
General Presentation In-Depth Analysis Results and Perspectives

CSSV: Towards a Realistic Tool for Statically
Detecting All Buffer Overflows in C

An article by Nurit Dor, Michael Rodeh and Mooly Sagiv
Presentation by Antoine Amarilli

École normale supérieure



General Presentation In-Depth Analysis Results and Perspectives

Table of contents

1 General Presentation
Quick facts
The Main Problem
Overview of the Solution

2 In-Depth Analysis
Preliminary Steps
Pointer Analysis
Integer Program

3 Results and Perspectives
Results
Perspectives
References



General Presentation In-Depth Analysis Results and Perspectives

Quick facts

Who? Nurit Dor, Michael Rodeh, Mooly Sagiv, from
Tel-Aviv University and the IBM Research Lab in
Haifa

Where? PLDI (Programming Language Design and
Implementation)

When? 2003

What? Static detection of buffer overflows in C

How? As a follow-up to a previous study in 2001, with
support for more language constructs and better
efficiency, and as part of Nurit Dor’s ongoing PhD
thesis.



General Presentation In-Depth Analysis Results and Perspectives

Buffer overflow

Performing out-of-bound accesses to an array in C can access
other values of the program.

A buffer overflow is an unsafe access of this kind. Such
accesses can occur because of bugs in the program.

char buf[8] = "coucou";
char uid = 42;

c o u c o u \0 ?? 42
buf[0]

buf

buf[7] uid

buf[8]



General Presentation In-Depth Analysis Results and Perspectives

Buffer overflow problems

The program can crash or misbehave when such a bug occurs.

A malicious user can use such bugs to access confidential data
or to overwrite data and alter the program’s behavior.

Buffer overflows, and the more specific string manipulation
errors, are a common bug in C. The FUZZ study from 1995 is
quoted as evidence (60% of Unix failures due to string
manipulation errors).



General Presentation In-Depth Analysis Results and Perspectives

CSSV’s proposed solution

Perform static analysis to identify string manipulation errors.

The approach used in the paper is sound, meaning that it
should identify all errors. However, it raises false alarms.

Be as precise as possible to minimize the number of false
alarms.

Generate examples when a problem is identified.



General Presentation In-Depth Analysis Results and Perspectives

Overview of the solution

C program

AST Toolkit

CoreC Program +
Contracts

Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples

1 Translate to CoreC, a simpler subset of C.

2 Annotate procedures with contracts (pre- and postconditions)
and inline them in the program.

3 Perform a static analysis to identify possible pointing targets
for pointers.

4 Use this information to translate the program in an integer
problem.

5 Solve this problem.



General Presentation In-Depth Analysis Results and Perspectives

False alarms

Possible causes for false alarms:

1 Insufficient procedure contracts.

2 Abstractions performed when converting to an integer
program.

3 Imprecision of the pointer or integer analyses.

Contracts

C program

AST Toolkit

CoreC Program +
Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples



General Presentation In-Depth Analysis Results and Perspectives

Table of contents

1 General Presentation
Quick facts
The Main Problem
Overview of the Solution

2 In-Depth Analysis
Preliminary Steps
Pointer Analysis
Integer Program

3 Results and Perspectives
Results
Perspectives
References



General Presentation In-Depth Analysis Results and Perspectives

Translation to CoreC

C is an expressive language, it is hard to support all of its
features.

For this reason, a first translation pass is performed to
translate the program to CoreC.

CoreC is a complete subset of C with semantics-preserving
translation rules.

The implementation of this transformation uses Microsoft’s
AST Toolkit (now called PREfast).



General Presentation In-Depth Analysis Results and Perspectives

C program

AST Toolkit

CoreC Program +
Contracts

Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples



General Presentation In-Depth Analysis Results and Perspectives

Contract specification

Contracts are written for every procedure which specify:
1 The assumptions made by the procedure.
2 The side effects of the procedure.
3 The guarantees upheld by the procedure.

They are written in the style of the Larch tool, and are an
extension of Hoare triples to C.

Contracts must be written by hand, though a contract
derivation mechanism is sketched (more later).



General Presentation In-Depth Analysis Results and Perspectives

Contract inlining

Contracts are inlined in the program with assert’s and
assume’s.

An assume is added at procedure entry points to check
preconditions.

An assert is added at procedure exit points to check
postconditions.

Procedure calls assert the preconditions and assume the
postconditions.



General Presentation In-Depth Analysis Results and Perspectives

C program

AST Toolkit

CoreC Program +
Contracts

Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples



General Presentation In-Depth Analysis Results and Perspectives

Concrete program state

Memory locations from dynamic and static allocation.

Base addresses distinguished from these locations.

Allocation size from every base address.

Assigned memory locations of each variable (always a base
address).

Actual contents of memory locations, which can be the address of
a memory location, a primitive value, “uninitialized”
or “undefined”.

Size of the value stored starting at a location.

Base address mapping to recover the base address of a location.



General Presentation In-Depth Analysis Results and Perspectives

Concrete program state restrictions

Admissibility. Require that when a base value isn’t “undefined”,
unaligned accesses up to its contents’ size yield
“undefined” and there is no overlapping
non-“undefined” value before it.
Intuition: this is a reasonable structural restriction on
concrete program states.

Reachability. We aren’t concerned with locations which aren’t
referenced by a visible variable.
Intuition: abstract program state will not deal with
non-reachable variables.



General Presentation In-Depth Analysis Results and Perspectives

Abstract program state

Base addresses for reachable base addresses in the concrete.

Locations mapping variables to a set of possible abstract
locations.

A pointer relation indicating, for each abstract location, the set of
locations which may point to this location.

A count indicating if an abstract location represents exactly
one address or a potentially unbounded set of
addresses.

These abstractions are defined for each procedure, and are
restricted to addresses which are reachable within this procedure.



General Presentation In-Depth Analysis Results and Perspectives

Sound abstraction

Base. All concrete base addresses are mapped to an
abstract memory location.

Stack. All visible variables are in a concrete location which is
mapped to a possible abstract location for this
variable.

Pointer. If a reachable location points to another location in
the concrete, then their base addresses are mapped
to two addresses related by the pointer relation.

A procedural abstract points-to-state is a sound approximation of a
procedure if it is a sound approximation of all the possible concrete
states that may arise during this procedure.



General Presentation In-Depth Analysis Results and Perspectives

Flow-insensitive pointer analysis

The aim of this step is to compute a sound abstraction.

We first apply the GOLF whole-program flow-insensitive
analysis to get a sound approximation for all procedures.

We then restrict this abstraction to the visible variables of a
procedure and project the location and pointer relations.

We refine further by merging the various locations that a node
points to, when it is safe to do so.



General Presentation In-Depth Analysis Results and Perspectives

C program

AST Toolkit

CoreC Program +
Contracts

Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples



General Presentation In-Depth Analysis Results and Perspectives

Conversion to an integer program (C2IP)

The constraints over the pointers can be expressed as an
integer program (a program which manipulates integer
variables and enforces inequalities).

For every abstract location, we generate several constraint
variables:

Primitive values stored in this location.
Pointer offset for pointers stored in this location, relative to

their base address.
Allocation size of pointers stored in this location.
Null-termination of the string stored in this location.
String length of the string stored at this location.



General Presentation In-Depth Analysis Results and Perspectives

Conversion rules

Here are a few examples to illustrate how the IP is generated:

Dereferencing. Check that the offset is positive, that we are not
going beyond the allocated space, and beyond the
string length for strings.

Pointer arithmetic. When adding a value to a pointer, check that
the result does not go before the base address or
beyond the allocated space, and update the offsets.

Allocation. Initialize the offset to zero, initialize the size, say that
it is not a null-terminated string.

Writes to a pointer. When assigning a known zero, we can create
a null-terminated string.

Reads from a pointer. The read value is unknown unless it is the
null-termination of a string.



General Presentation In-Depth Analysis Results and Perspectives

C program

AST Toolkit

CoreC Program +
Contracts

Contracts

inlining GOLF

Procedural
points to

Integer
Problem

C2IP IP solving

Errors with
examples



General Presentation In-Depth Analysis Results and Perspectives

Integer analysis

Any sound integer analysis can be used to study the IP.

We privilege an integer analysis which is able to identify
relationships between variables (instead of tracking each
variable’s value individually).

The method used (by Cousot and Halbwachs) is able to infer
linear inequalities between program variables.

The implementation uses the NewPolka library.



General Presentation In-Depth Analysis Results and Perspectives

Table of contents

1 General Presentation
Quick facts
The Main Problem
Overview of the Solution

2 In-Depth Analysis
Preliminary Steps
Pointer Analysis
Integer Program

3 Results and Perspectives
Results
Perspectives
References



General Presentation In-Depth Analysis Results and Perspectives

Code samples

The analysis is run on two different examples:

A string library from EADS airbus totalling 228 LOCs, on
which no errors are found and six false alarms are generated.
Part of web2c, totalling 117 LOCs, on which eight errors are
found and two false alarms are generated.

The analysis reports the CPU time and memory usage and the
size of the integer problem.



General Presentation In-Depth Analysis Results and Perspectives

Experimental results



General Presentation In-Depth Analysis Results and Perspectives

The burden of contracts

Though CSSV improves on previous approaches, writing
correct contracts for procedures remains an obstacle.

An algorithm is presented to compute an approximation to the
strongest postcondition and weakest precondition to
automatically strengthen contracts.

The algorithm proceeds by forward and backward integer
analysis to infer variable inequalities and add them to the
contracts.

Experimental results show a 25% false alarm reduction for
automatically derived contracts as opposed to vacuous
contracts.

This needs to be compared to the 93% false alarm reduction
achieved with manual contracts.



General Presentation In-Depth Analysis Results and Perspectives

Pros and cons

The good points of the approach are:

Support of the full C language (via CoreC translation).

Soundness.

Low number of false alarms reported.

Computational efficiency (compared to the 2001 paper).

The shortcomings are:

False alarms are reported nevertheless.

Contracts need to be written manually.

Scalability can be an issue.



General Presentation In-Depth Analysis Results and Perspectives

References

Nurit Dor, Michael Rodeh, Shmuel Sagiv. “CSSV: towards a
realistic tool for statically detecting all buffer overflows in C”.
PLDI 2003: 155-167.

Nurit Dor, Michael Rodeh, Shmuel Sagiv. “Cleanness Checking
of String Manipulations in C Programs via Integer Analysis”.
SAS 2001: 194-212.

Nurit Dor. “Automatic Verification of Program Cleanness”.
PhD thesis, Tel Aviv University, December 2003.

Greta Yorrsh, “The Design of CoreC”.
http://www.cs.tau.ac.il/~gretay/gfc/simplifyCC.pdf

http://www.cs.tau.ac.il/~gretay/gfc/simplifyCC.pdf


General Presentation In-Depth Analysis Results and Perspectives

References (cont’d)

B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A.
Natarajan, J. Steidl. “Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services”. Computer Sciences
Technical Report #1268, University of Wisconsin-Madison,
April 1995.

Manuvir Das, Ben Liblit, Manuel Fähndrich, Jakob Rehof.
“Estimating the Impact of Scalable Pointer Analysis on
Optimization”. SAS 2001: 260-278.

Bertrand Jeannet. “NewPolka”. http:
//pop-art.inrialpes.fr/people/bjeannet/newpolka/

Patrick Cousot, Nicolas Halbwachs. “Automatic Discovery of
Linear Restraints Among Variables of a Program”. POPL
1978: 84-96.

http://pop-art.inrialpes.fr/people/bjeannet/newpolka/
http://pop-art.inrialpes.fr/people/bjeannet/newpolka/


General Presentation In-Depth Analysis Results and Perspectives

Thanks!

Thanks for your attention!


	General Presentation
	Quick facts
	The Main Problem
	Overview of the Solution

	In-Depth Analysis
	Preliminary Steps
	Pointer Analysis
	Integer Program

	Results and Perspectives
	Results
	Perspectives
	References


