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Why Treewidth?

Many computational tasks are hard (when considering 
data complexity) on graph-like structures, but are easy on 
tree structures


But just how tree-like is the data? And how useful is 
having this tree-likeness measure?



Application: Shortest 
Distances

Computing all-pairs shortest distances on a graph has a 
complexity not lower than matrix multiplication (roughly 
cubic in the size of the graph)


By computing a triangulation of the graph, the complexity 
can be reduced to            — depending on the size of the 
largest clique in the triangulation [Planken et al., 2012]

Computing APSP by Leveraging Low Treewidth
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Figure 1: Snapshot (k = 4) of a graph during the operation of Snowball.

Proof. The proof is by induction. After enforcing DPC, w1!2 and w2!1 are labelled by the
shortest distances between vertices 1 and 2. For k = 2 and i = j = 1, the algorithm then
sets D[1][2] and D[2][1] to the correct values.

Now, assume that D[i][j] is set correctly for all vertices i, j < k. Let ⇡ : i = v0 !

v1 ! · · · ! v`�1 ! v` = k be a shortest path from i to k, and further let hmax =
argmaxh2{0,1,...,`} {vh 2 ⇡}. By DPC, if 0 < hmax < `, there exists a path of the same
weight where a shortcut vhmax�1 ! vhmax+1 is taken. This argument can be repeated to
conclude that there must exist a shortest path ⇡0 from i to k that lies completely in Gk and,
except for the last arc, in Gk�1. Thus, by the induction hypothesis and the observation that
the algorithm considers all arcs from the subgraph Gk�1 to k, D[i][k] is set to the correct
value. An analogous argument holds for D[k][i].

With regard to the algorithm’s time complexity, note that the two outermost loops
together result in each of the mc edges in the chordal graph being visited exactly once. The
inner loop always has fewer than n iterations, yielding a run time of O (nmc) time. From the
observation above that mc  nwd, we can also state a looser time bound of O

�
n2wd

�
.

We now briefly discuss the consequences for two special cases: graphs of constant
treewidth and chordal graphs. For chordal graphs, which can be recognised in O (m) time,
we can just substitute m for mc in the run-time complexity; further, as described above,
a perfect ordering exists and can be found in O (m) time. This gives the total run-time
complexity of O (nm). Likewise, we stated above that for a given constant , it can be
determined in O (n) time whether a graph has treewidth w⇤

 , and if so, a vertex or-
dering d with wd = w⇤ can be found within the same time bound. Then, omitting the
constant factor wd, the algorithm runs in O

�
n2

�
time. This also follows from the algo-

rithm’s pseudocode by noting that every vertex k has a constant number (at most w⇤) of
neighbours j < k.

We note here the similarity between Snowball and the P3C algorithm (Planken et al.,
2008), presented below. Like Snowball, P3C operates by enforcing DPC, followed by a single
backward sweep along the vertex ordering. P3C then computes, in O

�
nw2

d

�
time, shortest
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Application: Junction Trees
Exact belief propagation in graphical models is known to be very costly  in 
graphs (          exponential in the number of states), and efficient on trees.


Hugin’s algorithm (exact belief propagation):


1. transform the graph into a tree (by clustering cliques) — junction tree


2. perform exact propagation inside the cliques and along the tree — 
exponential only in the size of the largest clique in the junction tree
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[Lepar and Shenoy, 2011]
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Treewidth in Data
Treewidth: a measure on how tree-like data is [Robertson 
and Seymour, 1984]


For data that has bounded treewidth, one can obtain efficient 
algorithms in databases:


1. query evaluation of MSO queries is linear time over 
bounded-treewidth data structures [Courcelle, 1990], also 
applies to counting and enumeration


2. computing probabilities of MSO queries over TID 
probabilistic databases which are bounded-treewidth is 
linear time [Amarilli et al., 2015]



Treewidth: Intuition
Treewidth: a measure on how tree-like data is [Robertson 
and Seymour, 1984]


Can be obtained using a tree decomposition (or a 
hierarchy of separators)


The treewidh is the smallest obtainable size of a separator 
(minus one)



Treewidth: Intuition

The treewidth is the smallest obtainable size of a 
separator (minus one)

Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Treewidth: Informal Definition

Graph-theoretic measure of how close to a tree a graph is
Computed as the minimum width of a tree decomposition,
i.e., a way to build a hierarchy of separators
Width: maximum size of a separator minus one

Trees have treewidth 1
Cycles have treewidth 2
-cliques and -grids have treewidth

2/27



Treewidth: Intuition

The treewidh is the smallest obtainable size of a 
separator (minus one)


•  trees have treewidth 1


•  cycles have treewidth 2


•  k-cliques have treewidth k-1



Treewidth: Formal Definition

Definition
Given an undirected graph G = (V,E), where V represents the set of vertices

(or nodes) and E ✓ V ⇥V the set of edges, a tree decomposition is a pair (T,B)
where T = (I, F ) is a tree and B : I ! 2V is a labeling of the nodes of T by
subsets of V (called bags), with the following properties:

1.
S

i2I B(i) = V ;

2. 8(u, v) 2 E, 9i 2 I s.t. {u, v} ✓ B(i); and

3. 8v 2 V , {i 2 I | v 2 B(i)} induces a subtree of T .
<latexit sha1_base64="DqcO200D2PLJLBsp27Wb3ZZH3m0="></latexit>



Treewidth: Formal Definition
Given a graph G = (V,E) the width of a tree decomposition (T,B) is equal

to maxi2I(|B(i)|� 1). The treewidth of G, w(G), is equal to the minimal width
of all tree decompositions of G.

<latexit sha1_base64="1g6Uw0kr+yVBlcPw42hHswdH/vE="></latexit>
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potential cases in which treewidth-based approaches are of practical interest. For this, after138

formally defining tree decompositions and treewidth (Section 2), we select the algorithms that139

are able to deal with large-scale data instances, for both lower- and upper-bound estimations140

(Section 3). Our aim here is not to propose new algorithms for treewidth estimation, and141

not to exhaustively evaluate existing treewidth estimation algorithms, but rather to identify142

algorithms that can give acceptable treewidth estimation values in reasonable time, in order143

to apply them to real-world data. Then, we use these algorithms to obtain lower and upper144

bound intervals on treewidth for 25 databases from 8 di�erent domains (Section 4). We145

mostly consider graph data, for which the notion of treewidth was initially designed (the146

treewidth of an arbitrary relational instance is simply defined as that of its Gaifman graph).147

The graphs we consider, all obtained from real-world applications, have between several148

thousands and several millions of vertices. To the best of our knowledge, this is the first149

comprehensive study of the treewidth of real-world data of large scale from a variety of150

application domains.151

Our finding is that, generally, the treewidth is too large to be able to use treewidth-based152

algorithms directly with any hope of e�ciency.153

Second, from this finding, we investigate how a relaxed (or partial) decomposition can154

be used on real-world graphs. In short, we no longer look for complete tree decompositions;155

instead, we allow the graph to be only partially decomposed. In complex networks, there156

often exists a dense core together with a tree-like fringe structure [51]; it is hence possible to157

decompose the fringe into a tree, and to place the rest of the graph in a dense “root”. It has158

been shown that this approach can improve the e�ciency of some graph algorithms [5,47,62].159

In Section 5, we analyze its behavior on real-world graphs. We conclude the paper in160

Section 6 with a discussion of lessons learned, as to which real-world data admit (full or161

partial) low-treewidth tree decompositions, and how this impacts query evaluation tasks.162

Due to lack of space, some details and additional experiments are deferred to the163

appendix.164

2 Preliminaries on Treewidth165

To make the concepts in the following clear, we start by formally introducing the concept of166

treewidth. Following the original definitions in [56], we first define a tree decomposition:167

I Definition 1 (Tree Decomposition). Given an undirected graph G = (V, E), where V168

represents the set of vertices (or nodes) and E ™ V ◊V the set of edges, a tree decomposition169

is a pair (T, B) where T = (I, F ) is a tree and B : I æ 2V is a labeling of the nodes of T by170

subsets of V (called bags), with the following properties:171

1.
t

iœI B(i) = V ;172

2. ’(u, v) œ E, ÷i œ I s.t. {u, v} ™ B(i); and173



Treewidth

Readily usable for graphs, for relational (=database) data 
the Gaifman graph can be used


Only low treewidth makes things easy: even linear time 
algorithms hide a non-elementary dependency in 
treewidth


In some cases, treewidth is the only hope to have 
polynomial time algorithms! [Amarilli et al., 2016] 



In Practice

If data has low treewidth, we have plenty of efficient 
algorithms (based on tree decompositions)


Question 1: Are real-world data low treewidth?



Computing Treewidth

Computing the treewidth exactly is hard [Arnborg et al., 
1987]


We can compute upper bounds [Bodlaender and Koster, 
2010], which also give a tree decomposition


Also can obtain lower bounds efficiently [Bodlaender and 
Koster, 2011]



Upper Bound Algorithms
General algorithm, generating a tree decomposition:


1. generate an ordering of the nodes


2. for each node in the ordering, create a bag containing it and its neighbors


3. remove the node from the graph, create a clique between the neighbors


4. continue until no nodes are left
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Figure 2 Graph triangulation for the graph of Figure 1 (left) and its elimination ordering (right)

I Definition 5. A chordal graph is a graph G such that every cycle in G of at least four215

vertices has a chord – an edge between two non-successive vertices in the cycle.216

A triangulation (or chordal completion) of a graph G is a minimal chordal supergraph217

G
� of G: a graph obtained from G by adding a minimal set of edges to obtain a chordal218

graph.219

I Example 6. The graph in Figure 1 is not chordal, since, for example, the cycle 3–4–5–6–3220

does not have a chord. If one adds an edge between 3 and 5, as in Figure 2 (left), one can221

verify that the resulting graph is chordal, and thus a triangulation of the graph of Figure 1.222

One way to obtain triangulations of graphs is elimination orderings. An elimination223

ordering Ê of a graph G = (V, E) of n nodes is an ordering of the vertices of G, i.e., it can be224

seen as a bijection from V onto {1, . . . , n}. From this ordering, one obtains a triangulation225

by applying sequentially the following elimination procedure for each vertex v: first, edges226

are added between remaining neighbors of v as needed so that they form a clique, then v is227

eliminated (removed) from the graph. For every elimination ordering Ê, G along with all228

edges added to G in the elimination procedure forms a graph, denoted G
�
Ê . This graph is229

chordal (indeed, we know that the two neighbors of the first node of any cycle we encounter230

in the elimination ordering have been connected by a chord by the elimination procedure).231

It is also a supergraph of G, and it can be shown it is a minimal chordal supergraph, i.e., a232

triangulation of G.233

I Example 7. Figure 2 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the234

graph of Figure 1. The elimination procedure adds a single edge, when processing node 6,235

between nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.236

Elimination orderings are connected to treewidth by the following result:237

I Theorem 8. [18] Let G = (V, E) a graph, and k 6 n. The following are equivalent:238

1. G has treewidth k.239

2. G has a triangulation G
�, such that the maximum clique in G

� has size k + 1.240

3. There exists an elimination ordering Ê such that the maximum clique size in G
�
Ê is k + 1.241

Obtaining the treewidth of the graph is thus equivalent to finding an optimal elimination242

ordering. Moreover, constructing a tree decomposition from an elimination ordering is a243

natural process: each time a vertex is processed, a new bag is created containing the vertex244

and its neighbors. Note that, in practice, we do not need to compute the full elimination245

ordering: we can simply stop when we know that the number of remaining vertices is lower246

that the largest clique found thus far.247
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potential cases in which treewidth-based approaches are of practical interest. For this, after138

formally defining tree decompositions and treewidth (Section 2), we select the algorithms that139

are able to deal with large-scale data instances, for both lower- and upper-bound estimations140

(Section 3). Our aim here is not to propose new algorithms for treewidth estimation, and141

not to exhaustively evaluate existing treewidth estimation algorithms, but rather to identify142

algorithms that can give acceptable treewidth estimation values in reasonable time, in order143

to apply them to real-world data. Then, we use these algorithms to obtain lower and upper144

bound intervals on treewidth for 25 databases from 8 di�erent domains (Section 4). We145

mostly consider graph data, for which the notion of treewidth was initially designed (the146

treewidth of an arbitrary relational instance is simply defined as that of its Gaifman graph).147

The graphs we consider, all obtained from real-world applications, have between several148

thousands and several millions of vertices. To the best of our knowledge, this is the first149

comprehensive study of the treewidth of real-world data of large scale from a variety of150

application domains.151

Our finding is that, generally, the treewidth is too large to be able to use treewidth-based152

algorithms directly with any hope of e�ciency.153

Second, from this finding, we investigate how a relaxed (or partial) decomposition can154

be used on real-world graphs. In short, we no longer look for complete tree decompositions;155

instead, we allow the graph to be only partially decomposed. In complex networks, there156

often exists a dense core together with a tree-like fringe structure [51]; it is hence possible to157

decompose the fringe into a tree, and to place the rest of the graph in a dense “root”. It has158

been shown that this approach can improve the e�ciency of some graph algorithms [5,47,62].159

In Section 5, we analyze its behavior on real-world graphs. We conclude the paper in160

Section 6 with a discussion of lessons learned, as to which real-world data admit (full or161

partial) low-treewidth tree decompositions, and how this impacts query evaluation tasks.162

Due to lack of space, some details and additional experiments are deferred to the163

appendix.164

2 Preliminaries on Treewidth165

To make the concepts in the following clear, we start by formally introducing the concept of166

treewidth. Following the original definitions in [56], we first define a tree decomposition:167

I Definition 1 (Tree Decomposition). Given an undirected graph G = (V, E), where V168

represents the set of vertices (or nodes) and E ™ V ◊V the set of edges, a tree decomposition169

is a pair (T, B) where T = (I, F ) is a tree and B : I æ 2V is a labeling of the nodes of T by170

subsets of V (called bags), with the following properties:171

1.
t

iœI B(i) = V ;172

2. ’(u, v) œ E, ÷i œ I s.t. {u, v} ™ B(i); and173



Upper Bound Algorithms

Details differ in how the ordering is generated:


• minimum degree first (MINDEGREE)


• minimum fill-in (MINFILLIN)


• combination thereof
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I Definition 5. A chordal graph is a graph G such that every cycle in G of at least four215

vertices has a chord – an edge between two non-successive vertices in the cycle.216

A triangulation (or chordal completion) of a graph G is a minimal chordal supergraph217

G
� of G: a graph obtained from G by adding a minimal set of edges to obtain a chordal218

graph.219

I Example 6. The graph in Figure 1 is not chordal, since, for example, the cycle 3–4–5–6–3220

does not have a chord. If one adds an edge between 3 and 5, as in Figure 2 (left), one can221

verify that the resulting graph is chordal, and thus a triangulation of the graph of Figure 1.222

One way to obtain triangulations of graphs is elimination orderings. An elimination223

ordering Ê of a graph G = (V, E) of n nodes is an ordering of the vertices of G, i.e., it can be224

seen as a bijection from V onto {1, . . . , n}. From this ordering, one obtains a triangulation225

by applying sequentially the following elimination procedure for each vertex v: first, edges226

are added between remaining neighbors of v as needed so that they form a clique, then v is227

eliminated (removed) from the graph. For every elimination ordering Ê, G along with all228

edges added to G in the elimination procedure forms a graph, denoted G
�
Ê . This graph is229

chordal (indeed, we know that the two neighbors of the first node of any cycle we encounter230

in the elimination ordering have been connected by a chord by the elimination procedure).231

It is also a supergraph of G, and it can be shown it is a minimal chordal supergraph, i.e., a232

triangulation of G.233

I Example 7. Figure 2 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the234

graph of Figure 1. The elimination procedure adds a single edge, when processing node 6,235

between nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.236

Elimination orderings are connected to treewidth by the following result:237

I Theorem 8. [18] Let G = (V, E) a graph, and k 6 n. The following are equivalent:238

1. G has treewidth k.239

2. G has a triangulation G
�, such that the maximum clique in G

� has size k + 1.240

3. There exists an elimination ordering Ê such that the maximum clique size in G
�
Ê is k + 1.241

Obtaining the treewidth of the graph is thus equivalent to finding an optimal elimination242

ordering. Moreover, constructing a tree decomposition from an elimination ordering is a243

natural process: each time a vertex is processed, a new bag is created containing the vertex244

and its neighbors. Note that, in practice, we do not need to compute the full elimination245

ordering: we can simply stop when we know that the number of remaining vertices is lower246

that the largest clique found thus far.247



Lower Bound Algorithms
Computing other proxy measures, which are lower 
bounds on treewidth:


1. second lowest degree in the graph (DELTA2D)


2. second lowest degree in a subgraph of the graph 
(MMD)


3. second lowest degree in a minor of the graph (MMD+)


Algorithms differ in how the subgraphs and minors are 
explored (usually in a greedy fashion)



Experimental Setup
25 graph datasets from 8 different domains: 
infrastructure, social networks, Web, communication, 
hierarchies, ontologies, relational databases, biology


Tests ran on machines having 32GB RAM, Intel Xeon 
1.7GHz CPUs


The maximal running time allowed was two weeks


Code and datasets available online                             
https://github.com/smaniu/treewidth

https://github.com/smaniu/treewidth
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Figure 3 Treewidth estimation of di�erent algorithms (logarithmic scale)
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Upper Bounds We show in Figure 3 the results of our estimation algorithms. Lower values353

mean better treewidth estimations. Focusing on the upper bounds only (red circular points),354

we notice that, in general, FillIn does give the smallest upper bound of treewidth, in line355

with previous findings [19]. Interestingly, the Degree heuristic is quite competitive with the356

other heuristics. This fact, coupled with its lower running time, means that it can be used357

more reliably in large graphs. Indeed, as can be seen in the figure, on some large graphs only358

the Degree heuristic actually finished at all; this means that, as a general rule, Degree359

seems the best fit for a quick and relatively reliable estimation of treewidth.360

We plot both the absolute values of the estimations in Figure 3a, but also their relative361

values (in Figure 3b, representing the ratio of the estimation over the number of nodes362

in the graph), to allow for an easier comparison between networks. The absolute value,363

while interesting, does not yield an intuition on how the bounds can di�er between network364

types. If we look at the relative values of treewidth, it becomes clear that infrastructure365

networks have a treewidth that is much lower than other networks; in general they seem to366

be consistently under one thousandth of the original size of the graph. This suggests that,367

indeed, this type of network may have properties that make them have a lower treewidth.368

For the other types of networks, the estimations can vary considerably: they can go from369

one hundredth (e.g., Math) to one tenth (e.g., WikiTalk) of the size of the graph.370

As further explained in Appendix B, the bounds obtained here on infrastructure networks371

are consistent with a conjectured O( 3
Ô

n) bound on the treewidth of road networks [27]. One372

relevant property is their low highway dimension [2], which helps with routing queries and373

decomposition into contraction hierarchies. Even more relevant to our results is the fact that374
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Upper Bounds We show in Figure 3 the results of our estimation algorithms. Lower values353

mean better treewidth estimations. Focusing on the upper bounds only (red circular points),354

we notice that, in general, FillIn does give the smallest upper bound of treewidth, in line355

with previous findings [19]. Interestingly, the Degree heuristic is quite competitive with the356

other heuristics. This fact, coupled with its lower running time, means that it can be used357

more reliably in large graphs. Indeed, as can be seen in the figure, on some large graphs only358

the Degree heuristic actually finished at all; this means that, as a general rule, Degree359

seems the best fit for a quick and relatively reliable estimation of treewidth.360

We plot both the absolute values of the estimations in Figure 3a, but also their relative361

values (in Figure 3b, representing the ratio of the estimation over the number of nodes362

in the graph), to allow for an easier comparison between networks. The absolute value,363

while interesting, does not yield an intuition on how the bounds can di�er between network364

types. If we look at the relative values of treewidth, it becomes clear that infrastructure365

networks have a treewidth that is much lower than other networks; in general they seem to366

be consistently under one thousandth of the original size of the graph. This suggests that,367

indeed, this type of network may have properties that make them have a lower treewidth.368

For the other types of networks, the estimations can vary considerably: they can go from369

one hundredth (e.g., Math) to one tenth (e.g., WikiTalk) of the size of the graph.370

As further explained in Appendix B, the bounds obtained here on infrastructure networks371

are consistent with a conjectured O( 3
Ô

n) bound on the treewidth of road networks [27]. One372

relevant property is their low highway dimension [2], which helps with routing queries and373

decomposition into contraction hierarchies. Even more relevant to our results is the fact that374



Main Takeaways

Negative result: treewidth is never very low (<10)


However, for infrastructure networks, treewidth is 
relatively low (similar to the            bound conjectured in 
[Dibbelt et al, 2016])


Other graphs exhibit high treewidth values, outside 
practical usefulness: social networks, Web graphs, 
knowledge graphs

𝒪( 3 n)



Is Treewidth Only of 
Theoretical Relevance?

The second question: can we still find practical use 
cases for treewidth (and tree decompositions)?



Partial Tree Decompositions

Instead of computing the full tree width estimation, what if 
we stop sometime during the decompositions process? 
— Partial Tree Decomposition


Results in a hybrid tree-graph structure:


1. a low treewidth fringe, and


2. a (potentially) high-treewidth core graph



Partial Tree Decompositions

S. Maniu and P. Senellart and S. Jog 9:13

have more edges with larger parameter values.454

5 Partial Decompositions455

Our results show that, in practice, the treewidths of real networks are quite high. Even in the456

case of road networks, having relatively low treewidths, their value can go in the hundreds,457

rendering most algorithms whose time is exponential time in the treewidth (or worse)458

unusable. In practical applications, however, we can still adapt treewidth-based approaches459

for obtaining data structures – not unlike indexes – which can help with some important460

graph queries like shortest distances and paths [5, 62] or probability estimations [10,47].461

The manner in which treewidth decomposition can be used starts from a simple observation462

made in studies on complex graphs, that is, that they tend to exhibit a tree-like fringe and463

a densely connected core [50, 51]. The tree-like fringe precisely corresponds to bounded-464

treewidth parts of the network. This yields an easy adaptation of the upper bound algorithms465

based on node ordering: given a parameter w representing the highest treewidth the fringe466

can be, we can run any greedy decomposition algorithm (Degree, FillIn, DegreeFillIn)467

until we only find nodes of degree w + 1, at which point the algorithm stops. At termination,468

we obtain a data structure formed of a set of treewidth w elements (w-trees) interfacing469

through cliques that have size at most w + 1 with a core graph. The core graph contains all470

the nodes not removed in the bag creation process, and has unbounded treewidth. Figure 5471

illustrates the notion of partial decompositions.472

core

w-tree (w=3)
w-tree (w=4)

w-
tre

e 
(w

=1
)

fringe

Figure 5 An abstract view of partial decompositions. Partial decompositions are formed of a
core graph, which interfaces with w-trees through w-cliques (the fringe).

The resulting structure can be thought of as a partial decomposition (or relaxed decom-473

position), a concept introduced in [5,62] in the context of answering shortest path queries,474

and used in [47] for probabilistic distance queries. A partial decomposition can be extremely475

useful. The tree-like fringe can be used to quickly precompute answers to partial queries (e.g.,476

precompute distances in the graph). Once the precomputation is done, these (partial) answers477

are added to the core graph, where queries can be answered directly. If the resulting core478

graph is much smaller than the original graph, the gains in running time can be considerable,479

as shown in [5,47,62]. Hence, the objective of our experiments in this section is to check how480

feasible partial decompositions are.481

ICDT 2019



 General Algorithm for 
Partial Tree Decompositions
1. Isolate a part of low treewidth (by stopping the 

decomposition process early)


2. (Pre-)process the fringe efficiently (due to its low 
treewidth)


3. Process the core graph using other techniques (e.g., 
approximate algorithms)


4. Combine results



 Partial Tree Decompositions: 
When to Stop?
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(4M road segments)

Google Web graph 
(875k hyperlinks)



Application: Shortest 
Distances

Low treewidth decompositions were used to compute 
shortest distances efficiently in graphs [Akiba et al., 2012] 


• Might suggest a reason why contraction-based approaches work so 
well for shortest distances in infrastructure networks

(a) We start
from the original
graph. Vertex 3
is reduced first.

(b) Vertex 3 was
reduced and the
next one to be re-
duced is vertex 0.

(c) Vertex 0 was re-
duced and the next
one to be reduced is
vertex 4.

(d) Vertex 4 was re-
duced and the next
one to be reduced is
vertex 5.

1

5

6

3

4

0

2 4

2 4

6

1

2

6

(e) Vertex 5 was re-
duced and the process
is complete.

Figure 2: Illustration of the computation of a relaxed tree decomposition.

Algorithm 1 Compute a relaxed tree decomposition

1: procedure DecomposeGraph(G, w)
2: X ← empty list
3: for d = 0 to w do
4: while ∃v ∈ V (G) such that deg(v) ≤ d do
5: ▽ generate a new bag Bv

6: G,Bv ← ReduceVertex(G, v)
7: append Bv to list X
8: end while
9: end for
10: ▽ construct root bag with remaining vertices
11: R← V (G)
12: append R to list X
13: T ← ConstructTree(X)
14: X ← {Xi | i = 1, 2, · · · , |X|}
15: return (T,X )
16: end procedure

The reduction of a vertex v (method ReduceVertex)
consists of three steps. First, we create a new bag B in-
cluding v and all its neighbors (note that, to ensure that
|B| ≤ w + 1, only nodes v with degree deg(v) ≤ w can be
reduced). Second, we change the graph G by removing the
nodes u whose neighborhood is completely contained in B,
i.e., NG(u) ⊆ B (note that v is always removed from G).
Third, we add a clique among those vertices in B that are
still in G (to ensure that we can eventually compile a valid
tree decomposition).
Note that this reduction process is different from the origi-

nal process in [55] as follows. Our reduction process prevents
the creation of redundant bags (see Figure 3) by removing
not only vertex v but all vertices u with neighborhoodNG(u)
completely in B.
After reducing all the vertices with degree less than or

equal to w, we create a bag with all the remaining vertices,
which can be very large. Then we construct the tree of the
tree decomposition from the list of bags. We can always
obtain a valid tree decomposition since all the neighbors of
a reduced node are connected by a clique.
As the bags generated by a node reduction have size at

most w+1, all the bags other than the last bag have size at
most w + 1. Therefore, the tree decomposition has relaxed
width w. We call the last bag the root bag, and we consider
the tree of the tree decomposition as rooted at this root bag.

(a) Part of a tree decom-
position with an unneces-
sary bag (the yellow bag
including vertex 1, 2, and
3, which is a subset of the
green bag below).

(b) Part of a
tree decomposi-
tion without the
unnecessary bag.

Figure 3: An example of removal of unnecessary bags.

Assuming adjacency lists are managed in hash tables and
operations on edges can be done in O(1) time, each reduc-
tion takes O(w2) time. We can find the parent of every bag
in O(bw) time. In total, we can compute relaxed tree decom-
positions in O(n+ bw2) time. In our experiments, we found
that computing the decomposition tree is much faster since
a large fraction of the reduced vertices has very low degrees
(most networks we experiment with have many vertices with
low degree).

5.2 Exact Distance Queries
As we described before, to answer distance queries with

algorithms discussed in Section 4.1, in addition to a tree
decomposition we have to precompute distance matrices for
each bag (local distance). One simple way originally used
is to compute them on the original graph after we get the
tree decomposition. We propose a new and more efficient
algorithm.

5.2.1 Tree Decomposition and Local Distances
During the computation of a tree decomposition described

in Section 5.1, many edges are removed from and added to
the graph. Therefore, the number of the edges varies. In
our experiments on real-world complex networks, during the
computation of a tree decomposition usually the number of
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a large fraction of the reduced vertices has very low degrees
(most networks we experiment with have many vertices with
low degree).
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As we described before, to answer distance queries with

algorithms discussed in Section 4.1, in addition to a tree
decomposition we have to precompute distance matrices for
each bag (local distance). One simple way originally used
is to compute them on the original graph after we get the
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Application: Probabilistic 
Graphs

In our previous work [Maniu et al, 2017], we used tree 
decompositions to compute efficiently reachability 
probabilities in probabilistic graphs:


1. compute exact probabilities in low treewidth areas, and


2. combine then in the root graph and use sampling to 
estimate probabilities
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Fig. 5. Thew = 2 decomposition of the example graph. Vertices in white are the vertices covered by each bag,
and dashed red edges are edges which are computed from children. Each edge has a distribution of distance
probabilities associated to it.

edges resulting from the bo�om-up propagation. In the �gure, the dashed red edges represent the
edges which have been computed from the children.
On the le�-hand side of the tree, bags (� ) and (� ) do not propagate any edges up the tree, as

they either do not have 2 endpoints, as is the case of bag (� ), or there exist no paths between the
endpoints, as for (� ). On the right-hand side, bag (� ) will provide a 6! 1 edge to bag (� ). Bag (� )
also propagates edges 6! 2 and 2! 6 to bag (� ). Finally, bag (� ) propagates edge 6! 0 to the
root bag (� ).

In terms of time complexity, we know that computing the FWD itself is linear in the number of
vertices in the graph [5, 47]. �e computation of pairwise probability distributions, for each bag, is
quadratic inw .

P���������� 6.4. �e complexity of precompute-propagateFWD isO(w2d ), whered is the maximum
distance having non-zero probability in the graph.

P����. �e number of endpoint pairs in a bag is O(w2). �e computation of the SUM convo-
lutions is quadratic in the maximum distance of each distribution, but cannot exceed d , which is
bounded in connected graphs. �e computation of the MIN convolution is linear in the maximum
distance in the two distributions, and is upper bounded by d . �e proposition follows. ⇤

While it is conceivable that a possible world exists in which a shortest distance path between
two vertices visits all edges in a graph thus having d = �( |E |), this does not occur in practice.
Moreover, for w 6 2 (a case which we will explore in more detail), there are only two pairs to
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(a) A probabilistic graph G with unit-weighted edges (b) A possible world of G

(c) G (q) for q(0, 4) (d) G (q) for q(1, 4)

Fig. 1. Illustrating (a) a probabilistic graph; (b) a possible world; and (c), (d) query-e�icient representations

Issue 2 To achieve high accuracy, a large number of possible world samples may need to be
generated. In our experiments, around 1,000 samples are required to converge to acceptable
approximate values.

Our contributions. We improve the e�ciency of ST-query evaluation by tackling the two issues
above. �e main idea is to evaluate the query on G (q), a weight-distribution probabilistic graph
derived from G. Let q(s, t ) be an ST-query with source vertex s and target vertex t . �e result of
running q(s, t ) on G (q) should be highly similar (or ideally, identical) to that of q(s, t ) executed on
G. If G (q) can be generated quickly, and G (q) is smaller than G, then executing q (on G (q)) can be
faster.

Example 1.1. Let us consider an RQ, q(0, 4), run on the graph in Fig. 1a. �ere is only one path
of probability 1 between vertices 0 and 4. Correspondingly, G (q) is a directed edge 0 ! 4, with
{1 : 1.0} denoting a unit-length path between vertices 0 and 4 of probability 1, as shown on Fig. 1c.
Answering q(0, 4) on G (q) is the same as evaluating q(0, 4) on G; in both cases, vertex 0 reaches
vertex 4 with probability 1.

Fig. 1d illustrates G (q) for q(1, 4). Here, edge 3! 4 is not included, since it does not a�ect the
result of q(1, 4). Also, the subgraph containing vertices 1, 5, and 6 is abstracted by a directed edge
6 ! 1. �is edge represents the existence of two possible shortest paths: one with length 1 and
probability 0.75 (the original edge 6 ! 1) and the other with length 2 (the path going through
edges 6! 5 and 5! 1) and probability (1 � 0.75) ⇥ (0.5 ⇥ 0.5) ⇡ 0.06.

In these examples, G (q) is smaller than G, and hence e�ciency of query evaluation is less a�ected
by Issue 1. Moreover, G (q) contains fewer possible worlds than G does. Consequently, the sampling
error is decreased, alleviating the impact due to Issue 2. Hence, an ST-query algorithm executed
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Conclusions

• Bounded-treewidth data has nice theoretical properties, 
but …


• … there are no graphs in the real-word having low 
treewidth.


• However, hope for practical applications remains when 
using partial tree decompositions!



Thank you!


