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Introduction

Developmental robotics challenges

Sigaud, O. & Droniou, A. (2016) Towards deep developmental learning. IEEE Transactions on Cognitive and Developmental

Systems, 8(2), 99–114

Sigaud, O., Oudeyer P.-Y., et al. (In preparation) Intrinsically Motivated Goal Exploration Processes as a central framework for

open-ended learning of rich representations.
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Introduction

Outline
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Background

General RL background

Reinforcement learning

I In SL, the learning signal is the correct answer

I In RL, the learning signal is a scalar

I How good is -10.45?

I Necessity of exploration
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Background

General RL background

The exploration/exploitation trade-off

I Exploring can be (very) harmful

I Shall I exploit what I know or look for a better policy?

I Am I optimal? Shall I keep exploring or stop?

I Decrease the rate of exploration along time
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Background

General RL background

Markov Decision Processes

I S : states space

I A: action space

I T : S × A→ Π(S): transition function

I r : S × A→ IR: reward function

Sutton, R. S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press.
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Background

General RL background

Policy and value functions

I Goal: find a policy π : S → A maximizing the agregation of rewards on the
long run

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S × A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action
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Background

General RL background

RL Basics

I In dynamic programming, the agent knows the MDP

I In RL it doesn’t, it has to explore

I Two approaches:
I Learn a model of T : model-based (or indirect) reinforcement learning
I Perform local updates at each step: model-free RL

I Model-free basics:
I TD error (RPE): δ = rt+1 + γVπ(st+1)− Vπ(st)
I TD(0):Vπ(st)← Vπ(st) + α[rt+1 + γVπ(st+1)− Vπ(st)]
I V (or Q) converges when δ converges to 0
I TD(0) evaluates Vπ(s) for a given policy π, but how shall the agent act?

I Two solutions:
I Work with Qπ(s, a) rather than Vπ(s) (SARSA and Q-Learning)
I Actor-critic methods (simultaneously learn Vπ and update π)
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Background

General RL background

Q-Learning

I For each observed (st , at , rt+1, st+1):
δ = rt+1 + γmaxa∈A Q(st+1, a)− Q(st , at)

I Update rule:
Q(st , at)← Q(st , at) + αδ

I Policy: necessity of exploration (e.g. ε-greedy)

I Convergence proved given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, University of Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-Learning. Machine Learning, 8, 279–292.
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Background

General RL background

From Q-Learning to Actor-Critic

state / action a0 a1 a2 a3

e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1

e1 a2

e2 a2

e3 a2

e4 a1

e5 a1

I In Q − learning , given a Q − Table, get the max at each step

I Expensive if numerous actions (optimization in continuous action case)

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates (only look for the max
when decreasing max action)

I Note: looks for local optima, not global ones anymore
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DQN

Parametrized representations

I To represent a continuous function, use
features and a vector of parameters

I Learning tunes the weights

I Linear architecture: linear combination of
features

I A deep neural network is not a linear architectures: deep layer parameters
tune the features

I Parametrized representations:
I In critic-based methods, like DQN: of the critic Q(st , at |θ)
I In policy gradient methods: of the policy π(at |st , µ)
I In actor-critic methods: both
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DQN

DQN: the breakthrough

I DQN: Atari domain, Nature paper, small discrete actions set

I Learned very different representations with the same tuning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
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DQN

The Q-network in DQN

I Parametrized representation of the critic Q(st , at |θ)

I The Q-network is the equivalent of the Q-Table

I Select action by finding the max (as in Q-Learning)

I Limitation: requires one output neuron per action
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DQN

Learning the Q-function

I Supervised learning: minimize a loss-function, often the squared error
w.r.t. the output:

L(s, a) = (y∗(s, a)− Q(s, a|θ))2 (1)

with backprop on weights θ

I For each sample i , the Q-network should minimize the RPE:

δi = ri + γmax
a

Q(si+1, a|θ)− Q(si , ai |θ)

I Thus, given a minibatch of N samples {si , ai , ri , si+1}, compute
yi = ri + γmaxa Q(si+1, a|θ′)

I And update θ by minimizing the loss function

L = 1/N
∑
i

(yi − Q(si , ai |θ))2 (2)
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DQN

Trick 1: Stable Target Q-function

I The target yi = ri + γmaxa Q(si+1, a)|θ) is itself a function of Q

I Thus this is not truly supervised learning, and this is unstable

I Key idea: “periods of supervised learning”

I Compute the loss function from a separate target network Q ′(...|θ′)
I So rather compute yi = ri + γmaxa Q

′(si+1, a|θ′)
I θ′ is updated to θ only each K iterations
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DQN

Trick 2: Replay buffer shuffling

I In most learning algorithms, samples are assumed independently and identically
distributed (iid)

I Obviously, this is not the case of behavioral samples (si , ai , ri , si+1)

I Idea: put the samples into a buffer, and extract them randomly

I Use training minibatches (make profit of GPU when the input is images)

I The replay buffer management policy is an issue

Lin, L.-J. (1992) Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching. Machine Learning,

8(3/4), 293–321

Zhang, S. & Sutton, R. S. (2017) A deeper look at experience replay. arXiv preprint arXiv:1712.01275
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DDPG

Deep Deterministic Policy Gradient

I Continuous control with deep reinforcement learning

I Works well on “more than 20” (27-32) domains coded with MuJoCo
(Todorov) / TORCS

I End-to-end policies (from pixels to control)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015) Continuous control

with deep reinforcement learning. arXiv preprint arXiv:1509.02971 7/9/15
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DDPG

DDPG: ancestors

I Most of the actor-critic theory for continuous problem is for stochastic
policies (policy gradient theorem, compatible features, etc.)

I DPG: an efficient gradient computation for deterministic policies, with
proof of convergence

I Batch norm: inconclusive studies about importance

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014) Deterministic policy gradient algorithms. In

ICML
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DDPG

General architecture

I Actor parametrized by µ, critic by θ

I All updates based on SGD (as in most deep RL algorithms)
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DDPG

Training the critic

I Same idea as in DQN, but for actor-critic rather than Q-Learning
I Minimize the RPE: δt = rt + γQ(st+1, π(st)|θ)− Q(st , at |θ)
I Given a minibatch of N samples {si , ai , ri , si+1} and a target network Q ′,

compute yi = ri + γQ ′(si+1, π(si+1)|θ′)
I And update θ by minimizing the loss function

L = 1/N
∑
i

(yi − Q(si , ai |θ))2 (3)
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DDPG

Training the actor

I Deterministic policy gradient theorem: the true policy gradient is

∇µπ(s, a) = IEρ(s)[∇aQ(s, a|θ)∇µπ(s|µ)] (4)

I ∇aQ(s, a|θ) is used as error signal to update the actor weights.
I Comes from NFQCA
I ∇aQ(s, a|θ) is a gradient over actions
I y = f (w .x + b) (symmetric roles of weights and inputs)
I Gradient over actions ∼ gradient over weights

Hafner, R. & Riedmiller, M. (2011) Reinforcement learning in feedback control. Machine learning, 84(1-2), 137–169.
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DDPG

Exploration in DDPG

I Action perturbation (versus param. perturbation)

I Adding to the action an Ornstein-Uhlenbenk (correlated) noise process

I Several papers found that using Gaussian noise does not make a difference

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., & Andrychowicz, M. (2017)

Parameter space noise for exploration. arXiv preprint arXiv:1706.01905

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., et al.

(2017) Noisy networks for exploration. arXiv preprint arXiv:1706.10295
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Goal Exploration Processes

Where are we now?
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Goal Exploration Processes

Continuous Mountain Car

I Loss of energy depending on action, reward +100 for reaching the goal

I Deceptive gradient issue: before finding the goal, the agent is driven
towards doing nothing

I Spoiler alert: DDPG fails because of poor exploration
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Goal Exploration Processes

Goal Exploration Processes: algorithm

I Define a relevant outcome space/goal space

I To each policy parameter θ corresponds an outcome O

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018) Unsupervised learning of goal spaces for intrinsically motivated goal

exploration. In International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1803.00781
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Goal Exploration Processes

Goal Exploration Processes: algorithm

I Bootstrap phase: draw a few random θ

I Store the resulting (θ,O) pairs into an archive

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018) Unsupervised learning of goal spaces for intrinsically motivated goal

exploration. In International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1803.00781

26 / 58



Some work around deep developmental learning

Goal Exploration Processes

Goal Exploration Processes: algorithm

I Sample a goal at random in the outcome space

I May use the convex hull from bootstrap

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018) Unsupervised learning of goal spaces for intrinsically motivated goal

exploration. In International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1803.00781
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Goal Exploration Processes

Goal Exploration Processes: algorithm

I Find the nearest neighbor O in archive and select the associated θ

I Perturb the corresponding θ into θ′ and get a new outcome O ′

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018) Unsupervised learning of goal spaces for intrinsically motivated goal

exploration. In International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1803.00781
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Goal Exploration Processes

Goal Exploration Processes: algorithm

I One may sample unfeasible goals, favors outcome diversity

I As the archive fills up, performance improves

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018) Unsupervised learning of goal spaces for intrinsically motivated goal

exploration. In International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1803.00781
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Goal Exploration Processes

Why does GEP work better than random search?

I Very often, few parameter vectors map to interesting outcomes

I The GEP algorithm favors sampling these interesting outcomes

I If the mapping is the identity, similar to random search
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GEP-PG

GEP-PG

I Combines GEP for exploration and DDPG for gradient-based search
I Transfer is through the replay buffer
I Strong evaluation methodology (openAI baselines, 20 seeds...)

Colas, C., Sigaud, O., & Oudeyer, P.-Y. (2018) GEP-PG: Decoupling exploration and exploitation in deep reinforcement learning

algorithms. arXiv preprint arXiv:1802.05054
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GEP-PG

Experimental set-up

CMC: outcome/goal space

I Defined by hand, informs the search process about relevant dimensions
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GEP-PG

Experimental set-up

Half-Cheetah

I 17D observation vector, 6D action vector

I Outcome/goal space: average velocity and min height of head
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GEP-PG

Results

DDPG fails on CMC

I Key factor: when does it find the reward first?

I DDPG is sensitive to the deceptive gradient issue

I But still better than pure random noise
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GEP-PG

Results

GEP-PG performs better on CMC

I Efficient exploration solves the deceptive gradient problem

I But isn’t the GEP enough?
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GEP-PG

Results

GEP-PG performs very well on half-cheetah

I SOTA results when submitted to ICML (SAC & TD3 do better now)

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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GEP-PG

Results

Sanity check

I GEP exploration is better than random exploration

I Random exploration is better than DDPG exploration!
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GEP-PG

Results

Analyzing GEP-PG performance

I GEP-PG performance correlates with GEP performance and diversity

I But does not correlate with the size of the GEP buffer

I Thus, the better and the more diverse the replay buffer, the better DDPG
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GEP-PG

Results

Take home messages

I State-of-the-art deep RL algorithms like DDPG can fail on simple 2D
benchmarks like Continuous Mountain Car

I Efficient exploration is needed to improve over deep RL

I GEPs are good at exploring

I They are also more stable: the archive/population does not forget

I Better combinations than GEP-PG can be found (using SAC or TD3,
advanced GEPs...)

39 / 58



Some work around deep developmental learning

Combining evolutionary methods and deep RL

Where are we now?
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Combining evolutionary methods and deep RL

From GEPs to evolutionary methods

I Evo. methods and GEPs are similar (episode-based, population)

Sigaud, O. & Stulp, F. (2018) Policy search in continuous action domains: an overview. arXiv preprint arXiv:1803.04706
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Combining evolutionary methods and deep RL

Background

Genetic Algorithms

I Inspired from theory of natural selection

I Many different implementations (here, tournament selection)

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.
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Combining evolutionary methods and deep RL

Background

The Cross Entropy Method

1.Start with the normal distribution 

N (μ,σ²)

2. Generate N vectors with this

distribution

3. Evaluate each vector and select a 

proportion ρ of the best ones. These 

vectors are represented in grey 

4. Compute the mean and standard

deviation of the best vectors

5. Add a noise term to the standard 

deviation, to avoid premature 

convergence to a local optimum

6. This mean and standard deviation

define the normal distribution of

 next iteration

I A particular case of evolution strategy

Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003) The cross-entropy method for fast policy search. In Proceedings of the 20th

International Conference on Machine Learning (pp. 512–519).
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Combining evolutionary methods and deep RL

Background

Importance Mixing

I A mechanism to improve sample efficiency

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009) Efficient natural evolution strategies. In Proceedings of the 11th

Annual conference on Genetic and evolutionary computation (pp. 539–546).: ACM.
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Combining evolutionary methods and deep RL

Combinations

Two Combinations

I Combining evolutionary methods and deep RL is an emerging domain

Khadka, S. & Tumer, K. (2018a) Evolution-guided policy gradient in reinforcement learning. In Neural Information Processing

Systems

Pourchot, A. & Sigaud, O. (2018) CEM-RL: Combining evolutionary and gradient-based methods for policy search. arXiv preprint

arXiv:1810.01222 (submitted to ICLR)
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Combining evolutionary methods and deep RL

Results

Results (1)

I CEM-TD3 outperforms CEM and TD3
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Combining evolutionary methods and deep RL

Results

Results (2)

I CEM-TD3 outperforms ERL
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Combining evolutionary methods and deep RL

Results

Results (3)

I On swimmer, the best is CEM
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Combining evolutionary methods and deep RL

Results

Results (4)

I Changing from ReLu to tanh significantly improves performance

I Strong incentive for neural architecture search
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Towards curriculum learning

Where are we now?
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Towards curriculum learning

Goal Exploration Processes: curriculum learning

I Sample preferentially regions where learning progress is greater

I Known to improve performance on multitask learning

Baranes, A. & Oudeyer, P.-Y. (2013) Active learning of inverse models with intrinsically motivated goal exploration in robots.

Robotics and Autonomous Systems, 61(1), 49–73
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Towards curriculum learning

Curriculum based on accuracy

Curriculum based on competence progress

I Experiments with Reacher using various accuracy requirements

Fournier, P., Chetouani, M., Oudeyer, P.-Y., & Sigaud, O. (2018) Accuracy-based curriculum learning in deep reinforcement

learning.arXiv preprint arXiv:1806.09614
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Towards curriculum learning

Curriculum based on accuracy

Curriculum performance
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I Random sampling of required accuracy is better than always using the
strongest requirement

I Sampling based on competence progress is better than random sampling

Fournier, P., Chetouani, M., Oudeyer, P.-Y., & Sigaud, O. (2018) Accuracy-based curriculum learning in deep reinforcement

learning. arXiv preprint arXiv:1806.09614
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Towards curriculum learning

Dealing with tasks and goals

Experimental setup

I Move various blocks to various position, stack them etc.

I Combine curriculum learning with Hindsight Experience Replay

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., & Zaremba, W.

(2017) Hindsight experience replay. arXiv preprint arXiv:1707.01495
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Towards curriculum learning

Dealing with tasks and goals

A sophisticated architecture

I Dedicated to dealing with tasks and goals

Colas, C., Fournier, P., Sigaud, O., & Oudeyer, P.-Y. (2018) CURIOUS: Intrinsically motivated multi-task, multi-goal

reinforcement learning. arXiv preprint arXiv:1810.06284
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Towards curriculum learning

Dealing with tasks and goals

Results

I Generalization over task and goal is better than learning separated tasks
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Conclusion

Conclusion

I State-of-the-art deep RL tools still fail on easy benchmarks

I Work needed on exploration, gradient descent, fundamental understanding

I Towards open-ended multi-task learning, zero-shot transfer learning

I Hot topics: curriculum learning, hierarchical RL, model-based RL...

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified framework.

arXiv preprint arXiv:1810.08102
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Conclusion

Any question?

58 / 58



Some work around deep developmental learning

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., & Zaremba, W.

(2017).
Hindsight experience replay.
arXiv preprint arXiv:1707.01495.

Baranes, A. & Oudeyer, P.-Y. (2013).

Active learning of inverse models with intrinsically motivated goal exploration in robots.
Robotics and Autonomous Systems, 61(1), 49–73.

Colas, C., Fournier, P., Sigaud, O., & Oudeyer, P.-Y. (2018a).

CURIOUS: Intrinsically motivated multi-task, multi-goal reinforcement learning.
arXiv preprint arXiv:1810.06284.

Colas, C., Sigaud, O., & Oudeyer, P.-Y. (2018b).

GEP-PG: Decoupling exploration and exploitation in deep reinforcement learning algorithms.
arXiv preprint arXiv:1802.05054.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., et al.

(2017).
Noisy networks for exploration.
arXiv preprint arXiv:1706.10295.

Fournier, P., Chetouani, M., Oudeyer, P.-Y., & Sigaud, O. (2018).

Accuracy-based curriculum learning in deep reinforcement learning.
arXiv preprint arXiv:1806.09614.

Fujimoto, S., van Hoof, H., & Meger, D. (2018).

Addressing function approximation error in actor-critic methods.
arXiv preprint arXiv:1802.09477.

Goldberg, D. E. (1989).

Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

58 / 58



Some work around deep developmental learning

References

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290.

Hafner, R. & Riedmiller, M. (2011).

Reinforcement learning in feedback control.
Machine learning, 84(1-2), 137–169.

Khadka, S. & Tumer, K. (2018).

Evolution-guided policy gradient in reinforcement learning.
In Neural Information Processing Systems.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).

Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

Lin, L.-J. (1992).

Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching.
Machine Learning, 8(3/4), 293–321.

Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003).

The cross-entropy method for fast policy search.
In Proceedings of the 20th International Conference on Machine Learning (pp. 512–519).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540), 529–533.

Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P.-Y. (2018).

Unsupervised learning of goal spaces for intrinsically motivated goal exploration.
In International Conference on Learning Representations (ICLR).
arXiv preprint arXiv:1803.00781.

58 / 58



Some work around deep developmental learning

References

Pierrot, T., Perrin, N., & Sigaud, O. (2018).

First-order and second-order variants of the gradient descent: a unified framework.
arXiv preprint arXiv:1810.08102.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., & Andrychowicz, M. (2017).

Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905.

Pourchot, A. & Sigaud, O. (2018).

Cem-rl: Combining evolutionary and gradient-based methods for policy search.
arXiv preprint arXiv:1810.01222.

Sigaud, O. & Droniou, A. (2016).

Towards deep developmental learning.
IEEE Transactions on Cognitive and Developmental Systems, 8(2), 99–114.

Sigaud, O. & Oudeyer, Pierre-Yves, e. a. (2019).

Intrinsically motivated goal exploration processes as a central framework for open-ended learning of rich representations.
In preparation.

Sigaud, O. & Stulp, F. (2018).

Policy search in continuous action domains: an overview.
arXiv preprint arXiv:1803.04706.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014).

Deterministic policy gradient algorithms.
In Proceedings of the 30th International Conference in Machine Learning.

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009).

Efficient natural evolution strategies.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (pp. 539–546).: ACM.

Sutton, R. S. & Barto, A. G. (1998).

58 / 58



Some work around deep developmental learning

References

Reinforcement Learning: An Introduction.
MIT Press.

Watkins, C. J. C. H. (1989).

Learning with Delayed Rewards.
PhD thesis, Psychology Department, University of Cambridge, England.

Watkins, C. J. C. H. & Dayan, P. (1992).

Q-learning.
Machine Learning, 8, 279–292.

Zhang, S. & Sutton, R. S. (2017).

A deeper look at experience replay.
arXiv preprint arXiv:1712.01275.

58 / 58


	Introduction
	Background
	General RL background

	DQN
	DDPG
	Goal Exploration Processes
	GEP-PG
	Experimental set-up
	Results

	Combining evolutionary methods and deep RL
	Background
	Combinations
	Results

	Towards curriculum learning
	Curriculum based on accuracy
	Dealing with tasks and goals

	Conclusion
	References

