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Supervised Learning

- X input space, Y output space,
< ¢:Y xY — Rloss function,
- p probability on X x ).

*=argmin&(f), () := E[¢(y, f(x))].

f:X—Y

given only the dataset (x;, y;)i_, sampled independently from p.



Supervised learning: Goal

Given the dataset (x;,y;)!_, sampled independently from p, produce
fn, such that

Consistency

o~

lim &(fn) = E(f"), a.s.

n—oo

Learning rates

E(fn) —E(F) < c(n), w.h.p.



State of the art: Vector-valued case

Y is a vector space

- choose suitable G C {f: X — Y} (usually a convex function
space)

- solve empirical risk minimization

~

f = argmin % Zg(f(xi),y/') + AR(f).

feg i=1

- Well known methods: Linear models, generalized linear models,
Kernel machines, Kernel SVM. Easy to optimize.

- Consistency and (optimal) learning rates for many losses



State of the art: Structured case

Y arbitrary how do we parametrize G and learn ??
Surrogate approaches

+ Clear theory
- Only for special cases (e.g. classification, ranking, multi-labeling

etC.) [Bartlett et al '06, Duchi et al 10, Mroueh et al 12, Gao et al. "13]
Score learning techniques

+ General algorithmic framework (e.g. StructSVM rrochandaridis et al ‘0s1)
- lelted Theory ( [McAllester '06] )



Supervised learning with structure

Is it possible to

(a) have best of both worlds? (general algorithmic framework with
clear theory)

(b) learn leveraging the local structure of the input and the output?

We will address (a), (b) using implicit embeddings
(related techniques: Cortes et al. 2005; Geurts, Wehenkel, d’Alché Buc '06;
Kadri et al. "13; Brouard, Szafranski, d’Alché Buc '16)
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Structured learning with implicit
embeddings



Characterizing the target function

= argmin E[¢(f(x),Y)]
ffx—=Yy



Characterizing the target function

= argmin E[¢(f(x),Y)]
ffx—=Yy

Pointwise characterization

f*(x) = argmin E[((Y, y) | X]
y'ey



Characterizing the target function

f(x) = argmin E[(y',y) [ X]
y'ey

E[(F(x), ¥)] = EL[E[E(F(), y)IX]]
= I Iy, E[(y, y)IX]]

<EEF). 0], Vf: X = .

Then &(f) = infrr_y E(f) (measurability issues solved via Berge
maximum theory for measurable functions).



Implicit embedding

A1. There exists Hilbert space H and v, ¢ : Y — H, bounded
continuous such that

0y, y) = ('), ov)) -

Theorem (Ciliberto, Rosasco, Rudi '16)
A1is satisfied

1. for any loss ¢ when Y discrete space
2. for any smooth loss ¢ when Y ¢ R compact

3. for any smooth loss £ when Y C M with M compact manifold
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Idea for a unified approach

When A1 holds
(X)) = argmin E[¢(V', ) | X]
y'ey



Idea for a unified approach

When A1 holds

f(x) = argmin E[((V'), (V) | X]

y'ey



Idea for a unified approach

When A1 holds

f*(x) = argmin ((y"), E[¢(y) | X])

y' ey



Idea for a unified approach

When A1 holds
f*(x) = argmin (¥(V'), 1" (X))

V'ey
with p*(x) = E[¢(y)|x] conditional expectation of ¢(y) given x



The estimator

Given g estimating p*, define

o~

f(x) = argmin ((y'), 7i(x))

V' ey



How to compute i

w* = E[p(y)|X] is characterized by

u* = argmin E[u(x) — 6()]1’]

w:X—H

14



How to compute i

w* = E[p(y)|X] is characterized by

u* = argmin E[u(x) — 6()]1’]

w:X—H

use standard techniques for vector valued problems. Given G
suitable space of functions

z—argmm*ZHu I + AllulP.

14



G space of linear functions

Let X be a vector space and G = X ® H, then

n

Ak = Y il o),

=1

where
ai(x) == [(K+ Anl)~v(x)];,

and v(x) = (X" x1,...x"xp) € R", K € R™" K;; = X/ ;.



non-parametric model

Let k: X x X — R be a kernel on X. Denote by F the reproducing
kernel Hilbert space induced by k over X. Let G = F @ H, then

n

A = Y ailx) o),

=1

where
ai(X) := [(K4+ AnD)~v(x)];,

and v(x) = (R(X,x1),...R(X,xp)) € R", K€ R™" K; ; = R(Xj, X;).
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Algorithm and properties




Explicit representation of?

When 1z is @ non-parametric model, then

o~

f(x) = argmin (4(y'), 7i(x))

y'ey



Explicit representation of?

When 71 is a non-parametric model, then

f(x) = argmin <1/J(y/)7 > Oéi(X)¢(Y»‘)>

2
y'ey =1



Explicit representation of?

When [ is a non-parametric model, then



Explicit representation of?

When [ is a non-parametric model, then

(X) = argmin Za/ y Vi)-

y'ey i=1



Explicit representation of?

When @ is a non-parametric model, then

(X) = argmin Za, 20, 0.

y'ey i=1

No need to know #, ¢, v to run the algorithm!



- Given /¢ satisfying A1
cR: X xX — R, kernelon X

The proposed estimator has the form

with a;(x) := [(K+ Anl)~'v(x)];, and v(x) = (R(X,X1), ... R(X,X,)) € R",
K e RN K,'J = I?(X,'.,Xj).



- Given /¢ satisfying A1
cR: X xX — R, kernelon X

The proposed estimator has the form

with a;(x) := [(K+ Anl)~'v(x)];, and v(x) = (R(X,X1), ... R(X,X,)) € R",
K e RN K,'J = I?(X,'.,Xj).

- Applicable to a wide family of problems (no need to know #, ¢, )
- Only optimization on Y and noton {f: & — Y} = Y*
- Generalization properties?



Properties of?

Theorem (Comparison inequality)
Let ¢ satisfy A1. Forany i : X — H,

E() — £(7) < 2cuVETA(KX) — (X[

with cy = supycy [l (Y)].
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Consistency of/f

Theorem (Universal consistency - Ciliberto, Rosasco, Rudi '16)
Let ¢ satisfy A1 and k be a universal kernel. Let A\ = n—"/* then

~

iim £() = £(7),

n—oo

with probability 1

20



Learning rates of?

Theorem (Rates - Ciliberto, Rosasco, Rudi "16)
Let ¢ satisfy A1 and p* € G. Let \ = n~"/2 then

21



Check point

We provide a framework for structured prediction with

- theoretical guarantees as empirical risk minimization
- explicit algorithm applicable on wide family of problems (), ¢)

- some important existing algorithms are covered by this
framework (not seen here)

22



Case studies:

- ranking with different losses (Korba, Garcia, d’Alché-Buc '18)
- Output Fisher Embeddings (Djerrab, Garcia, Sangnier, d'Alché-Buc '18)
- Y = manifolds, ¢ = geodesic distance (Ciliberto et al. 18)

- Y = probability space, £ = wasserstein distance (Luise et al. 18)
Refinements of the analysis:

- different derivation (Osokin, Bach, Lacoste-Julien "17; Goh "18)

- determination of the constant ¢y, in terms of log | Y| for discrete sets
(Nowak, Bach, Rudi "18; Struminsky et al. '18)

Extensions:

- application to multitask-learning (Ciliberto, Rosasco, Rudi '17)
- beyond least squares surrogate (Nowak, Bach, Rudi '19)
- regularizing with trace norm (Luise, Stamos, Pontil, Ciliberto "19)

- localized structured prediction (Ciliberto, Bach, Rudi "18)
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Leveraging local structure




Local Structure

X2 x-1 X x4 xa2
(b)
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Parts and locality

We are interested in problems where we have a set of parts P that

capture:
Inter-locality Intra-locality
- _ . Tp Tpr1  Tpra
Tp+1 =
v N .
Tp+a
Examples

Images: (overlapping) patches of a fixed size, overlapping pyramids
on patches, ...

Audio: (overlapping) windows in time/frequency space, ...
25



Loss Functions

0, y) =" Loy 1o, Vo)

peP

- set P indicizes the parts
- o loss on parts

- [vlp is the p-th part of y

26



Examples of loss functions

") =D 4yl Wlp)

pep
Many losses in computer vision, multilabeling, multitask learning
(Ciliberto, Bach, Rudi '18)
Example (Hamming like loss is implicitly by parts)

Let Y be space of circular sequences of length d. Let P the set of
subsequences of length s < d.

d
Z y)7yl - ‘ZZO D/]D D/]D)
= peP

1

[y]Pv[y]P EZ yp+/7yp+l
=0

27



Building the estimator

Assume that ¢, satisfied A1. Then

() = W) (W)

pepP
and the target function is characterized by
f*(x) = argmin > (([y']p), ¥ (x, P)) ,
V'€V pep
with
1 (x,p) = E[o([ylp) | X]

conditional expectation of the p-th part of y, given x.

28



Learning p*(x, p)

Analogously to the other case we have

pt = argmin > E[l|u(x, p) — o(Wp)II’] + Allull®

X XP—H peP

Applying empirical risk minimization

= argmm—zz l1a(x, P) = S(/1p) 12 + All a2

peEP =1

29



Non-parametric estimator for p*

Selecting G = F @ H with F a reproducing kernel on X x P, we have

A0p) =D iy (% p)e(Wil)),

p’eP i=1

with a;(x, p) = [(K+ AnPI)=W(X, p)]i pr, VX, P)ipr = R((X, P), (Xi, P'))
with v € R"Pl and K € RMPIXMPLwith K oy .oy = R((X, P), (X5, p”).

30



Final estimator

Input Output

Test
implied
similarity
observed
‘similarity
/
k(zp, @ p’)
Train

f00) = argmin >~ " a0 (%, p) (Y 1. W)

V€Y pprep =

31



Theoretical Properties

: k((Xap)v (X/vp/)) = ,?([X]Dv [X/]D/)
- [vlp conditional independent from x, given [x],

- covi([X]p, [X]pr) < exp(—vd(p,p)), v > 0, d distance on parts and
covy covariance with respect to the kernel k

Theorem (Ciliberto, Bach, Rudi, "18)
When {, satisfied A1 and under the assumptions above,

7 > Co+ qy,|p| A
Eﬁ(f)—f(f)g(mj) |

_ 1 —~d(p,p’
where q.,jp| = 1 Xy prep € (PP,

32



Theoretical Properties

Implications: under inter-locality

- and no intra-locality (i.e. v ~ 0) then d~,1p| =~ |P| and
E £(f) — £(f) = O(n~"/").
- and intra-locality (i.e. v > 0) then g,y = O(1) and

E £(f) — £(7°) = o((n|P])~"/*).
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Conclusions

Framework for structured prediction with

- theoretical guarantees as empirical risk minimization
- explicit algorithm applicable on wide family of problems (), ¢)

- some important existing algorithms are covered by this
framework (not seen here)

- adaptive to local structure

Future work

- wide experimental validation (CV: deblurring and
super-resolution)

- generalization to different estimators for g

- integration with DNN
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Conclusions

Thanks!
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