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Background

Lots of raw information on the Web
Leverage it to answer complex queries
→ Extract structure
→ Integrate various sources
→ Manage possible errors

→ Where can I get a pizza?
→ Find an affordable flat near Télécom with ≥ 20m2?
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Intensionality

We cannot collect all information:
→ Storage space
→ Bandwidth
→ Access restrictions

Need to access remote data sparingly
Choose relevant accesses dynamically

→ Web crawling
→ Web APIs

→ Crowdsourcing
→ Deep Web

→ Expensive processing
→ Rule consequences
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Structure

Need to leverage existing structure
Structure can be heterogeneous

→ Avoid focusing only on one
framework

→ XML/JSON
→ Views

→ Web graph
→ RDF triples

→ Relational DBs
→ Parse trees
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Uncertainty

Data is imprecise
Data is wrong
Processing induces uncertainty
Represent priors on remote data

→ Fuzzy rules
→ NLP

→ Crowdsourcing
→ Annotations

→ Data integration
→ Information extraction
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Use cases

Extracting structured facts from an open set of news sources
→ Start with an initial knowledge about the world
→ Locate promising articles
→ Run expensive processing on the articles
→ Uncertainty when accessing, disambiguating
→ Use crowdsourcing to validate the facts
→ Using logical rules to constrain them
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Our vision of a general approach

Unsucessfully submitted to VLDB 2014
[Amarilli and Senellart, 2014a]
Submitted as a tutorial proposal to ICDT 2015
[Amarilli and Senellart, 2014b]
Reviews due in 8 days

UnSAID: Uncertainty and Structure
in the Access to Intensional Data

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI; Paris, France

firstname.lastname@telecom-paristech.fr

Pierre Senellart

ABSTRACT
To answer user queries on Web data, it is necessary to crawl, extract,
enrich, and process available information. The traditional exten-
sional approach is to perform those steps one after the other, but it
has many drawbacks. The choice of information that we retrieve
and process must be guided by the query, because retrieving all
the information is not feasible; the information cannot be main-
tained locally because it may become obsolete rapidly; it cannot be
trusted blindly, as it may come from untrustworthy sources; it must
be stored in a way which accounts for its heterogeneous structure
(Web pages, relational facts, textual content, etc.). In this paper,
we present UnSAID, our vision of a framework which addresses
simultaneously the three main challenges faced by the extensional
approach: intensionality, the need to access data selectively and take
into account the cost of individual accesses; uncertainty, the need to
reason on partial and inexact views of the world; and structure, the
need to deal with data in various heterogeneous forms.

1. INTRODUCTION
Publicly available data, information, knowledge is abundant: the

World Wide Web contains trillions of pages on an amazingly diverse
collection of topics; hundreds of thousands of deep Web databases,
accessible through Web forms, are also available; a social network-
ing site such as Twitter sees hundreds of millions of new (public)
messages posted each day; the open linked data now contains hun-
dreds of knowledge bases covering tens of billions of semantic
facts in the form of RDF triples; complex tools in areas such as
information extraction, data mining, or natural language processing
(NLP) are readily available to enrich existing data with even more
information; rules mined from data, or machine learning models,
can be used to make predictions; and when the data is not there and
cannot be predicted, or when it is not easy to process automatically,
it is always possible to resort to crowdsourcing platforms such as
Amazon Mechanical Turk to collect or annotate data.

Yet, the availability of data does not mean that it can be leveraged
easily to satisfy a user’s needs. We call knowledge acquisition needs
the demands which can be phrased by users: they may correspond to
precise queries, such as “does a certain fact hold?”, or more vague
requests, such as “find all relevant information about a certain topic”.
Many challenges need to be addressed to satisfy such needs: the
available data sources are numerous and heterogeneous, accessing
data carries a certain cost, and some of the available data may be
imprecise or incorrect.

As a first example of the approach, consider the application of
mobility in smart cities, i.e., a system integrating information about
transportation options, travel habits, traffic, etc., in and around a city.
All resources mentioned in the previous paragraph can be used to
collect and enrich data related to this application: the Web, deep Web
sources, social networking sites, the Semantic Web, annotators and
wrapper induction systems, crowdsourcing platforms, etc. Moreover,
in such a setting, domain-specific resources, not necessarily public,
contribute to the available data: street cameras, red light sensors, air
pollution monitoring systems, etc.

Users of the system, namely, transport engineers, ordinary citi-
zens, etc., may have many kinds of knowledge acquisition needs.
They can be simple queries expressed in a classical query language
(e.g., “How many cars went through this road during that day?” or
“What is the optimal way to go from this place to that place at a
given time of day?”), certain patterns to mine from the data (“Find
an association rule of the form X ⇒ Y that holds among people
commuting to this district.”), or higher-level business intelligence
queries (“Find anything interesting about the use of the local bike
rental system in the past week.”).

As a second example, consider the problem of personal informa-
tion management, namely, integrating user data across services that
manage the user’s emails, calendar, social network, travel informa-
tion, etc. To answer a knowledge acquisition need such as “find the
people I need to warn about my upcoming trips”, the system would
have to orchestrate queries to the various services: extract the trips,
identify the meetings that conflict with them, and determine their
likely participants.

As a third example, consider socially-driven Web archives [26]:
their goal is to build semantically annotated Web archives on spe-
cific topics or events (investment for growth in Europe, the 2014
Winter Olympics, etc.), guiding the process with clues from the
social Web as to which documents are relevant. These archives
can then be semantically queried by journalists today or historians
tomorrow, e.g., to retrieve all resources mentioning a given person.
The construction of these archives relies on Web crawling, deep
Web harvesting, access to social networking sites such as Twitter
or YouTube via their APIs, use of tools for information extraction,
named entity recognition, opinion mining, etc.

The unsaid is, according to Wikipedia, “what is hidden and/or
implied”. We claim, as illustrated by these three scenarios, that
most of the data from the Web and other sources that is useful to
solve a user’s specific knowledge need is, similarly, hidden and not
explicitly present, but needs to be crawled, extracted, annotated,
by performing costly accesses to sources. Our vision, UnSAID, is
that of a system to answer a user’s needs by taking into account the
heterogeneity of content, the cost in accessing it, and its uncertainty,

In this vision paper, we first briefly describe the high-level ex-
tensional approach which would currently be used to tackle the
scenarios we described, and outline how we think they fall short of
solving them (Section 2). The UnSAID approach is then presented
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ABSTRACT
We call data intensional when it is not directly available, but must be
accessed through a costly interface. Intensional data naturally arises
in a number of data management scenarios, such as crowdsourcing,
Web crawling, or ontology-based data access. Such scenarios require
us to model an uncertain view of the world, for which, given a query,
we must answer the question “What is the best thing to do next?”
Once data has been retrieved, the knowledge of the world is revised.
This tutorial is an introduction to intensional data management,
with a review of the solutions brought in various areas of data
management and machine learning, and of some challenging open
problems.

1. INTRODUCTION

Intensional Data Management. Many data-centric applica-
tions involve data that is not directly available in extension, but can
only be obtained after some access to the data is made, at some
form of cost. In traditional database querying [13], the access may
be disk I/O, and the I/O cost will depend on which indexes are
available. In crowdsourcing platforms [4, 25], accessing data in-
volves recruiting a worker to provide the data, and the cost is in
terms of monetary compensation for workers and latency to obtain
the data. In Web crawling [16], accesses are HTTP requests and
cost involves bandwidth usage, network latency, and quota use for
rate-limited interfaces. In ontology-based data access [10], accesses
mean applying a reasoning rule of an ontology, and the cost is the
computational cost of such an evaluation.

We abstract out the general problem of accessing data through
costly interfaces as that of intensional data management. This ter-
minology contrasts with extensional data management where data
is freely accessible (entirely stored in-memory, or locally stored on
disk in situations when disk accesses are negligible). The termi-
nology is in line with that of Datalog [2], where intensional data
is data not initially present but obtained through rule applications;
it is also the terminology used in Active XML [1]. Intensional
data is sometimes used to refer to the schema of a database, as
opposed to extensional facts, especially in the setting of deductive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

databases [28]; in the same way, in intensional data management,
we study how to perform query optimization and other data manage-
ment tasks when only the schema (and access methods) to some of
the data is directly available, not the facts.

Intensional data management applications share a number of
distinguishing features. At every point in time, one has an uncertain
view of the world, that includes all the data that has already been
accessed, together with the schema, access methods, and some
priors about what data remain to be accessed. Given a user’s query,
the central question in intensional data management is: “What is
the best thing to do next” in order to answer the query, meaning,
what is the best access that should be performed at this point, given
its cost, potential gain, and the uncertain knowledge of the world.
Once an access is chosen and performed, some data is retrieved, and
the uncertain view of the world must be revised in light of the new
knowledge obtained. The process is repeated until the user’s query
receives a satisfactory answer or some other termination condition
is met.

Use Cases. To illustrate, let us give some concrete examples of
complex use cases involving intensional data management.

Consider the application of mobility in smart cities, i.e., a system
integrating information about transportation options, travel habits,
traffic, etc., in and around a city. Various public resources can
be used to collect and enrich data related to this application: the
Web, deep Web sources, social networking sites, the Semantic Web,
annotators and wrapper induction systems, crowdsourcing platforms,
etc. Moreover, in such a setting, domain-specific resources, not
necessarily public, contribute to the available data: street cameras,
red light sensors, air pollution monitoring systems, etc. Users of
the system, namely, transport engineers, ordinary citizens, etc., may
have many kinds of needs. They can be simple queries expressed in
a classical query language (e.g., “How many cars went through this
road during that day?” or “What is the optimal way to go from this
place to that place at a given time of day?”), certain patterns to mine
from the data (“Find an association rule of the form X ⇒ Y that
holds among people commuting to this district.”), or higher-level
business intelligence queries (“Find anything interesting about the
use of the local bike rental system in the past week.”).

To be very concrete, let us imagine what options are available for
the query “How many cars went through this road during that day?”.
One could:
• If applicable, use data from electronic toll gates;
• Use a computer vision program to analyze the street camera

feeds and automatically extract each passage of a vehicle;
• Ask crowd workers to perform the same analysis;
• Do the same, but only a fraction of the day, and extrapolate

the results;
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Down to Earth

Mere query evaluation on probabilistic data: #P-hard
Interaction of rules and probabilistic data poorly understood
No good notions of reasoning with probabilistic rules
Query answering with rules often undecidable
Conditioning probabilistic data wildly intractable

→ Let us focus on more manageable problems!
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General presentation

Joint work with Pierre Bourhis (CNRS Lille) and Pierre
Senellart (my advisor)
Restrict probabilistic instances and correlations to be treelike
Show tractability of query evaluation on them
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Background: Instances and queries

Given a relational instance with probabilities:

Paper Conference Proba
1 PODS 0.2
1 ICDT 0.3
2 PODS 0.4
2 ICDT 0.5

Given a conjunctive query (CQ) (existentially quantified)
q : ∃p1p2c Accepted(p1, c) ∧ Accepted(p2, c) ∧ p1 ̸= p2

→ Query evaluation: probability that q holds?
→ Data complexity: q is fixed
→ Assume independent events (for now)
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Hardness and tractability

→ Query evaluation is #P-hard on arbitrary instances! :-(

Existing work:
→ Show dichotomy between #P-hard and PTIME queries

Our approach:
→ Impose a restriction on the instance and correlations
→ Show that many queries are tractable in this case
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Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

→ Linear time data complexity
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Our idea

Consider tree-like instances
Represent probabilistic events with a circuit
Compute a joint tree decomposition of them
Compile the query to a tree automaton on encodings
Instrument an automaton run on the uncertain instance
Use existing message-passing inference on the result

→ Compute query probability in linear time
(assuming fixed-cost arithmetics)

14/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Our idea

Consider tree-like instances
Represent probabilistic events with a circuit
Compute a joint tree decomposition of them
Compile the query to a tree automaton on encodings
Instrument an automaton run on the uncertain instance
Use existing message-passing inference on the result

→ Compute query probability in linear time
(assuming fixed-cost arithmetics)

14/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2
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R(c, d)

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

deterministic
tree automaton Aq

rewriting
O(1) data complexity

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Main result in pictures

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

deterministic
tree automaton Aq

rewriting
O(1) data complexity

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

probability p

probabilistic inference
O(|C|) for fixed width

0.42

15/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion
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Specific consequences

For queries representable as deterministic automata ...
→ CQs
→ Monadic second-order
→ Guarded second-order

... on various probabilistic models ...
→ Tuple-independent tables (presented before)
→ Block-independent disjoint tables
→ pc-tables
→ Probabilistic XML

... assuming bounded treewidth (for reasonable definitions) ...
→ ... probability of fixed q can be computed in O(I)!

Also: link with semiring provenance
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Informal presentation at Highlights 2014
Submitted to PODS 2015 [Amarilli et al., 2014c]
Reviews due in 15 days
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ABSTRACT
Query evaluation is hard on probabilistic databases, even on very
simple probabilistic data frameworks and fairly simple queries, ex-
cept for limited classes of safe queries. We study the problem from
a different angle: rather than restricting the queries, at which con-
ditions on the data can we tractably evaluate expressive queries on
probabilistic instances? More specifically, we restrict the data tree-
width, which we define on a circuit-based generalization of c-tables,
in a natural way that restricts both the underlying instance and the
annotations. We then leverage known tree-automata constructions
to evaluate queries on bounded-treewidth instances, for such log-
ical fragments as monadic second-order logic or frontier-guarded
Datalog. We prove that we can compute in linear time a bounded-
treewidth lineage circuit for automaton runs on tree decompositions
of bounded-treewidth instances, so that the probability of the query
can then be evaluated in linear-time data complexity (assuming unit-
cost arithmetic). We also show that a similar construction can yield
a circuit representation of the semiring provenance for absorptive
semirings in the case of monotone queries. For known probabilistic
data frameworks, this results implies bounded-treewidth tractabil-
ity of query evaluation on BID relational models, and sufficient
tractability conditions for probabilistic XML models.

1. INTRODUCTION
While relational database management systems are useful

to query exact data, real-world data is often approximate, out-
dated, or incomplete: think of data extracted from unreli-
able sources, or using noisy techniques. These problems are
the focus of uncertain and probabilistic data management, a
topic investigated both from a theoretical angle [41, 50] and
through practical implementations [34].

However, a limit of these works is that query evaluation on
such instances is often hard. As an example, consider the sim-
ple tuple-independent (TID) model, with uncertainty at the
tuple level: each tuple is present or absent with some prob-
ability, and we assume independence between all tuples. It
is already #P-hard [18] to compute the probability that possi-
ble worlds of an input TID instance satisfies the simple, fixed
CQ (conjunctive query) ∃x∃y R(x)∧ S(x,y)∧ T (y); by con-
trast, this query has PTIME (even AC0) data complexity on
usual relational instances.

Existing works have studied two main ways to mitigate this.
The first one is to compute approximate probabilities, e.g.,
through sampling [36]. The second is to restrict the fixed
query to safe query classes [39, 50] that guarantee tractable
data complexity on all instances.

This works investigates a third approach, for which much
less is understood: to restrict the input instances to ensure
tractability no matter the query. We believe this approach
has practical relevance (real-world data is not arbitrary) and
has proven fruitful in other theoretical contexts. Consider
the example of monadic second-order (MSO) queries, which
are NP-hard to evaluate on (non-probabilistic) instances [6],
but have linear-time complexity on instances whose treewidth

is bounded [17], intuitively restricting them to be close to
trees. Such results also apply, e.g., to counting and reliability
calculations [6], which suggests a natural question: can we
adapt them to query evaluation on probabilistic instances and
show tractability assuming bounded treewidth?

Two obstacles make this question harder to answer. First,
there are many probabilistic frameworks (TID, BID, proba-
bilistic c-tables, probabilistic XML. . . ), so it is difficult to
define a general notion of treewidth for all of them. Second,
probabilistic models such as pc-tables have probabilistic cor-
relations which can also cause hardness even for a trivial un-
derlying instance: it is not clear how to bound simultaneously
the instances and the correlations.

This work presents a solution to both of these problems.
We introduce the probabilistic framework of pcc-instances, a
straightforward extension of pc-tables with tuple annotations
given by a circuit rather than by formulae. We then show
how to define a very natural notion of tree decompositions for
pcc-tables, intuitively encoding the annotating circuit in the
instance. This allows us to prove our desired result: query an-
swering has tractable data complexity when the instance tree-
width is bounded; in fact it is even linear assuming constant-
time arithmetic operations.

While our result applies to pcc-tables, which may be of in-
dependent interest as a concise representation for pc-tables,
we show that pcc-tables capture other formalisms, and the
bounded-treewidth condition neatly translates to them. So a
first strength of our result is that it implies tractability corol-
laries for all the probabilistic frameworks mentioned so far,
assuming a constant bound on a natural notion of width for
each model. For instance, fixed CQs are tractable to evaluate
on input TID instances if they have bounded treewidth in the
usual sense, ignoring probabilities.

A second strength of our results is that they cover very ex-
pressive query languages. In fact, they generalize from CQs
to all queries that can be rewritten to tree automata on rela-
tional instances of bounded treewidth. This query class, as
we show, includes MSO, and in fact covers many expressive
query languages, such as frontier-guarded Datalog, which are
fragments of guarded second-order logic; we study the trade-
off between expressiveness and query complexity. While the
tractability of such expressive languages is not so surprising
as it matches known results in the non-probabilistic setting, it
is in stark contrast with the narrow classes of queries which
are tractable on arbitrary probabilistic instances.

A third strength is that our approach does not depend ei-
ther on the specifics of probability computation. In fact, as
we show, determining whether the query holds on a possible
world of the input instance reduces to determining whether
a certain circuit representation of the problem evaluates to
true, and the circuit can be computed in linear time and has
bounded treewidth. This allows us to apply probabilistic in-
ference algorithms [9,11,43] as a black box on the circuit rep-
resentation, which isolates neatly the “symbolical” aspects
of the reduction, and the “numerical” aspects of probability

17/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Possible extensions

Practical implementation: connect to [Maniu et al., 2014]
Connect to rule mining on ontologies [Galárraga et al., 2013]
Extend to probabilistic rules (original focus)
MPRI internship proposal

MSc Internship
Querying Probabilitistic Data via Tree Decompositions

Pierre Senellart
Télécom ParisTech & National University of Singapore

Topic description

Probabilistic databases are compact representations of probability distributions over regular databases.
A number of models have been proposed for probabilistic data, both relational [7] and XML [4].
Evaluating a Boolean query over such a probabilistic database means computing the probability
that the query is true in the probability distribution represented by the database. While query
evaluation is usually tractable on regular databases, evaluating queries in this sense on probabilistic
databases is often intractable.

A number of research works have looked at characteristics of queries that can make them
tractable. For instance, queries without self-joins are tractable over tuple-independent databases if
and only if they are hierarchical [2], while tree-pattern queries on XML data with a single join are
tractable if and only if they are equivalent to a join-free query [3].

By contrast, our recent work [1] has shown that, as long as the data and probabilistic correla-
tions jointly have bounded treewidth [6] in a certain sense, query evaluation of monadic second-order
queries remains tractable. This result is, however, mostly of theoretical interest. We have not inves-
tigated the extent to which real-world probabilistic data can be modeled with bounded treewidth
databases, or whether the tree-automata constructions from [1] can be effectively used for real
applications. Another of our recent work [5] has shown that, even when the data does not have
bounded treewidth, partial tree decompositions may help query evaluation.

The objective of this internship is to explore concrete applications of the results of [1], perhaps
inspired by partial decompositions as in [5], on real-world uncertain datasets. This may include
the study of theoretical problems left open in [1] that are relevant for practical implementation:
e.g., extending the constructions of this work to on-the-fly variants. These techniques should then
be implemented on concrete query classes, perhaps with the help of MONA1, and evaluated on
applications (e.g., routing in transportation networks with uncertain delays).

Supervision and Environment

This Master’s internship will have a duration of between 4 and 6 months and will be supervised
by Pierre Senellart2, professor at Télécom ParisTech and senior research fellow at the National
University of Singapore (within IPAL, a joint French–Singaporean lab), with the help of Antoine
Amarilli3, PhD candidate at Télécom ParisTech.

The student may be based in Paris, in Singapore, or partly in both locations (e.g., 2 months in
Singapore and 3 months in Paris), to be discussed before the internship depending on the student’s
preference and the best opportunities to organize the research.

1http://www.brics.dk/mona/index.html
2http://pierre.senellart.com/
3http://a3nm.net/
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General presentation

Joint work with Michael Benedikt (University of Oxford)
Impose logical rules on databases
Reason on the certain consequences of an instance
Show decidability of the problem for rule languages
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Background

Database instance I which is correct but incomplete
Query q: is it certain that q holds on completions of I?
Restrict to completions satisfying some constraints Σ

→ Is q a logical consequence of I and Σ?

Constraints:
Unary inclusion dependencies (UID)
Example: ∀xy Reviews(x, y) ⇒ ∃z Reviews(y, z)
Functional dependencies (FD)
Example: ∀xyz Reviews(x, z) ∧ Reviews(y, z) ⇒ x = y
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Finite vs unrestricted query answering

Unrestricted QA:
I,Σ |= q if J |= q for all J ⊇ I s.t. J |= Σ

Finite QA:
I,Σ |= q if J |= q for all finite J ⊇ I s.t. J |= Σ

They do not always coincide!
Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)
Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?
→ If they coincide, we say we are finitely controllable (FC)
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Implication

The constraints Σ entail constraint τ :
every instance satisfying Σ also satisfies τ

Again, finite or unrestricted
For general inclusion dependencies and FDs: undecidable
[Mitchell, 1983]
Fortunately, PTIME for UIDs and FDs

→ Possible reason why not FC: not closed under implication
→ Is this the only reason?
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Our result

This is the only reason why UIDs/FDs are not FC
→ UIDs/FDs are finitely controllable modulo finite closure

Why is it interesting?
UIDs and FDs are common database constraints
These problems are often undecidable
Existing techniques were limited:

To infinite QA (separability)
To cases with no FDs [Barany et al., 2010]
To restricted cases with forced FC [Rosati, 2006]
To arity-two signatures
[Pratt-Hartmann, 2009, Ibáñez-García et al., 2014]

Other result: decidable unrestricted QA for GC2 and
frontier-one acyclic dependencies
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Conference submission

Unsuccessfully submitted to PODS 2014 [Amarilli, 2014a]
Presented at Dahu working group at ENS Cachan, 2014
Presented at Dagstuhl seminar “Querying and Reasoning
under Expressive Constraints”

Writing up the main result for LICS 2015
Deadline in 1 month 1/2
Possible further submission for the other result
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ABSTRACT
Open-world query answering (QA) is the problem of decid-
ing, given a database instance, a set of constraints and a query,
whether the query holds over all possible completions of the
instance satisfying the constraints. It is used to reason over
incomplete information and find out if a query is entailed
by constraints given non-exhaustive data. Though QA is in
general undecidable under expressive constraint languages,
decidable cases are known: the guarded fragment, which
cannot express number restrictions such as functional depen-
dencies, or the guarded fragment with number restrictions but
on a signature of arity two. In this paper, we combine both
settings by showing the decidability of QA with number re-
strictions for arbitrary signatures, with expressive constraints
on the binary part of the signature and less expressive con-
straints overall. Turning to QA over finite completions of
the instance, we show its decidability under unary inclusion
dependencies and functional dependencies, by establishing
finite controllability up to a finite closure operation. This
provides, to our knowledge, the first decidability result for
finite QA on arbitrary signatures under tuple-generating and
equality-generating dependencies with complex interaction.

1. INTRODUCTION

Background. As the information stored in database systems
is seldom exhaustive, it is common to model the uncertainty
about missing data through the open-world assumption: given
a database I of facts (in description logics, the A-box) and a
theory Θ of logical constraints (the T-box), the possible states
of the world are the completions of I satisfying Θ.

In this context, evaluating a query q directly on I makes
little sense: we want to determine instead if q is certain, i.e.,
holds in all possible worlds. Equivalently, we ask if the theory
of I, Θ, and ¬q, is not satisfiable in the logical sense. We call
this the open-world query answering (QA) problem.

Unrestricted QA. The QA problem is well-known in de-
scription logics [11] where it is decidable even for very
expressive logics [19]. To the exception of e.g. transitive
roles, this is subsumed by [30] which covers the guarded two-
variable fragment with counting quantifiers (GC2), consisting
of first-order (FO) constraints including number restrictions
(∀x∃≤1yR(x,y)) but limited to guarded constraints with two
variables on arity-two signatures.

QA has also been studied in the context of classical database
theory, first as a query containment problem [23] and then in
its full right [10, 4]. In this setting, the signature is arbitrary
and number restrictions, such as the well-known functional
dependencies (FDs), often make QA undecidable [31]; the
decidable fragments [10, 8, 6] usually limit the interaction
between number restrictions and the other constraints.

Contribution 1. Our first main contribution (Theorem 5.5)
is to prove that we can get the best of both worlds, namely
decidable QA on arbitrary arity signatures for a fragment
including both GC2 constraints on arity-two predicates, arbi-
trary FDs, and frontier-one dependencies [3] exporting only
one variable. We prove this result through an unraveling
argument inspired by [24], to show that we can force mod-
els to be acyclic and respect FDs, obtaining as a by-product
the tree model property for this fragment. We then present
the reification reduction to the arity-two case [25], rewriting
our fragment to GC2 constraints and proving decidability. In
comparison with extensions of description logics to higher-
arity [12], we support arbitrary FDs and expressive GC2 con-
straints on binary predicates at the expense of expressiveness
on higher-arity constraints.

Finite QA. An important variant of the QA problem rele-
vance is to limit the study to finite completions of the instance,
which often makes more sense in practice. The resulting finite
QA problem differs from unrestricted QA, at least because
more dependencies may be implied in the finite [15].

In the arity-two case, QA for GC2 is still decidable in the
finite [30], but for arbitrary arity, much less is known. Finite
and unrestricted QA were shown to match (finite controllabil-
ity) for the guarded fragment [4] and e.g. Sticky Datalog [20],
but with number restrictions, to our knowledge, the best re-
sult is the decidability of finite QA under foreign keys [32],
namely, key dependencies and IDs with limited interaction.

Contributions 2 and 3. Though our unraveling construc-
tion fails for finite QA, the reification encoding shows the
decidability of a fragment featuring unary key dependencies
as arbitrary-arity number restrictions (Theorem 4.10).

We then show that finite QA is decidable under unary
IDs [23] and arbitrary FDs (Theorem 6.10), which are not
finitely controllable; we prove that closing the dependencies
under finite implication, which is decidable for this frag-
ment [15], ensures finite controllability, an approach only

1
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Abstract—Open-world query answering is the problem of
deciding, given a database instance set of constraints and query,
whether the query holds over all possible completions of the
instance satisfying the constraints. There are two variations,
depending on whether the completions considered are finite
(denoted here as FQA) or are unrestricted in cardinality (UQA).
Open-world query answering is used to reason over incomplete
information and find out if a query is entailed by constraints
given non-exhaustive data. The major known decidable cases of
UQA and FQA derive from the following: the guarded fragment
of first-order logic, which can express referential constraints (data
in one place points to data in another) but not number restrictions
such as functional dependencies; and the guarded fragment with
number restrictions but on a signature of arity only two. In
this paper, we give the first decidability results for FQA that
combine both referential constraints and number restrictions for
arbitrary signatures. Our results rely on new techniques for
constructing finite models respecting number restrictions and
referential constraints.

[TODO: no bold in prelim] [TODO: restate thms in apx]

I. INTRODUCTION

A longstanding goal in computational logic is to get logical
languages that are decidable and expressive. One approach is
to have separate languages for the integrity constraints and
the queries. That is, one would seek decidability of “query
answering with constraints”: given a query Q, constraints C,
and a finite structure I, determine which answers to Q can be
inferred to hold over all instances I′ that extend I and which
satisfy C. This is also called “open world query answering”, and
it is known to be related to query containment under constraints.
In many cases (e.g. in databases) the instances I′ of interest are
the finite ones, and hence we can talk about “finite open world
query answering” (denoted here as FQA), fixing a (finite) I
and restricting the quantification to finite completions I′. In
contrast “unrestricted open world query answering” (UQA) to
refer to the problem where I′ can be either finite or infinite.
Generally the class of queries is taken to be the conjunctive
queries (CQs) – queries built up from relational atoms via
existential quantification and conjunction. We will follow this,
and thus omit explicit mention of the query language, focusing
on the constraint language.

A first class of constraints known to have tractable open-
world query-answering problems are the inclusion dependencies
(IDs) – constraints of the form ∀~x R(~x,~y)→∃w S(~x,~w). More
generally, the fundamental results of Johnson and Klug [12] and
Rosati [19] show that both FWA and UWA are decidable and

that, in fact, they coincide. These results have been generalized
by Bárány et al. [2] to a much richer class of constraints, the
guarded fragment of first-order logic.

A second class of constraints that has long been known
to be decidable for many problems of interest are functional
dependencies (FDs) – constraints of the form ∀~x~y R(x1 . . .xn)∧
R(y1 . . .yn) ∧

∧
xi = yi → x j = y j. Indeed, the implication

problem (does one FD follow from a set of others) is decidable,
and coincides with implication restricted to finite instances.
Trivially FQA and UQA are decidable as well, and co-incide.

This paper considers to what extent these classes, FDs and
IDs, can be combined while retaining decidable FQA. It is
well-known that for arbitrary IDs and FDs, both unrestricted
and finite query answering are undecidable [4]. Unrestricted
query answering is known to be decidable when the FDs and
the IDs are “non-conflicting” [12], [4]. We will formally define
this later, but it is a condition that is sufficient to guarantee
that the FDs can be ignored, as long as they hold on the initial
instance I, and one can then solve the query answering problem
by considering the IDs alone. The non-conflicting condition is
extremely restrictive, but it is known to hold for the class of
Unary Inclusion dependencies (UIDs, IDs that “export” only
one variable) and Functional dependencies: see discussion in
Section II.

This work is concerned with finite query answering, and it
is known that for even very simple classes of IDs and FDs,
including non-conflicting classes like UIDs and FDs, FQA and
UQA do not coincide. Very little is known about FQA. Rosati
[19] introduced a severe requirement on key dependencies
and IDs, that implied finite controllability (“single KD and
FKs”). In a different line of work, in the case where all relation
symbols and all subformulas of the constraints have arity at
most 2, results of Pratt-Hartmann [17] imply the decidability of
both FQA and UQA for a very rich sublogic of first-order logic.
Indeed the complexity of FQA has recently been isolated for
many natural classes of arity-two constraints by Ibáñez-García
et al. [11]. But what about arbitrary arity?

The contribution of this paper is the first decidability result
for finite query answering for non-finitely-controlable IDs and
FDs over relations of arbitrary arity. Due to the undecidability
result above, we must naturally make some restriction. Our
choice is to limit to width one, that is Unary IDs (UIDs), of the
form ∀x R(x,~y)→∃~w S(x,~w). UIDs and arbitrary FDs allow
the modeling of single-attribute foreign keys, a common use
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ABSTRACT
Open-world query answering (QA) is the problem of decid-
ing, given a database instance, a set of constraints and a query,
whether the query holds over all possible completions of the
instance satisfying the constraints. It is used to reason over
incomplete information and find out if a query is entailed
by constraints given non-exhaustive data. Though QA is in
general undecidable under expressive constraint languages,
decidable cases are known: the guarded fragment, which
cannot express number restrictions such as functional depen-
dencies, or the guarded fragment with number restrictions but
on a signature of arity two. In this paper, we combine both
settings by showing the decidability of QA with number re-
strictions for arbitrary signatures, with expressive constraints
on the binary part of the signature and less expressive con-
straints overall. Turning to QA over finite completions of
the instance, we show its decidability under unary inclusion
dependencies and functional dependencies, by establishing
finite controllability up to a finite closure operation. This
provides, to our knowledge, the first decidability result for
finite QA on arbitrary signatures under tuple-generating and
equality-generating dependencies with complex interaction.

1. INTRODUCTION

Background. As the information stored in database systems
is seldom exhaustive, it is common to model the uncertainty
about missing data through the open-world assumption: given
a database I of facts (in description logics, the A-box) and a
theory Θ of logical constraints (the T-box), the possible states
of the world are the completions of I satisfying Θ.

In this context, evaluating a query q directly on I makes
little sense: we want to determine instead if q is certain, i.e.,
holds in all possible worlds. Equivalently, we ask if the theory
of I, Θ, and ¬q, is not satisfiable in the logical sense. We call
this the open-world query answering (QA) problem.

Unrestricted QA. The QA problem is well-known in de-
scription logics [11] where it is decidable even for very
expressive logics [19]. To the exception of e.g. transitive
roles, this is subsumed by [30] which covers the guarded two-
variable fragment with counting quantifiers (GC2), consisting
of first-order (FO) constraints including number restrictions
(∀x∃≤1yR(x,y)) but limited to guarded constraints with two
variables on arity-two signatures.

QA has also been studied in the context of classical database
theory, first as a query containment problem [23] and then in
its full right [10, 4]. In this setting, the signature is arbitrary
and number restrictions, such as the well-known functional
dependencies (FDs), often make QA undecidable [31]; the
decidable fragments [10, 8, 6] usually limit the interaction
between number restrictions and the other constraints.

Contribution 1. Our first main contribution (Theorem 5.5)
is to prove that we can get the best of both worlds, namely
decidable QA on arbitrary arity signatures for a fragment
including both GC2 constraints on arity-two predicates, arbi-
trary FDs, and frontier-one dependencies [3] exporting only
one variable. We prove this result through an unraveling
argument inspired by [24], to show that we can force mod-
els to be acyclic and respect FDs, obtaining as a by-product
the tree model property for this fragment. We then present
the reification reduction to the arity-two case [25], rewriting
our fragment to GC2 constraints and proving decidability. In
comparison with extensions of description logics to higher-
arity [12], we support arbitrary FDs and expressive GC2 con-
straints on binary predicates at the expense of expressiveness
on higher-arity constraints.

Finite QA. An important variant of the QA problem rele-
vance is to limit the study to finite completions of the instance,
which often makes more sense in practice. The resulting finite
QA problem differs from unrestricted QA, at least because
more dependencies may be implied in the finite [15].

In the arity-two case, QA for GC2 is still decidable in the
finite [30], but for arbitrary arity, much less is known. Finite
and unrestricted QA were shown to match (finite controllabil-
ity) for the guarded fragment [4] and e.g. Sticky Datalog [20],
but with number restrictions, to our knowledge, the best re-
sult is the decidability of finite QA under foreign keys [32],
namely, key dependencies and IDs with limited interaction.

Contributions 2 and 3. Though our unraveling construc-
tion fails for finite QA, the reification encoding shows the
decidability of a fragment featuring unary key dependencies
as arbitrary-arity number restrictions (Theorem 4.10).

We then show that finite QA is decidable under unary
IDs [23] and arbitrary FDs (Theorem 6.10), which are not
finitely controllable; we prove that closing the dependencies
under finite implication, which is decidable for this frag-
ment [15], ensures finite controllability, an approach only
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Abstract—Open-world query answering is the problem of
deciding, given a database instance set of constraints and query,
whether the query holds over all possible completions of the
instance satisfying the constraints. There are two variations,
depending on whether the completions considered are finite
(denoted here as FQA) or are unrestricted in cardinality (UQA).
Open-world query answering is used to reason over incomplete
information and find out if a query is entailed by constraints
given non-exhaustive data. The major known decidable cases of
UQA and FQA derive from the following: the guarded fragment
of first-order logic, which can express referential constraints (data
in one place points to data in another) but not number restrictions
such as functional dependencies; and the guarded fragment with
number restrictions but on a signature of arity only two. In
this paper, we give the first decidability results for FQA that
combine both referential constraints and number restrictions for
arbitrary signatures. Our results rely on new techniques for
constructing finite models respecting number restrictions and
referential constraints.

[TODO: no bold in prelim] [TODO: restate thms in apx]

I. INTRODUCTION

A longstanding goal in computational logic is to get logical
languages that are decidable and expressive. One approach is
to have separate languages for the integrity constraints and
the queries. That is, one would seek decidability of “query
answering with constraints”: given a query Q, constraints C,
and a finite structure I, determine which answers to Q can be
inferred to hold over all instances I′ that extend I and which
satisfy C. This is also called “open world query answering”, and
it is known to be related to query containment under constraints.
In many cases (e.g. in databases) the instances I′ of interest are
the finite ones, and hence we can talk about “finite open world
query answering” (denoted here as FQA), fixing a (finite) I
and restricting the quantification to finite completions I′. In
contrast “unrestricted open world query answering” (UQA) to
refer to the problem where I′ can be either finite or infinite.
Generally the class of queries is taken to be the conjunctive
queries (CQs) – queries built up from relational atoms via
existential quantification and conjunction. We will follow this,
and thus omit explicit mention of the query language, focusing
on the constraint language.

A first class of constraints known to have tractable open-
world query-answering problems are the inclusion dependencies
(IDs) – constraints of the form ∀~x R(~x,~y)→∃w S(~x,~w). More
generally, the fundamental results of Johnson and Klug [12] and
Rosati [19] show that both FWA and UWA are decidable and

that, in fact, they coincide. These results have been generalized
by Bárány et al. [2] to a much richer class of constraints, the
guarded fragment of first-order logic.

A second class of constraints that has long been known
to be decidable for many problems of interest are functional
dependencies (FDs) – constraints of the form ∀~x~y R(x1 . . .xn)∧
R(y1 . . .yn) ∧

∧
xi = yi → x j = y j. Indeed, the implication

problem (does one FD follow from a set of others) is decidable,
and coincides with implication restricted to finite instances.
Trivially FQA and UQA are decidable as well, and co-incide.

This paper considers to what extent these classes, FDs and
IDs, can be combined while retaining decidable FQA. It is
well-known that for arbitrary IDs and FDs, both unrestricted
and finite query answering are undecidable [4]. Unrestricted
query answering is known to be decidable when the FDs and
the IDs are “non-conflicting” [12], [4]. We will formally define
this later, but it is a condition that is sufficient to guarantee
that the FDs can be ignored, as long as they hold on the initial
instance I, and one can then solve the query answering problem
by considering the IDs alone. The non-conflicting condition is
extremely restrictive, but it is known to hold for the class of
Unary Inclusion dependencies (UIDs, IDs that “export” only
one variable) and Functional dependencies: see discussion in
Section II.

This work is concerned with finite query answering, and it
is known that for even very simple classes of IDs and FDs,
including non-conflicting classes like UIDs and FDs, FQA and
UQA do not coincide. Very little is known about FQA. Rosati
[19] introduced a severe requirement on key dependencies
and IDs, that implied finite controllability (“single KD and
FKs”). In a different line of work, in the case where all relation
symbols and all subformulas of the constraints have arity at
most 2, results of Pratt-Hartmann [17] imply the decidability of
both FQA and UQA for a very rich sublogic of first-order logic.
Indeed the complexity of FQA has recently been isolated for
many natural classes of arity-two constraints by Ibáñez-García
et al. [11]. But what about arbitrary arity?

The contribution of this paper is the first decidability result
for finite query answering for non-finitely-controlable IDs and
FDs over relations of arbitrary arity. Due to the undecidability
result above, we must naturally make some restriction. Our
choice is to limit to width one, that is Unary IDs (UIDs), of the
form ∀x R(x,~y)→∃~w S(x,~w). UIDs and arbitrary FDs allow
the modeling of single-attribute foreign keys, a common use
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Frequent itemset mining
Data mining – discovering interesting patterns in large databases

Database – a (multi)set of transactions
Transaction – a set of items (aka. an itemset)

A simple kind of pattern to identify are frequent itemsets

D =
{

{beer, diapers},
{beer, bread, butter},
{beer, bread, diapers},
{salad, tomato}}

Itemset is frequent if it occurs in
≥ Θ = 50% of transactions
{salad} not frequent
{beer, diapers} frequent
⇒ {beer} is also frequent

→ We also assume we have a known taxonomy on the items
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Human knowledge mining

Some databases only exist in the minds of people
Example: popular activities in Athens:

t1: I went to the acropolis and to the museum.
⇒ {acropolis, museum}

t2: I visited Piraeus and had some ice cream.
⇒ {piraeus, icecream}

t3: On Monday I attended the keynote and had coffee.
⇒ {keynote, coffee}

We want frequent itemsets: frequent activity combinations
⇒ How to retrieve this data from people?
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Harvesting the data

We cannot collect such data in a centralized database:
1 It’s impractical to ask all users to surrender their data

“Everyone please tell us all you did the last three months.”
2 People do not remember the information

“What were you doing on August 23th, 2013?”

People remember summaries that we could access
“Do you often eat ice cream when attending a keynote?”

⇒ We can just ask people if an itemset is frequent
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Crowdsourcing

Crowdsourcing – solving hard problems through elementary
queries to a crowd of users
Find out if an itemset is frequent with the crowd:

1 Draw a sample of users from the crowd. (black box)
2 Ask: is this itemset frequent? (“Do you often have coffee?”)
3 Corroborate the answers to eliminate bad answers. (black box)
4 Reward the users. (e.g., monetary incentive)

⇒ The crowd is an oracle: given an itemset, say if it is frequent
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The problem

We can now describe the problem:
We have:

A known item domain I (set of items)
A known taxonomy Ψ on I (is-a relation, partial order)
A crowd oracle to decide if an itemset is frequent or not

Choose questions interactively based on past answers
⇒ Find out the status of all itemsets

What is a good algorithm to solve this problem?

Crowd complexity: The number of itemsets we ask about
(monetary cost, latency...)

Computational complexity: The complexity of computing the next
question to ask
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On the Complexity of Mining Itemsets from the Crowd
Using Taxonomies∗

Antoine Amarilli1,2, Yael Amsterdamer1, and Tova Milo1

1Tel Aviv University, Tel Aviv, Israel
2École normale supérieure, Paris, France

ABSTRACT
We study the problem of frequent itemset mining in domains
where data is not recorded in a conventional database but
only exists in human knowledge. We provide examples of
such scenarios, and present a crowdsourcing model for them.
The model uses the crowd as an oracle to find out whether an
itemset is frequent or not, and relies on a known taxonomy
of the item domain to guide the search for frequent itemsets.
In the spirit of data mining with oracles, we analyze the com-
plexity of this problem in terms of (i) crowd complexity, that
measures the number of crowd questions required to iden-
tify the frequent itemsets; and (ii) computational complexity,
that measures the computational effort required to choose the
questions. We provide lower and upper complexity bounds
in terms of the size and structure of the input taxonomy, as
well as the size of a concise description of the output item-
sets. We also provide constructive algorithms that achieve
the upper bounds, and consider more efficient variants for
practical situations.

1. INTRODUCTION
The identification of frequent itemsets, namely sets of

items that frequently occur together, is a basic ingredi-
ent in data mining algorithms and is used to discover
interesting patterns in large data sets [1]. A common
assumption in such algorithms is that the transactions
to be mined (the sets of co-occurring items) have been
recorded and are stored in a database. In contrast, there
is data which is not recorded in a systematic manner,
but only exists in human knowledge. Mining this type
of data is the goal of this paper.

As a simple example, consider a social scientist ana-
lyzing the life habits of people, in terms of activities
(watching TV, jogging, reading, etc.) and their con-
texts (time, location, weather, etc.). Typically, for large
communities, there is no comprehensive database that
records all transactions where an individual performs
some combination of activities in a certain context. Yet,
some trace of the data remains in the memories of the

∗This work has been partially funded by the European Re-
search Council under the FP7, ERC grant MoDaS, agree-
ment 291071, and by the Israel Ministry of Science.

individuals involved. As another example, consider a
health researcher who wants to identify new drugs by
analyzing the practices of folk medicine (also known
as traditional medicine, i.e., medicinal practice that is
neither documented in writing nor tested out under a
scientific protocol): the researcher may want to deter-
mine, for instance, which treatments are often applied
together for a given combination of symptoms. For this
purpose too, the main source of knowledge are the folk
healers and patients themselves.

In a previous work [2, 3] we have proposed to address
this challenge using crowdsourcing to mine the relevant
information from the crowd. Crowdsourcing platforms
(such as, e.g., [3, 13, 27, 29, 32]) are an effective tool
for harnessing a crowd of Web users to perform various
tasks. In [2, 3] we incorporated crowdsourcing into a
crowd mining framework for identifying frequent data
patterns in human knowledge, and demonstrated its ef-
ficiency experimentally. The goal of the present paper
is to develop the theoretical foundations for crowd min-
ing, and, in particular, to formally study the complexity
of identifying frequent itemsets using the crowd.

Before presenting our results, let us explain three im-
portant principles that guide our solution.

First, in our settings, no comprehensive database can
be built. Not only would it be prohibitively expensive
to ask all the relevant people to provide all the required
information, but it is also impossible for people to re-
call all the details of their individual transactions such
as activity occurrences, illnesses, treatments, etc. [2, 6].
Hence, one cannot simply collect the transactions into a
database that could be mined directly. Instead, studies
show that people do remember some summary informa-
tion about their transactions [6], and thus, as demon-
strated in [2, 3], itemset frequencies can be learned by
asking the crowd directly about them.

Second, as we want to mine the crowd by posing ques-
tions about itemset frequencies, we must define a suit-
able cost model to evaluate mining algorithms. In data
mining there are two main approaches for measuring al-
gorithm cost. The first one (see, e.g., [1]) measures run-
ning time, including the cost of accessing the database
(database scans), which is not suitable for a crowd set-

1
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Ongoing extensions
Two important aspects to handle:

The support of itemsets is a numerical value
→ Use them to estimate probabilities

Only the most frequent itemsets are really relevant
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Abstract. Applications extracting data from crowdsourcing platforms
must deal with the uncertainty of crowd answers in two different ways:
first, by deriving estimates of the correct value from the answers; second,
by choosing crowd questions whose answers are expected to minimize this
uncertainty relative to the overall data collection goal. Such problems are
already challenging when we assume that questions are unrelated and
answers are independent, but they are even more complicated when we
assume that the unknown values follow hard structural constraints (such
as monotonicity).
In this vision paper, we examine how to formally address this issue with
an approach inspired by [2]. We describe a generalized setting where we
model constraints as linear inequalities, and use them to guide the choice
of crowd questions and the processing of answers. We present the main
challenges arising in this setting, and propose directions to solve them.

1 Introduction

Crowd data sourcing leverages human knowledge to obtain information which
does not exist in conventional databases. This may be done by posing targeted
questions to crowd users, through conventional crowdsourcing platforms such as
Amazon Mechanical Turk [6]. Contrary to many works that use the crowd as a
means to perform different tasks, here the crowd serves as a source of information.

Many challenges arise when using the crowd as a data source. First, human
answers have a high latency and are usually provided against some (monetary)
compensation, so we must minimize the number of posed questions. Second,
answers collected from the crowd may be erroneous and noisy, so we must control
and improve answer quality, e.g., pose the same question to multiple workers.

A vast body of research has tackled these issues for various data procurement
tasks (e.g., [1,2,7,8,11,12]). For example, [7] studied the number of answers
that must be obtained to reach sufficient confidence in the final answer of a
given Boolean question, and mentions the problem of deciding, when there are
several questions to answer, which is the next best question to ask the crowd. In
different situations [2,12], this selection of questions is performed by comparing
the expected contribution of the answers to some data acquisition goal. However,
in such situations, the answers to the various questions are independent, so that
we can choose the next best question by looking at each question in isolation.

34/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Ongoing extensions
Two important aspects to handle:

The support of itemsets is a numerical value
→ Use them to estimate probabilities

Only the most frequent itemsets are really relevant
→ Focus on finding relevant queries for top-k

Unexpected connections:
volume computation in convex polytopes
interpolation schemes for posets

Vision published at Uncrowd 2014 [Amarilli et al., 2014b]
Ongoing work

Uncertainty in Crowd Data Sourcing
under Structural Constraints

Antoine Amarilli1, Yael Amsterdamer2, and Tova Milo2

1 Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI, Paris, France
2 Tel Aviv University, Tel Aviv, Israel

Abstract. Applications extracting data from crowdsourcing platforms
must deal with the uncertainty of crowd answers in two different ways:
first, by deriving estimates of the correct value from the answers; second,
by choosing crowd questions whose answers are expected to minimize this
uncertainty relative to the overall data collection goal. Such problems are
already challenging when we assume that questions are unrelated and
answers are independent, but they are even more complicated when we
assume that the unknown values follow hard structural constraints (such
as monotonicity).
In this vision paper, we examine how to formally address this issue with
an approach inspired by [2]. We describe a generalized setting where we
model constraints as linear inequalities, and use them to guide the choice
of crowd questions and the processing of answers. We present the main
challenges arising in this setting, and propose directions to solve them.

1 Introduction

Crowd data sourcing leverages human knowledge to obtain information which
does not exist in conventional databases. This may be done by posing targeted
questions to crowd users, through conventional crowdsourcing platforms such as
Amazon Mechanical Turk [6]. Contrary to many works that use the crowd as a
means to perform different tasks, here the crowd serves as a source of information.

Many challenges arise when using the crowd as a data source. First, human
answers have a high latency and are usually provided against some (monetary)
compensation, so we must minimize the number of posed questions. Second,
answers collected from the crowd may be erroneous and noisy, so we must control
and improve answer quality, e.g., pose the same question to multiple workers.

A vast body of research has tackled these issues for various data procurement
tasks (e.g., [1,2,7,8,11,12]). For example, [7] studied the number of answers
that must be obtained to reach sufficient confidence in the final answer of a
given Boolean question, and mentions the problem of deciding, when there are
several questions to answer, which is the next best question to ask the crowd. In
different situations [2,12], this selection of questions is performed by comparing
the expected contribution of the answers to some data acquisition goal. However,
in such situations, the answers to the various questions are independent, so that
we can choose the next best question by looking at each question in isolation.

34/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Ongoing extensions
Two important aspects to handle:

The support of itemsets is a numerical value
→ Use them to estimate probabilities

Only the most frequent itemsets are really relevant
→ Focus on finding relevant queries for top-k

Unexpected connections:
volume computation in convex polytopes
interpolation schemes for posets

Vision published at Uncrowd 2014 [Amarilli et al., 2014b]
Ongoing work

Uncertainty in Crowd Data Sourcing
under Structural Constraints

Antoine Amarilli1, Yael Amsterdamer2, and Tova Milo2

1 Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI, Paris, France
2 Tel Aviv University, Tel Aviv, Israel

Abstract. Applications extracting data from crowdsourcing platforms
must deal with the uncertainty of crowd answers in two different ways:
first, by deriving estimates of the correct value from the answers; second,
by choosing crowd questions whose answers are expected to minimize this
uncertainty relative to the overall data collection goal. Such problems are
already challenging when we assume that questions are unrelated and
answers are independent, but they are even more complicated when we
assume that the unknown values follow hard structural constraints (such
as monotonicity).
In this vision paper, we examine how to formally address this issue with
an approach inspired by [2]. We describe a generalized setting where we
model constraints as linear inequalities, and use them to guide the choice
of crowd questions and the processing of answers. We present the main
challenges arising in this setting, and propose directions to solve them.

1 Introduction

Crowd data sourcing leverages human knowledge to obtain information which
does not exist in conventional databases. This may be done by posing targeted
questions to crowd users, through conventional crowdsourcing platforms such as
Amazon Mechanical Turk [6]. Contrary to many works that use the crowd as a
means to perform different tasks, here the crowd serves as a source of information.

Many challenges arise when using the crowd as a data source. First, human
answers have a high latency and are usually provided against some (monetary)
compensation, so we must minimize the number of posed questions. Second,
answers collected from the crowd may be erroneous and noisy, so we must control
and improve answer quality, e.g., pose the same question to multiple workers.

A vast body of research has tackled these issues for various data procurement
tasks (e.g., [1,2,7,8,11,12]). For example, [7] studied the number of answers
that must be obtained to reach sufficient confidence in the final answer of a
given Boolean question, and mentions the problem of deciding, when there are
several questions to answer, which is the next best question to ask the crowd. In
different situations [2,12], this selection of questions is performed by comparing
the expected contribution of the answers to some data acquisition goal. However,
in such situations, the answers to the various questions are independent, so that
we can choose the next best question by looking at each question in isolation.

34/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Table of contents

1 Research Topic

2 Tractability for Treelike Probabilistic Data

3 Open-World Query Answering

4 Crowd Data Mining

5 Other Topics

6 Conclusion

35/41



Research Topic Tractable Probabilistic Data Open-World Query Answering Crowd Data Mining Other Topics Conclusion

Uncertain ordered data

Joint work with M. Lamine Ba (Télécom ParisTech), Daniel
Deutch (Tel Aviv University) and Pierre Senellart
Extend the positive (bag) relational algebra to ordered data
Manage uncertainty on the possible orderings
Study expressiveness and complexity

Unsuccessfully submitted to PODS 2014
Hoping to submit to PODS 2015 (deadline tomorrow :-P)

Provenance for Nondeterministic Order-Aware Queries

Antoine Amarilli
Télécom ParisTech; CNRS LTCI

M. Lamine Ba
Télécom ParisTech; CNRS LTCI

Daniel Deutch
Tel Aviv University

Pierre Senellart
Télécom ParisTech; CNRS LTCI

ABSTRACT
Data transformations that involve (partial) ordering, and con-
solidate data in presence of uncertainty, are common in the
context of various applications. The complexity of such trans-
formations, in addition to the possible presence of meta-data,
call for provenance support. We introduce, for the first time,
a framework that accounts for the conjunction of these needs.
To this end, we enrich the positive relational algebra with
order-aware operators, some of which are non-deterministic,
accounting for uncertainty. We study the expressive power
and the complexity of deciding possibility for the obtained
language. We then equip the language with (semiring-based)
provenance tracking and highlight the unique challenges in
supporting provenance for the order-aware operations. We
explain how to overcome these challenges, designing a new
provenance structure and a provenance-aware semantics for
our language. We show the usefulness of the construction,
proving that it satisfies common desiderata for provenance
tracking.

1. INTRODUCTION
Real world applications often involve transformations that

involve some (partial) ordering in the data; that need to con-
solidate the data in presence of uncertainty; and that can
greatly benefit from provenance support due to their com-
plexity and dependency on meta-data. We define and study
a framework that addresses, for the first time (to our knowl-
edge), the combination of these three challenges. We first
explain the need for such a framework and then highlight our
main contributions in this respect.

Ordered Data and its Consolidation. Queries involving
some form of (partial) ordering in the data, such as sorting
(ORDER BY in SQL), queries using ordered timestamps, or
top-k queries (LIMIT), play a fundamental role in many ap-
plications. When ordered datasets are consolidated, their
management becomes intricate. For example, what should be
the ordering of the union of ordered relations that may or may
not be disjoint? If they are not disjoint, how to solve conflicts
in the ordering? Assuming a global, total order on all tuples is
unrealistic in practice: perhaps the relations in question were
ordered by different incomparable attributes; or the attribute
used to order them was projected out; or, if the relations come
from different sources, each may be ordered following local,
unsynchronized timestamps. Such challenges are present
also in the context of rank aggregation [29] when the indi-
vidual aggregation functions are unknown and lists must be
merged and ordered in a way compatible with the individual

orderings; or for scheduling of workflows, with constraints
on tasks order and possible synchronization points. In all of
these cases there is an inherent uncertainty in the transforma-
tions. As explained below, we take the operational approach
of dealing with this uncertainty via non-determinism.

Consider for example a sensor network where each sensor
issues observations on events happening within its range. We
assume that information about events observed by a given
sensor is saved in a relation and are ordered by timestamps.
Observations of the different sensors need to be consolidated,
to provide a complete picture of events and allow for their
analysis. However, we may not trust the relative ordering of
observations across sensors, as global clock synchronization
is a tricky matter [30]; or maybe we can trust the relative
ordering between sensors but only once some synchronization
point has been reached (e.g. an event that is known to be
common has been reported).

A Need for Provenance Tracking. Importantly, meta-data
may affect the transformation and consolidation of data. Con-
tinuing with our sensors example, each observation of each
sensor may be associated with a different level of credibility
(trust), depending e.g. on the sensor quality; some observa-
tions may be associated with different access control privi-
leges, so that the result of data consolidation must not show
them to unauthorized users; etc. Also, due to the complicated
nature of such transformations, users may wish to explore
multiple scenarios, both with respect to presence or absence
of input data (“how would the result change if we omit a par-
ticular observation?”), or with respect to the multiple possible
ways for integration. Provenance management has proven
highly successful for such applications, in the context of dif-
ferent kinds of transformations (e.g. [5, 26, 31, 17, 11, 20]),
and so we identify the need for provenance tracking in the
context of order-aware transformations.

To our knowledge, no previously proposed framework can
be used for our needs. For instance, standard SQL is unsuit-
able as “ordering of the rows of the table specified by the
query expression is guaranteed only for the query expression
that immediately contains the ORDER BY clause” [23], which
means ordering is not preserved except at top-level. Existing
works on querying in presence of order typically do not ad-
mit a nondeterministic semantics: they either assume a total
order on the data elements [22, 32], forbid conflicts [27], or
choose one possible merge based on heuristics or rules [4,
25]. Other works such as [21] propose to capture results via
partially-ordered sets (with multiplicities), and we discuss the
unsuitability of this approach to our needs in Section 6. In
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ABSTRACT
To combine ordered data originating from multiple sources, one
needs a framework that can represent uncertainty about the possi-
ble orderings or, as we call it, order-incomplete data. Examples
of order-incomplete data are lists of properties (such as hotels and
restaurants) ranked by an unknown function reflecting relevance or
customer ratings, documents edited concurrently with uncertainty
on the order of contributions, and the result of integrating event se-
quences such as sensor readouts or log entries. Our work extends
the positive relational algebra to ordered and order-incomplete data,
and introduces a set of axioms to guide the design of a bag seman-
tics for the language, motivated by our use cases. We introduce
two simple such semantics, one of which is shown to be the most
general for our set of axioms. We next design a strong represen-
tation system for them, based on partial orders interpreted through
a possible-world semantics. We study the expressiveness of our
query language, connecting it to complexity measures on partial
orders. We further introduce a top-k operator, and investigate the
complexity of query evaluation, studied in the context of certain
and possible answers. We last introduce a duplicate elimination
operator to return to set semantics, and revisit our results.

1. INTRODUCTION
Real world applications usually involve transformations

over ordered data with incomplete knowledge about how in-
put total orderings have been derived. Thereby, one needs
a framework able to represent uncertainty about the possi-
ble orderings or, as we call it, order-incomplete data. We
define and study a framework that addresses representation
and query aspects for ordered and order-incomplete data. We
first motivate the need for such a framework and then high-
light our main contributions in this respect.

Consider lists of properties (such as hotels and restau-
rants) where each individual list is ranked by an unknown
function reflecting, relevance, data freshness, or customer
ratings; documents edited concurrently (e.g., within a dis-
tributed setting) with uncertainty on the order of contribu-
tions; or event sequences such as sensor readouts or log en-
tries. Ordered data in these given scenarios come with order-
incomplete data. When such ordered and order-incomplete
datasets are consolidated, their management becomes intri-
cate. For instance, what should be the ordering of the union
of ranked lists of restaurants or hotels with order-incomplete
information. Should the result be an arbitrary new ordering
or an ordering consistent with each individual input ranking?
As a general observation, clearly there is an inherent uncer-
tainty about the right resulting ordering for transformations
over ordered and order-incomplete data. As we shall explain
below, we consider the operational approach of tackling this
uncertainty about the order via a possible-world semantics.

Consider again the ranked lists of properties (restaurants
or hotels) with unknown used individual ranking function;
all examples, given throughout this paper, are based on this
use case. One can want to have a complete picture of, e.g.,
the restaurants, by combining all the lists for further analysis
(e.g., issuing a top-k query by asking whether or not the top
three cheapest restaurants belong to a given same branch.)
while being still aware of order information between tuples
of properties. This calls for a way to preserve order infor-
mation through the transformation. However, it seem unrea-
sonable to choose an arbitrary final ordering for the result
either by trying to guess some about input ranking criteria
or by sorting on a given selected subsets of fields. Instead
of that, we would like to compute the result with an order at
least consistent with the ranking into each individual input
list via a possible-world semantics. Indeed, we have to deal,
in reality, with two main issues: incomplete information and
possible ordering.

To our knowledge, no previously proposed framework can
be used for our needs. For instance, standard SQL is unsuit-
able as it assumes a certain unordered world and “ordering
of the rows of the table specified by the query expression is
guaranteed only for the query expression that immediately
contains the ORDER BY clause” [16], which means order-
ing is not preserved except at top-level. Existing works on
querying in presence of order typically do not admit neither
order-incomplete information nor a nondeterministic seman-
tics: they either assume an identical ranking criteria of the
data elements [15, 28, 2] or choose one possible merge based
on heuristics or rules [3, 19]. Other works such as [12] pro-
pose to capture results via partially-ordered sets (with mul-
tiplicities), and we discuss the unsuitability of this approach
to our needs in Section 8.

We therefore propose in this paper an extension of the pos-
itive relational algebra to ordered and order-incomplete data,
and introduces a set of axioms to guide the design of a bag
semantics for the language, motivated by our use cases. We
introduce two simple such semantics, one of which is shown
to be the most general for our set of axioms. We next de-
sign a strong representation system for them, based on par-
tial orders interpreted through a possible-world semantics.
We study the expressiveness of our query language, connect-
ing it to complexity measures on partial orders. We further
introduce a top-k operator, and investigate the complexity of
query evaluation, studied in the context of certain and pos-
sible answers. We last introduce a duplicate elimination op-
erator to return to set semantics, and revisit our results. We
next provide an overview of our main contributions.

Order-incomplete Databases and Algebra (Section 3).
We focus on a relational setting, and capture ordered and
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Antoine Amarilli
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Abstract. We consider the possibility problem of determining if a document
is a possible world of a probabilistic document, in the setting of probabilistic
XML. This basic question is a special case of query answering or tree automata
evaluation, but it has specific practical uses, such as checking whether an user-
provided probabilistic document outcome is possible or sufficiently likely.
In this paper, we study the complexity of the possibility problem for probabilistic
XML models of varying expressiveness. We show that the decision problem is
often tractable in the absence of long-distance dependencies, but that its computa-
tion variant is intractable on unordered documents. We also introduce an explicit
matches variant to generalize practical situations where node labels are unambigu-
ous; this ensures tractability of the possibility problem, even under long-distance
dependencies, provided event conjunctions are disallowed. Our results entirely
classify the tractability boundary over all considered problem variants.

1 Introduction

Probabilistic representations are a way to represent incomplete knowledge through a
concise description of a large set of possible worlds annotated with their probability.
Such models can then be used, e.g., to run a query efficiently over all possible worlds and
determine the overall probability that the query holds. Probabilistic representations have
been successfully used both for the relational model [14] and for XML documents [12].

Many problems, such as query answering [11], have been studied over such rep-
resentations; however, to our knowledge, the possibility problem (POSS) has not been
specifically studied: given a probabilistic document D and a deterministic document W ,
decide if W is a possible world of D, and optionally compute its probability according
to D. This can be asked both of relational and XML probabilistic representations, but we
focus on XML documents1 because they pose many challenges: they are hierarchical so
some probabilistic choices appear dependent2; documents may be ordered; bag semantics
must be used to count multiple sibling nodes with the same label. In addition, in the
XML setting, the POSS problem is a natural question that arises in practical scenarios.

As a first example, when using probabilistic XML to represent a set D of possible
versions [6] of an XML document, one may want to determine if a version W , obtained
from a user or from an external source, is one of the known possible versions represented
as a probabilistic XML document D. For instance, assume that a probabilistic XML
version control system asks a user to resolve a conflict [5], whose uncertain set of possible

1 Translations between the probabilistic relational and XML models [4] can be used to translate
our results to complexity bounds for the POSS problem on probabilistic relational databases.

2 In fact, we will see that our hardness results always hold even for shallow documents.

1
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Sampling-Based XML Data Pricing
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Abstract. While price and data quality should define the major trade-
off for consumers in data markets, prices are usually prescribed by ven-
dors and data quality is not negotiable. In this paper we study a model
where data quality can be traded for a discount. We focus on the case of
XML documents and consider completeness as the quality dimension. In
our setting, the data provider offers an XML document, and sets both
the price of the document and a weight to each node of the document,
depending on its potential worth. The data consumer proposes a price.
If the proposed price is lower than that of the entire document, then
the data consumer receives a sample, i.e., a random rooted subtree of
the document whose selection depends on the discounted price and the
weight of nodes. By requesting several samples, the data consumer can
iteratively explore the data in the document. We show that the uniform
random sampling of a rooted subtree with prescribed weight is unfortu-
nately intractable. However, we are able to identify several practical cases
that are tractable. The first case is uniform random sampling of a rooted
subtree with prescribed size; the second case restricts to binary weights.
For both these practical cases we present polynomial-time algorithms
and explain how they can be integrated into an iterative exploratory
sampling approach.

1 Introduction

There are three kinds of actors in a data market: data consumers, data providers,
and data market owners [14]. A data provider brings data to the market and
sets prices on the data. A data consumer buys data from the market and pays
for it. The owner is the broker between providers and consumers, who negotiates
pricing schemes with data providers and manages transactions to trade data.

In most of the data pricing literature [4–6, 9], data prices are prescribed and
not negotiable, and give access to the best data quality that the provider can
achieve. Yet, data quality is an important axis which should be used to price
documents in data markets. Wang et al. [15, 18] define dimensions to assess data
quality following four categories: intrinsic quality (believability, objectivity, ac-
curacy, reputation), contextual quality (value-added, relevancy, timeliness, ease

A Framework for Sampling-Based XML Data
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Abstract. While price and data quality should define the major trade-
off for consumers in data markets, prices are usually prescribed by ven-
dors and data quality is not negotiable. In this paper we study a model
where data quality can be traded for a discount. We focus on the case of
XML documents and consider completeness as the quality dimension.
In our setting, the data provider offers an XML document, and sets both
the price of the document and a weight to each node of the document,
depending on its potential worth. The data consumer proposes a price.
If the proposed price is lower than that of the entire document, then
the data consumer receives a sample, i.e., a random rooted subtree of
the document whose selection depends on the discounted price and the
weight of nodes. By requesting several samples, the data consumer can
iteratively explore the data in the document.
We present a pseudo-polynomial time algorithm to select a rooted subtree
with prescribed weight uniformly at random, but show that this problem
is unfortunately intractable. Yet, we are able to identify several practical
cases where our algorithm runs in polynomial time. The first case is
uniform random sampling of a rooted subtree with prescribed size rather
than weights; the second case restricts to binary weights.
As a more challenging scenario for the sampling problem, we also study
the uniform sampling of a rooted subtree of prescribed weight and pre-
scribed height. We adapt our pseudo-polynomial time algorithm to this
setting and identify tractable cases.

1 Introduction

There are three kinds of actors in a data market: data consumers, data providers,
and data market owners [14]. A data provider brings data to the market and
sets prices on the data. A data consumer buys data from the market and pays
for it. The owner is the broker between providers and consumers, who negotiates
pricing schemes with data providers and manages transactions to trade data.

In most of the data pricing literature [4–6, 9], data prices are prescribed and
not negotiable, and give access to the best data quality that the provider can
achieve. Yet, data quality is an important axis which should be used to price
documents in data markets. Wang et al. [15, 19] define dimensions to assess data
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Abstract. A knowledge base (KB) is a formal collection of knowledge
about the world. In this paper, we explain how the YAGO KB is con-
structed. We also summarize our contributions to different aspects of KB
management in general. One of these aspects is rule mining, i.e., the iden-
tification of patterns such as spouse(x, y)∧livesIn(x, z) ⇒ livesIn(y, z).
Another aspect is the incompleteness of KBs. We propose to integrate
data from Web Services into the KB in order to fill the gaps. Further, we
show how the overlap between existing KBs can be used to align them,
both in terms of instances and in terms of the schema. Finally, we show
how KBs can be protected by watermarking.

1 Introduction

Recent advances in information extraction have led to the creation of large
knowledge bases (KBs). These KBs provide information about a great variety
of entities, such as people, countries, rivers, cities, universities, movies, animals,
etc. Among the most prominent academic projects are Cyc [12], DBpedia [2],
Freebase3, and our own YAGO [21]. Most of these projects are linked together
in the Semantic Web [5]. KBs find numerous applications in the industry. The
Knowledge Graph released by Google is an example of a large commercial KB
project. It contains linked information about millions of people, places, and or-
ganizations, and helps Google deliver more semantic search results. Facebook
is also building a KB from the information of its users and their interests, and
Microsoft, too, is experimenting with a KB to enhance its search results. These
projects show not just the advances in technology and the growth of semantic
data, but also the rising commercial interest in KBs.

Our work investigates models and algorithms for the automated construction,
maintenance, and application of large-scale KBs. The main project is the YAGO
knowledge base, which we develop jointly at the Télécom ParisTech Institute in
Paris and the Max Planck Institute for Informatics in Germany. YAGO was ex-
tracted automatically from Web sources, and contains around 10 million entities
and 120 million facts. We use YAGO as an example to study different aspects of
KB management in general: how new information can be added automatically

3 http://freebase.com
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ABSTRACT
In this paper we study the prevalence of unique entity identifiers
on the Web. These are, e.g., ISBNs (for books), GTINs (for com-
mercial products), DOIs (for documents), email addresses, and oth-
ers. We show how these identifiers can be harvested systematically
from Web pages, and how they can be associated with human-
readable names for the entities at large scale.

Starting with a simple extraction of identifiers and names from
Web pages, we show how we can use the properties of unique iden-
tifiers to filter out noise and clean up the extraction result on the
entire corpus. The end result is a database of millions of uniquely
identified entities of different types, with an accuracy of 73–96%
and a very high coverage compared to existing knowledge bases.
We use this database to compute novel statistics on the presence of
products, people, and other entities on the Web.

1. INTRODUCTION
Unique ids. The Web is an almost endless resource of named en-
tities, such as commercial products, people, books, and organiza-
tions. In this paper, we focus on those entities that have unique
ids. An id is any string or number that distinguishes the entity in
a globally unique way from other entities. For example, commer-
cial products have ids in the form of GTIN codes. These are the
numeric codes printed below the bar code on the package or item.
They also frequently appear on the Web. Figure 1 shows an ex-
cerpt from a Web page about a commercial product. The GTIN
(8806085725072) appears at the bottom right.

Figure 1: A Web page snippet about a product
But not just commercial products have ids. A surprisingly large

portion of other entities also do. Companies have tax identification
numbers; books have ISBN numbers; documents have document
identifiers; chemical substances have ids in the form of CAS reg-
istry numbers, and so on. Quite frequently, Web pages that talk
about these entities also mention their ids.
Goal. Our goal is to harvest these ids at large scale from the
Web, together with the names of the entities that they identify.
That is, our goal is to build a database that contains, in the ex-
ample, 〈8806085725072, Samsung Galaxy S4〉. Using named en-
tity recognition (NER), ids and entity names can be spotted in the
pages. However, a page usually contains several entity names, and
only one of them is usually the name of the entity in question. The
challenge is thus to associate, with each id, the proper name for

the entity. In the example, the challenge is to find that the correct
name for the id “8806085725072” is “Samsung Galaxy S4” – and
not “Samsung”, “VAT”, or “GT-I9295ZAADBT”.

It is far from trivial to associate the correct entity name to an id.
First, Web pages contain usually dozens of entity names, so it is not
clear which one corresponds to the id. In the example, “Samsung”
is clearly an entity name, but not the correct one. Worse, some
Web pages contain several ids and several entity names at the same
time, so we must correctly match the ids and names on the page.
The excerpt of Figure 1 is taken from a page that lists dozens of
Samsung products.

Finally, if we want to find entity ids and names at Web scale,
we need an approach that is both fast and resilient. It must run
on hundreds of millions of Web pages, and it must accept entirely
arbitrary pages, with possibly erroneous content, broken structure,
or noisy information. This makes it impossible to rely on wrap-
per induction, or indeed on any predefined or learnable DOM tree
structure. We have to be able to find the entity names in tables, in
lists, as well as in plain unstructured text. These challenges come
in addition to the usual difficulties such as non-standard HTML
code, non-semantic markup (e.g., tables used for page layout), and
creative tag combinations to arrange tabular information.
Contribution. In this paper, we show how to systematically collect
unique ids from Web pages, and how to associate each id to the
correct entity name. We first use vanilla NER methods to extract
ids and candidate names from each Web page. Then, we rely on
the inherent characteristics of unique identifiers to filter the name
candidates so as to keep only the correct names for the entities. Our
method is scalable, fast, and resilient enough to run on arbitrary
Web pages.

This allows us to extract millions of distinct entities from the
Web, with an accuracy of 73% to 96% depending on the entity
types. The result is a database of entity ids and names, with in-
formation about which pages mention which entities. The crucial
advantage of our database is that every entity is guaranteed to be
unique, so we can count distinct entities without being biased by
duplicates. Thus, we can perform a detailed study of entities that
exist on the Web: we can identify Web sites that are hubs for books
or documents, we can build statistics about frequent first names of
people, and we can determine which countries produce most prod-
ucts. We can trace producing countries, importing countries, and
the flow of products from one to the other. In other words, we show
not only how entities can be extracted from the Web, but also how
they are distributed on the Web, and in the world.

Our core contributions are as follows:
• A generic algorithm for harvesting entity ids at large scale from

Web pages and associating them with their entity name, inde-
pendently of the page structure.
• A database of unique entities at Web scale, which contains mil-

lions of objects at an accuracy of 73–96%.
• Detailed statistics on products, documents, and people on the

Web, computed using unique identifiers.
The paper is structured as follows. We first discuss related work in
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