEMO 2 
[CIKM 2012] 
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 Propagation of 𝜀 (and 𝛿) : 

 

 

 

 

 

 

 Many possible values for 𝜀1 and 𝜀2 can be found 

 Best assignments are not always obvious 

31 

The ProApproX System – Evaluation Plans 

Proposition1.  Let  𝜙 = 𝜓1         𝜓2, and assume p̃1 and p̃2 are additive 

approximations of Pr(𝜓1) and Pr(𝜓2), to a factor of 𝜀1 and 𝜀2, respectively.   

Then 1-(1- p1̃)(1- p2̃) is an additive approximation of Pr(𝜙) to a factor of 𝜀 if: 

𝜀1+ 𝜀2+ 𝜀1 𝜀2≤ 𝜀 

V 



The ProApproX System – Possible Evaluation Plans 

Deterministic exploration:  

cost𝜓1=1 

cost𝜙=200 

 

cost𝜓2=35 

cost𝜓3=8 

cost𝜓4=6 cost𝜓7=1 

cost𝜓8=15 

cost𝜓5=3 
cost𝜓6=2 

cost𝜓9=8 cost𝜓10=12 

cost𝜓11=10 cost𝜓12=9 



Running time of the different algorithms on the MondialDB dataset 

The ProApproX System – Experiments 

33 



Proportion of time 
(MondialDB  - Best Tree ) 

Relative error on the probabilities 
computed by the algorithm on 
the MondialDB over each non 
join query with respect to the 

exact probability values  

(𝜀 = 0.1, 𝛿 = 95%) 

The ProApproX System – Experiments 
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Running time of the different 
algorithms on a given query of 

the movie dataset.   
(times greater than 5s are not 

shown) 

The ProApproX System – Experiments 
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Running time of the different algorithms 
on the synthetic dataset 

The ProApproX System – Experiments 

36 



Outline 

1. PrXML Models 
Local Dependency  
Long-distance Dependency 

2. Querying P-documents 
Types of Queries 
Probabilistic Lineage 
Complexity of Queries 

3. The ProApproX System  
Lineage Decomposition Techniques 
Computation Algorithms 
Demo 
Evaluation Plans 
Experiments 

4. Conclusions 
37 



Contributions 

 We have introduced an original optimizer-like 
approach to evaluating query results over 
probabilistic XML 

 

 Over a more expressive PrXML model  

 

 Positive  tree-pattern queries, possibly with 
joins 

 [Submitted ICDE 2013] 
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Contributions 

 Main observation - optimal probability evaluation 
algorithm to use depends on the characteristics 
of the formula: 
o Few variables naïve algorithm 

o Few clauses sieve algorithm 

o Monte-Carlo is very good at approximating high 
probabilities 

o Sometimes the structure of a query makes the 
probability of a query easy to evaluate (EvalDP) 

o Refined approximation methods best when everything 
else fails (coverage) 
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 Exploiting the structure of the query to obtain factorized 
lineage 

 

 Most evaluation algorithms scale effortlessly (with the 
exception of the self-adjusting coverage algorithm, which 
requires synchronization)  
o distribute the probability computation over multi-core or distributed 

architectures 

 

 Processing DNFs, but the technique could probably be 
extended to arbitrary formulas 

 

 Define the range of negated TPQ queries having a DNF lineage 

Perspectives  
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Thank you. 


