Background	Performance	Joins	Theory	Literals	Application to IE	Conclusion

MPRI Internship Defense Advances in Holistic Ontology Alignment

Antoine Amarilli Supervised by Pierre Senellart

Télécom ParisTech

Background ●000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion 00
The Se	mantio	c Web					

Paris is the capital of France

Facts on the Web

Paris capitalOf France

The Web. Lots of information in semi-structured HTML documents.

- The semantic Web. An effort to represent information in a *structured* and *semantic* way.
 - Uses. Interoperability, integration of sources, constraints, complex queries, inference.

Background 0●00	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion
Ontolog	ies						

- Ontologies are the information sources of the Semantic Web.
- Vertices are entities or literals.
- Edges are facts labeled with a relation.
- Sources : manual creation, existing databases, information extraction.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
00●0	0000	00	000	00	00	000	
Linked	Data	Cloud					

- Many ontologies are created independently: different entities and relations express the same things.
- Linked Data: integrate existing ontologies in a network structured by equality links between equivalent concepts.
- To automatically derive those links, we need to perform ontology alignment.

Sometimes URIs do not help us and literals are ambiguous or have minor differences...

Sometimes the structures of the two ontologies do not match...

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
Table o	f Cont	tents					

- Background: the Semantic Web
- **2** The PARIS System
- ③ Performance Improvements
- **4** Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction
- 8 Conclusion

Background 0000	Paris •000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion
PARIS							

- PARIS: Probabilistic Alignment of Relations, Instances, and Schema.
- To bootstrap a matching, PARIS uses an equality function on literals and applies propagation rules.

• The rules are represented as a system of equations which we iterate until a fixpoint is reached:

$$\begin{aligned} \mathsf{Pr}^{n+1}(x \equiv x') &= 1 - \prod_{\substack{r(x,y) \\ r'(x',y')}} \left(1 - \mathsf{Pr}^{n}(r' \subseteq r) \times fun^{-1}(r) \times \mathsf{Pr}^{n}(y \equiv y') \right) \\ &\times \left(1 - \mathsf{Pr}^{n}(r \subseteq r') \times fun^{-1}(r') \times \mathsf{Pr}^{n}(y \equiv y') \right) \end{aligned} \\ \mathsf{Pr}^{n+1}(r \subseteq r') &= \frac{\sum_{r(x,y)} \left(1 - \prod_{r'(x',y')} \left(1 - (\mathsf{Pr}^{n}(x \equiv x') \times \mathsf{Pr}^{n}(y \equiv y')) \right) \right)}{\sum_{r(x,y)} \left(1 - \prod_{x',y'} \left(1 - \mathsf{Pr}^{n}(x \equiv x') \times \mathsf{Pr}^{n}(y \equiv y') \right) \right) \end{aligned}$$

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
PARIS	by Exa	ample					

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion
PARIS	by Exa	ample					

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion
PARIS	by Exa	ample					

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0●00	00	000	00	00		00
PARIS	by Exa	ample					

- Two instances should be aligned when they share the same values for aligned functional relations.
- In theory, the ontology schema should indicate which relations are functional.
- In practice, no schema, and no "strict" functionality: compute a fuzzy functionality in [0, 1] from the data.

Fxisting	Imple	mentation	n and	Previo	us Resi	ilts	
Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00

- PARIS is implemented in Java.
- PARIS was evaluated on:
 - toy datasets from the OAEI,
 - DBpedia and YAGO (two ontologies extracted from Wikipedia)
 - YAGO and IMDb
- The evaluation is done in terms of precision, recall and F-measure.

	Instances				Classes			Relations		
	Prec	Rec	F	Prec	Rec	F	Prec	Rec	F	
OAEI person OAEI restaurant DBpedia–Yago IMDb–Yago	100% 95% 90% 94%	100% 88% 73% 90%	100% 91% 81% 92%	100% 100% 94% 28%	100% 100% - -	100% 100% - -	100% 100% 93% 100%	100% 66% - 80%	100% 88% - 89%	

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
Table of	f Cont	tents					

- 1 Background: the Semantic Web
- **2** The PARIS System
- ③ Performance Improvements
- 4 Join Relations
- **5** Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction

Background 0000	Paris 0000	Performance	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion 00
Table o	f Cont	tents					

- Background: the Semantic Web
- **2** The PARIS System
- Operation Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction
- 8 Conclusion

	0000			00	00		00
Background	Paris	Performance ●○	Joins 000	Theory	Literals	Application to IE	Conclusion

- The original PARIS takes a few hours per iteration.
- Ways to improve this:
 - Replace BerkeleyDB by an in-memory representation of the ontologies.
 - Parallelize the propagation of entity alignment scores over all entities. Aggregate results at the end to avoid races.
 - Change the hardware (now that the computation is CPU-bound).

Doufour			t Г				
Background	Paris 0000	Performance ○●	Joins	Theory	Literals	Application to IE	Conclusion

Iteration	Original PARIS	New PARIS (1 thread)	New PARIS (4 threads)
Startup	0h00	0h27	0h10
1	4h04	0h40	0h27
2	5h06	3h00	1h02
3	5h00	0h34	0h24
4	5h30	0h29	0h16
Total	20h	5h	2h

Table: Running times for the DBpedia–YAGO alignment task. The original PARIS was run on an Intel Xeon E5620 CPU clocked at 2.40 Ghz on a machine with 12 GB of RAM. The new PARIS was run on an Intel Core i7-3820 CPU clocked at 3.60 Ghz with 48 GB of RAM.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
Table of	f Cont	tents					

- Background: the Semantic Web
- **2** The PARIS System
- ③ Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction
- 8 Conclusion

- The simplest possible difference in structure between ontologies: relations of one ontology correspond to join relations in the other ontology.
- The terminology is motivated by the "join" operator of relational algebra.
- We see the join as a binary predicate: the intermediate nodes are existentially quantified but projected away.

Background 0000	Paris 0000	Performance 00	Joins o●o	Theory 00	Literals 00	Application to IE	Conclusion
Support	t in P	ARIS					

- We must keep the representation of joins implicit in PARIS (memory constraints).
- We must recursively enumerate all possible join facts instead of enumerating all possible facts.
- We must avoid duplicate facts caused by multiple possible choices for the intermediate nodes.
- We cannot afford to enumerate all possible relations anymore (many possible joins).
- \Rightarrow New algorithm to compute the entity and relation alignments simultaneously.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	00●	00	00		00
Practica	al Issu	es					

- How to determine the functionality of join relations?
- How to select interesting joins to perform without exploring all joins?
- How to achieve acceptable running time on large ontologies?
- \Rightarrow We only perform the join alignment on small ontologies.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	○○	00		00
Table o	f Cont	tents					

- Background: the Semantic Web
- **2** The PARIS System
- 3 Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction

$$\Pr^{n+1}(x \equiv x') = 1 - \prod_{\substack{r(x,y) \\ r'(x',y')}} \left(1 - \Pr^n(r' \subseteq r) \times fun^{-1}(r) \times \Pr^n(y \equiv y') \right)$$
$$\times \left(1 - \Pr^n(r \subseteq r') \times fun^{-1}(r') \times \Pr^n(y \equiv y') \right)$$

- The entity alignment equation is justified by a probabilistic model (independent choices).
- If the relation functionalities and alignments are in $\{0,1\}$, we can apply a log-transformation:

$$\mathsf{LPr}^n(x\equiv x'):=-\log(1-\mathsf{Pr}^n(x\equiv x'))$$

• By looking at propagation in the product graph, we get a nicer equation, for some matrix *M* and a constant literal alignment vector *L*:

$$\mathsf{LPr}^{n+1} = M \, \mathsf{LPr}^n + L$$

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	○●	00		00
Green M	Measu	res					

 $LPr^{n+1} = M LPr^n + L$

- This equation is similar to PageRank (LPrⁿ⁺¹ = MLPrⁿ where M is a stochastic matrix) except:
 - The matrix is not stochastic.
 - ② Diverging to +∞ means convergence (because of the log-transformation).
 - L is pouring alignment weight to the aligned couples of literals.
- This last point can be linked to the use of Green measures to focus the PageRank computation.
- This interpretation suggests possible changes to the entity alignment equation (but we lose the probabilistic interpretation).

Background 0000	Paris 0000	Performance 00	Joins	I heory 00	00	Application to IE	Conclusion 00
Table o	f Con	tents					

- Background: the Semantic Web
- **2** The PARIS System
- ③ Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	●0		00
Literal S	Simila	rity Func	tions				

Edgar R. Burroughs Douglas Adams and Constance Garnett Edgar Rice Burroughs Adams, Douglas Constance Garnett

- The original PARIS uses an exact literal equality function.
- Possible refinements: adjust for case, strip special characters, etc.
- Yet, we would need a better equality function giving > 0 weight to the alignment of similar literals.
- Approximate dictionary searching problem: given a literal, to find quickly all similar literals in the other ontology.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	○●		00
Results							

- We use a shingling technique which was implemented by Mayur Garg (who interned in the team from IIT Delhi).
- I interfaced his code with PARIS.
- The performance of the shingling technique matches ad-hoc normalization on the OAEI restaurants dataset.

	Precision	Recall	F-measure
Paris with exact equality	95%	88%	91%
Paris with shingling	96%	95%	96%
Paris with normalization	98%	96%	97%

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
Table o	f Cont	tents					

- Background: the Semantic Web
- 2 The PARIS System
- 3 Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00	●00	00
The De	ep We	eb					

Books Search

Keywords	
Author	
Title	
ISBN(s)	
Publisher	
Subject	
All Subjects	Search

Search Tips

How can I get fewer results? If you use more than one keyword, our search engine will restrict the results to products that match all the keywords you enter

How can I get more results? Too many keywords can constrain your search. Use fewer keywords to find more results, e.g. conduct a search for 'O'Reilly' to find all titles by O'Reilly and Associates. How do I search by ISBN? If you choose to search by ISBN, search only by that field and make sure you type the number correctly, vithout any dashes.

How do I sort my results? When searching our bookstore, you can sort your search results in the way that is most useful to you by selecting the sort option. Once your search has produced a list of relevant items, select a way to sort by dicking the "Sort results by" box at the top of the list.

- Many structured databases can only be queried through interfaces designed for humans (Web forms and HTML result pages).
- To access this structured information, an automated agent must probe the form and perform wrapper induction on the result pages.
- To understand the meaning of the extracted records and attributes, we can use PARIS (with a reference ontology).

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00	○●○	
Applica	tion to	o Form U	nders	tanding	τ Σ		

'S

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00	○●○	00
Applicat	tion to	Form U	nderst	tanding	5		

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00	○●○	
Applica	tion to	o Form U	nders	tanding	τ Σ		

'S

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion		
Application to Form Understanding									

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion		
Application to Form Understanding									

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion		
Application to Form Understanding									

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion		
Application to Form Understanding									

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00	○●○	00
Applicat	tion to	Form U	nderst	tanding	5		

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		00
Results							

- We experimented the approach on the Amazon book search form.
- The entity alignments with the best confidence were indeed books aligned through their title and author.
- The system identified relations: y:hasPreferredName and (y:created, y:hasPreferredName).
- It linked them to the result page DOM paths and form fields.
- The support for join relations and approximate string matching is required in this setting.
- The approach was presented as a vision paper in the VLDS workshop of VLDB.

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion	
Table of Contents								

- Background: the Semantic Web
- **2** The PARIS System
- 3 Performance Improvements
- 4 Join Relations
- 5 Theoretical Analysis
- 6 Approximate Literal Matching
- O Application to Information Extraction

- Performance improvements resulting in an 10-fold speedup over the original implementation.
- Support of join relation alignments on small ontologies.
- Insights on the relation between PARIS and PageRank-inspired techniques.
- Integration of approximate string matching to improve the literal alignment.
- Application of PARIS for deep Web analysis.

Background	Paris	Performance	Joins	Theory	Literals	Application to IE	Conclusion
0000	0000	00	000	00	00		○●
Further	Work						

Performance. Further gains to be made, perform more complete benchmarks.

- Join relations. Performance improvements, especially ways to only select interesting joins. Arbitrary patterns?
 - Theory. Study the possible alternative choices and benchmark them. Understand the full model (we *still* have no proof of overall convergence!) and the effects of implementation tweaks. Find links with Max-SAT or Markov Logic Networks?

Literal matching. Support of various datatypes such as numbers and dates (engineering work). Fix performance issues to perform larger experiments.

Information Extraction. Try with more sources. Find links with named entity disambiguation techniques such as AIDA? Intensional use for large-scale integration.

Background 0000	Paris 0000	Performance 00	Joins 000	Theory 00	Literals 00	Application to IE	Conclusion
Thanks!							

Thanks for your attention! Questions ?

The research has been funded by the European Union's seventh framework programme, in the setting of the European Research Council grant Webdam, agreement 226513, and the FP7 grant ARCOMEM, agreement 270239.

Frame 4: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/