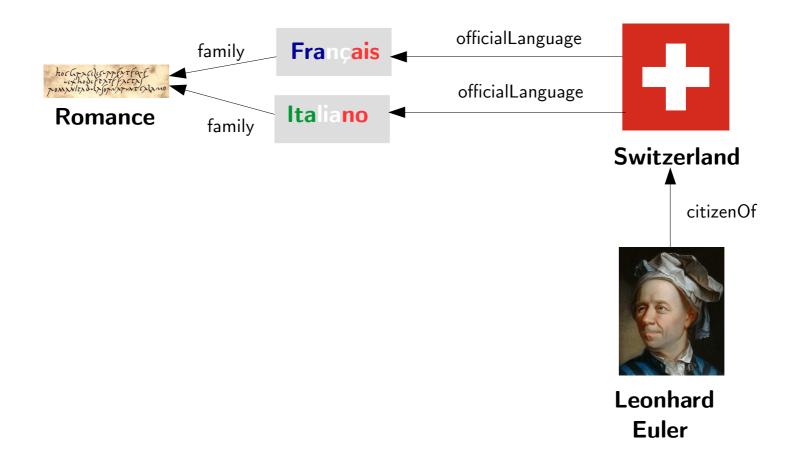
How to know how much we know

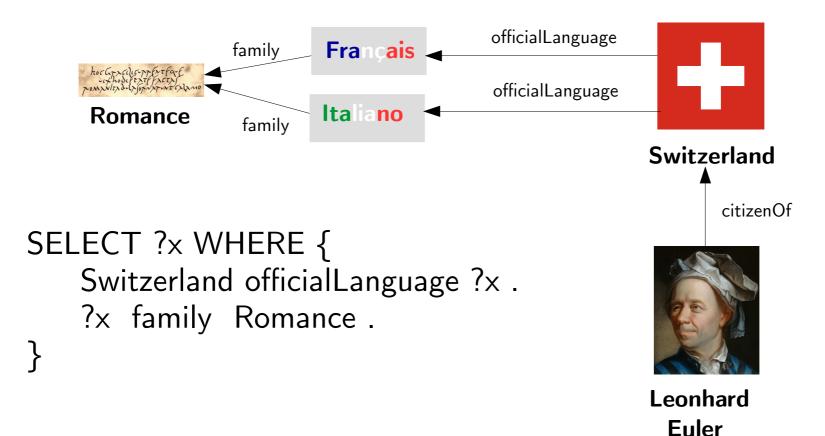
Towards a completeness-aware Semantic Web

Luis Galárraga

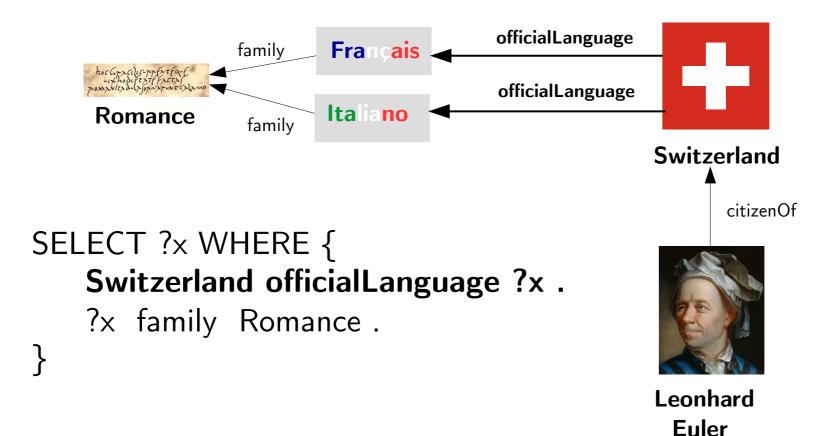
November 16th, 2017 Data Science Seminar @ LTCI


- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

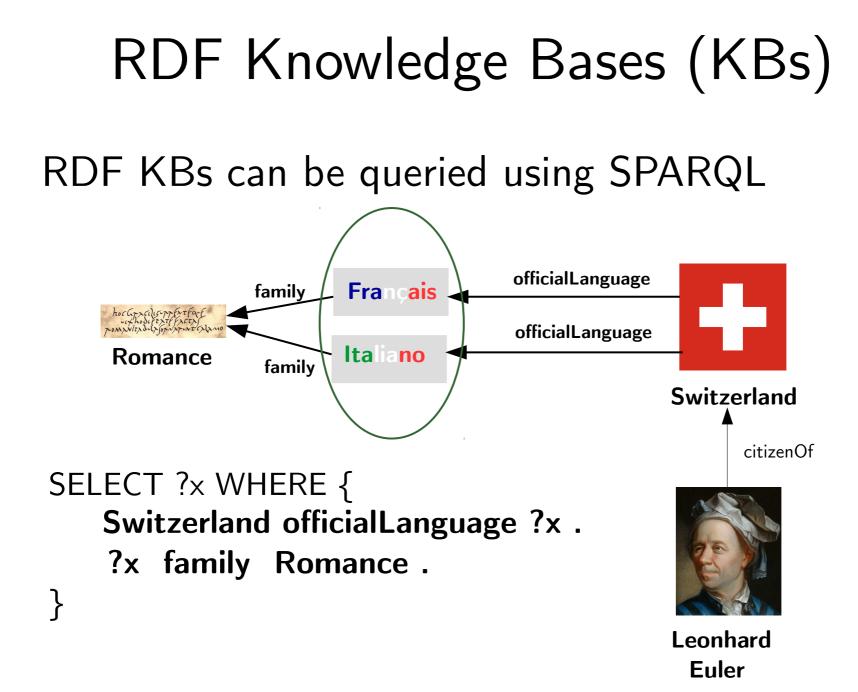
- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions


- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

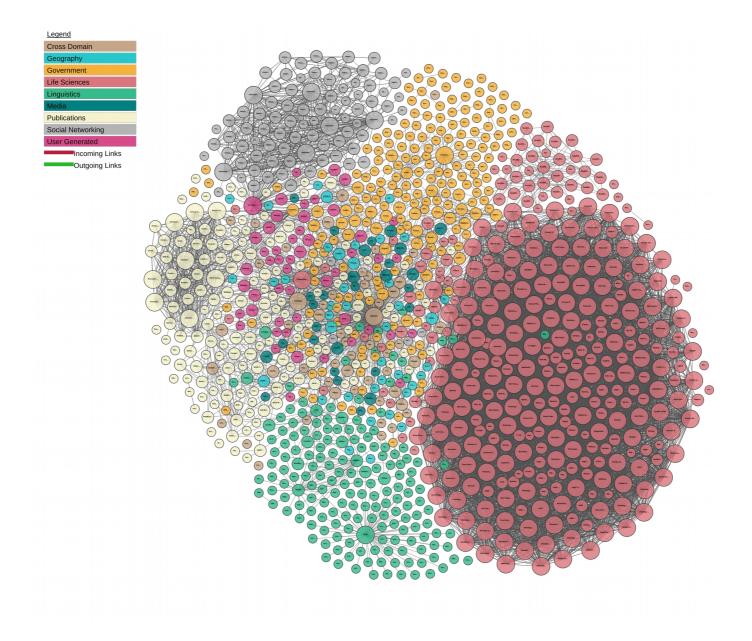
RDF Knowledge Bases (KBs)


Collection of structured knowledge

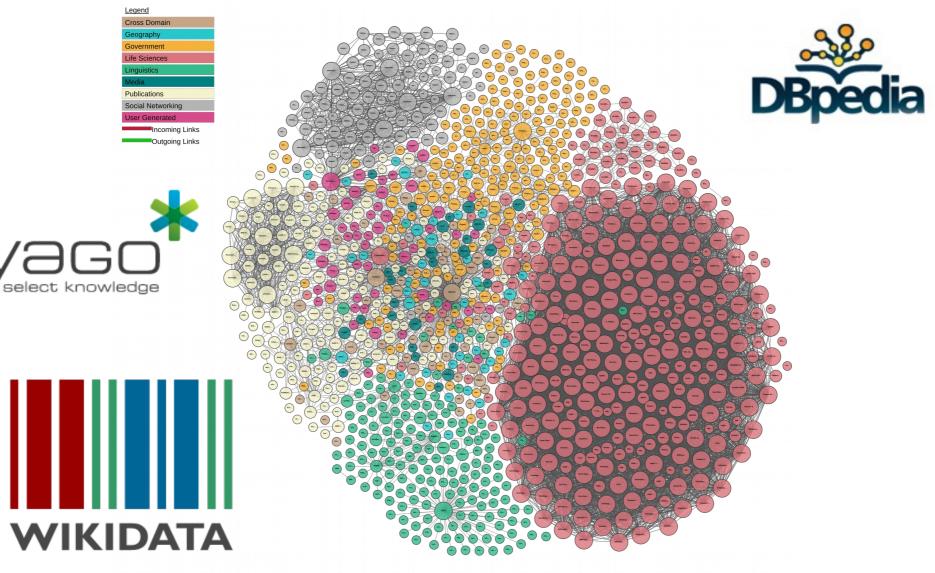
RDF KBs can be queried using SPARQL



RDF Knowledge Bases (KBs) RDF KBs can be queried using SPARQL



RDF Knowledge Bases (KBs) RDF KBs can be queried using SPARQL



Plenty of KBs out there!

Plenty of KBs out there!

KBs in action

official languages of switzerland							
ps More Settings	Tools						
es							
Romansh							
Italian							
	es Romansh						

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

- KBs are highly incomplete
 - 1% of people have a citizenship in YAGO

- KBs are highly incomplete
 - 1% of people have a citizenship in YAGO
- We do not know where the incompleteness lies

- KBs are highly incomplete
 - 1% of people have a citizenship in YAGO
- We do not know where the incompleteness lies
 - A single person in the KB could be actually single or the KB may be incomplete

- KBs are highly incomplete
 - 1% of people have a citizenship in YAGO
- We do not know where the incompleteness lies
 - A single person in the KB could be actually single or the KB may be incomplete
- Problems for data producers and consumers

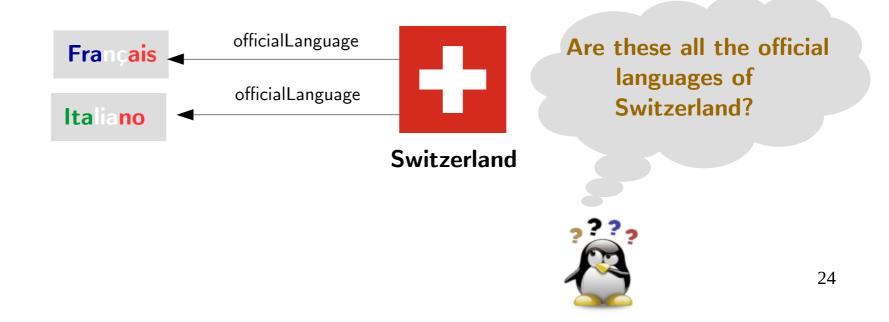
- KBs are highly incomplete
 - 1% of people have a citizenship in YAGO
- We do not know where the incompleteness lies
 - A single person in the KB could be actually single or the KB may be incomplete
- Problems for data producers and consumers
 - Consumers: no completeness guarantees for queries.
 - Producers: which parts of the KB need to be populated?

Tools								
Switzerland > Official languages								

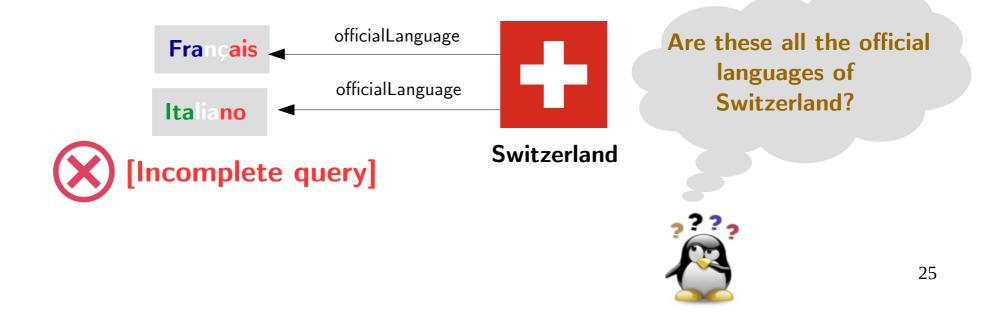
official languages of switzerland							
All	Shopping	News	Images	Maps	More	Settings	Tools
Switzerland > Official languages							
French	1				Romansh		
Germa	n				Italian		

 Defined with respect to a query q via a complete hypothetical KB K*.

- Defined with respect to a query q via a complete hypothetical KB K*.
 - A query q is complete in K, iff $q(K^*) \subseteq q(K)$.


- Defined with respect to a query q via a complete hypothetical KB K*.
 - A query q is complete in K, iff $q(K^*) \subseteq q(K)$.

SELECT ?x WHERE { Switzerland officialLanguage ?x }


- Defined with respect to a query q via a complete hypothetical KB K*.
 - A query q is complete in K, iff $q(K^*) \subseteq q(K)$.

SELECT ?x WHERE { Switzerland officialLanguage ?x }

- Defined with respect to a query q via a complete hypothetical KB K*.
 - A query q is complete in K, iff $q(K^*) \subseteq q(K)$.

SELECT ?x WHERE { Switzerland officialLanguage ?x }

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

Wikidata keeps lists of subject-relation pairs with missing values.

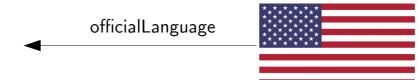
George of Trebizond

Wikidata keeps lists of subject-relation pairs with missing values.

George of Trebizond

SELECT ?x WHERE { George of Trebizond placeOfBirth ?x }

Wikidata keeps lists of subject-relation pairs with missing values.


George of Trebizond

SELECT ?x WHERE { George of Trebizond placeOfBirth ?x }

• Wikidata also provides no value annotations

• Wikidata also provides no value annotations

SELECT ?x WHERE { USA officialLanguage ?x }

• Wikidata also provides no value annotations

SELECT ?x WHERE { USA officialLanguage ?x }

• Wikidata also provides no value annotations

SELECT ?x WHERE { USA officialLanguage ?x }

• Not applicable if we know some official language

• Wikidata also provides no value annotations

SELECT ?x WHERE { USA officialLanguage ?x }

• Not applicable if we know some official language

- [S. Razniewski, W. Nutt, 2011]
 - Completeness formulation, table & query completeness, complexity analysis.
 - Reasoning over incomplete databases, TC-TC & TC-QC
- [X. Dong et al., 2014]
 - 71% of people in Freebase does not have a place of birth
- [F. Darari et al., 2013], [F. Darari et al., 2016]
 - Reasoning with RDF completeness statements and the available data.

- [E. Muñoz, M. Nickels, 2017]
 - Mine cardinalities for object values in order to assess completeness in KBs.
- [T. P. Tanon et al., 2017]
 - Obtain cardinality estimations to generate completeness statements to better assess the quality of rules learned from KBs.

Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles [Our contribution]
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

Completeness oracle

Boolean function ω(q, K) that guesses the completeness of a query q in a KB K.

• [Galárraga et. al., 2017] Function **ω** that guesses the completeness of queries of the form:

SELECT ?x WHERE { subject relation ?x }

• [Galárraga et. al., 2017] Function **ω** that guesses the completeness of queries of the form:

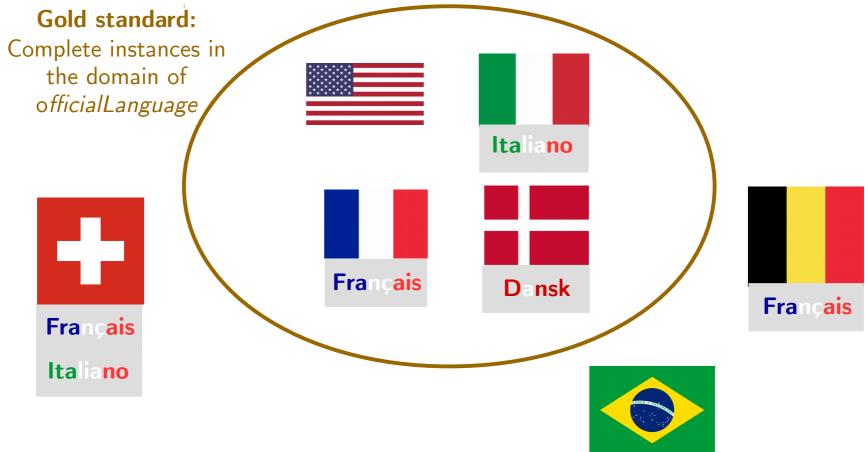
SELECT ?x WHERE { subject relation ?x }

• We use the notation ω(*subject, relation*)

• [Galárraga et. al., 2017] Function $\boldsymbol{\omega}$ that guesses the completeness of queries of the form:

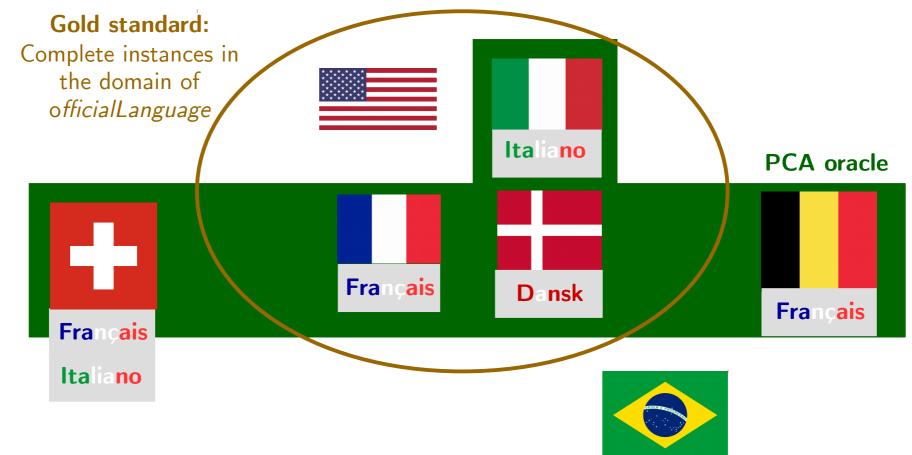
SELECT ?x WHERE { subject relation ?x }

- We use the notation ω(subject, relation)
- $\omega = pca(s, r) = partial completeness assumption$

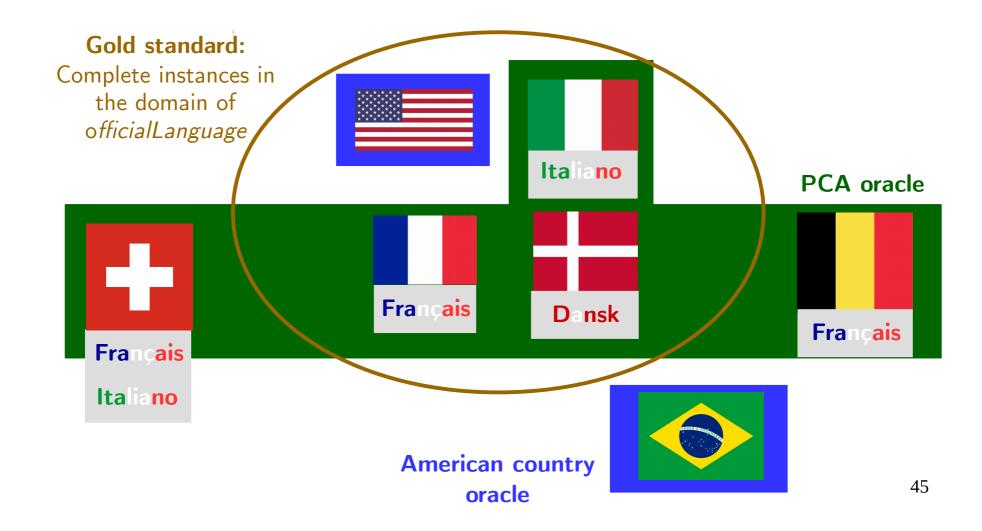

• [Galárraga et. al., 2017] Function **ω** that guesses the completeness of queries of the form:

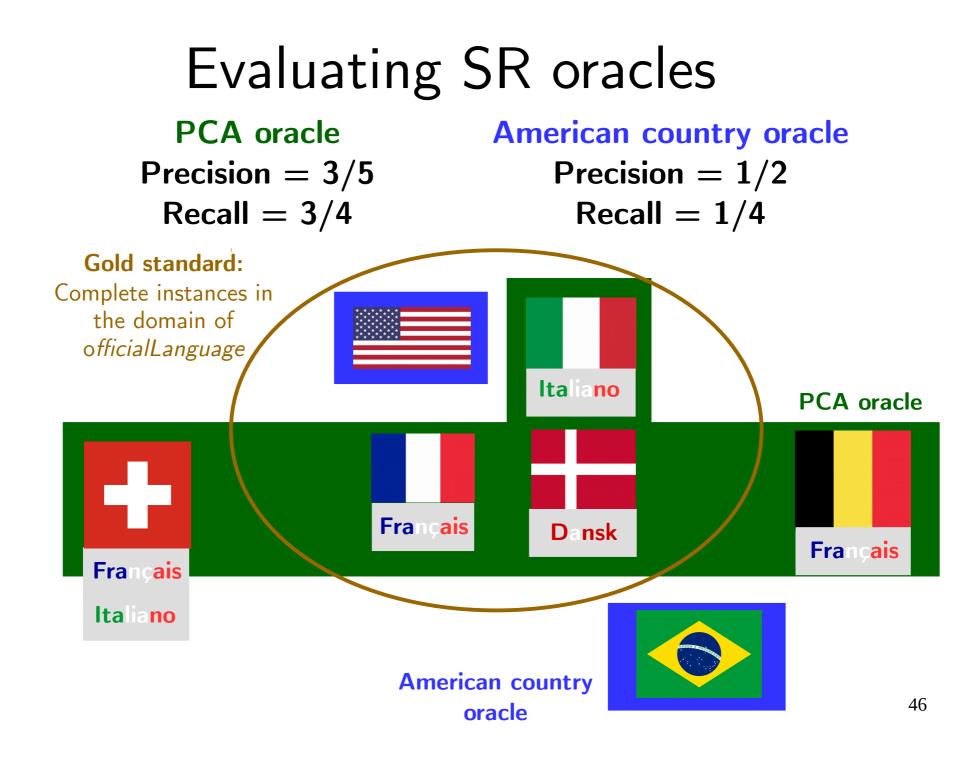
SELECT ?x WHERE { subject relation ?x }

- We use the notation ω(*subject, relation*)
- $\omega = pca(s, r) = partial completeness assumption$
 - Query is complete in KB if at least one answer is known


Evaluating SR oracles

$\omega = pca(s, r) = partial completeness assumption$


Evaluating SR oracles


$\omega = pca(s, r) = partial completeness assumption$

Evaluating SR oracles

$\omega = american-country-oracle(s, r)$

- Closed World Assumption: cwa(s, r) = true
- PCA: $pca(s, r) = \exists o : r(s, o)$
- Cardinality: card(s, r) = $\#(o : r(s, o)) \ge k$
- Popular entities: $popularity_{pop}(s, r) = pop(s)$
- No-chg over time: $nochange_{chg}(s, r) = \sim chg(s, r)$
- Star : star_{r1,..,rn}(s, r) = $\forall i \in \{1,..,n\}$: $\exists o : r_i(s, o)$
- Class: $class_c(s, r) = type(s, c)$
- Rule mining oracle

Rule mining SR oracle

• Based on completeness rules

notype(x, Adult), type(x, Person) \Rightarrow complete(x, hasChild) dateOfDeath(x, y), lessThan₁(x, placeOfDeath) \Rightarrow incomplete(x, placeOfDeath)

Rule mining SR oracle

• Based on completeness rules

notype(x, Adult), type(x, Person) \Rightarrow complete(x, hasChild) dateOfDeath(x, y), lessThan₁(x, placeOfDeath) \Rightarrow incomplete(x, placeOfDeath)

- Learned using the AMIE [Galárraga et. al, 2013] rule mining system
 - On gold standard built via crowdsourcing

Rule mining SR oracle

• Based on completeness rules

notype(x, Adult), type(x, Person) ⇒ complete(x, hasChild)
dateOfDeath(x, y), lessThan₁(x, placeOfDeath)⇒ incomplete(x, placeOfDeath)

- Learned using the AMIE [Galárraga et. al, 2013] rule mining system
 - On gold standard built via crowdsourcing
 - 100% F1-measure for functional relations, quite good for relations *hasChild*, *graduatedFrom*

Performance of SR oracles

F1 measure of the oracles in YAGO3

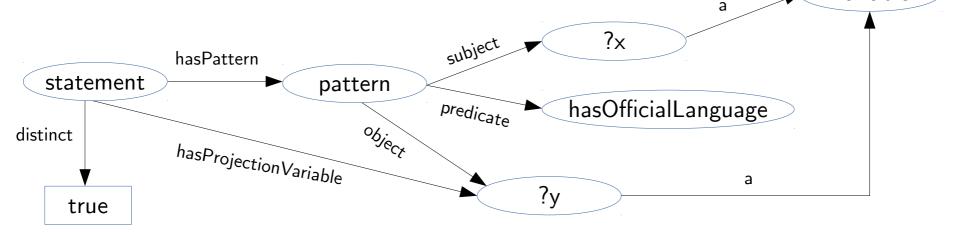
Relation	CWA	PCA	Class	AMIE
diedIn	60%	22%	99%	96%
directed	40%	96%	0%	100%
graduatedFrom	89%	4%	92%	87%
hasChild	71%	1%	78%	78%
hasGender	78%	100%	95%	100%
hasParent	1%	54%	0%	100%
isCitizenOf	4%	98%	5%	100%
isConnectedTo	87%	34%	88%	89%
isMarriedTo	55%	7%	57%	46%
wasBornIn	28%	100%	0%	100%

Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

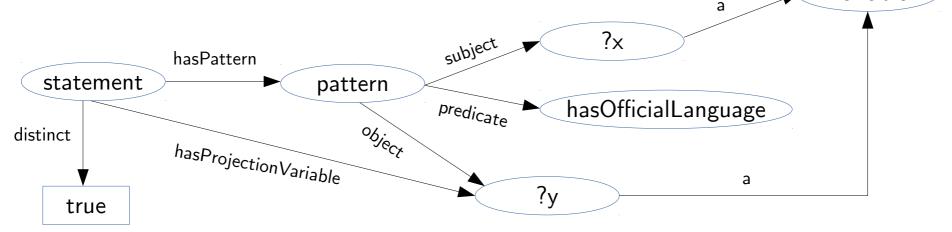
Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

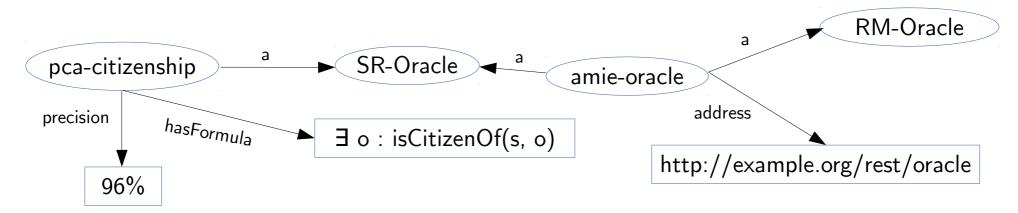

- Extensional approach [Darari, et al, 2013]
 - An oracle is a collection of completeness statements about queries

- Extensional approach [Darari, et al, 2013]
 - An oracle is a collection of completeness statements about queries

SELECT DISTINCT ?y WHERE { ?x hasOfficialLanguage ?y } is **complete** in the KB


- Extensional approach [Darari, et al, 2013]
 - An oracle is a collection of completeness statements about queries

SELECT DISTINCT ?y WHERE { ?x hasOfficialLanguage ?y } is complete in the KB


- Extensional approach [Darari, et al, 2013]
 - A call to the oracle asks for the existence of the query in the graph

SELECT DISTINCT ?y WHERE { ?x hasOfficialLanguage ?y } is complete in the KB

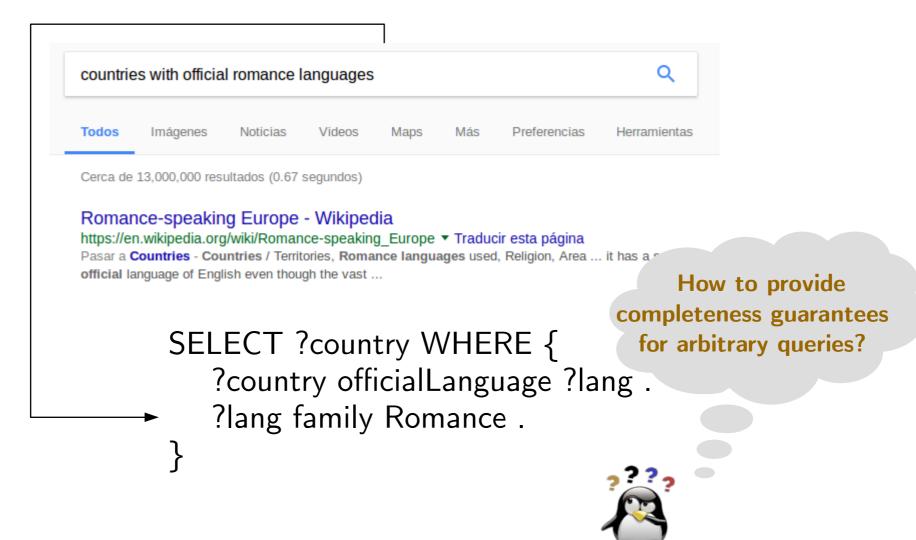
- Intensional approach
 - The oracle logic is embedded as a lambda function or a link to a program or resource

- Intensional approach
 - The oracle logic is embedded as a lambda function or a link to a program or resource

official	fficial languages of switzerland						Q
All	Shopping	News	Images	Maps	More	Settings	Tools
Switzerland > Official languages							
French					Romansh		
German	I				Italian		

This list of results is complete with confidence X according to $\boldsymbol{\omega}$

countries with official romance languages							
Todos	Imágenes	Noticias	Videos	Maps	Más	Preferencias	Herramientas


Cerca de 13,000,000 resultados (0.67 segundos)

Romance-speaking Europe - Wikipedia

https://en.wikipedia.org/wiki/Romance-speaking_Europe ▼ Traducir esta página

Pasar a **Countries** - **Countries** / Territories, **Romance languages** used, Religion, Area ... it has a sole **official** language of English even though the vast ...

Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

• Oracle $\mathbf{\omega}_d$ for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }
SELECT DISTINCT ?y WHERE { ?x relation ?y }

• Oracle $\boldsymbol{\omega}_d$ for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y } SELECT DISTINCT ?y WHERE { ?x relation ?y }

We use the notation ω_d(relation) or ω_d(relation⁻¹)
 SELECT DISTINCT ?y WHERE { ?x officialLanguage ?y }

• Oracle $\boldsymbol{\omega}_d$ for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }
SELECT DISTINCT ?y WHERE { ?x relation ?y }

- We use the notation ω_d(relation) or ω_d(relation⁻¹)
 SELECT DISTINCT ?y WHERE { ?x officialLanguage ?y }
- If ω_d (officialLanguage) returns true, ω_d states that the KB knows all languages that are official in some country

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

```
SELECT ?country WHERE {
    ?country officialLanguage ?lang .
    ?lang family Romance .
}
```

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

ര' =

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .}

 $\omega' = \omega(\text{Romance, family}^{-1})$

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

 $ω' = ω(Romance, family^{-1}) \land (\Lambda_{I:family(I, Romance)} ω(I, officialLanguage^{-1}))$

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 It will generate
 ?lang family Romance .
}

 $ω' = ω(\text{Romance, family}^{-1}) \land (\Lambda_{\text{I:family}(I, \text{Romance})} ω(I, \text{ officialLanguage}^{-1}))$

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

 $ω' = ω(\text{Romance, family}^{-1}) \land (\Lambda_{\text{I:family}(I, \text{Romance})} ω(I, \text{ officialLanguage}^{-1}))$

- Write completeness annotations for every possible type of query
 - It requires a large amount of effort
- Reuse existing SR and D oracles

Even though this term does not care, because Ligurian is not official in any country

 $ω' = ω(Romance, family^{-1}) \land (\Lambda_{I:family(I, Romance)} ω(I, officialLanguage^{-1}))$

• Multiple oracle expressions can offer completeness guarantees for a query.

• Multiple oracle expressions can offer completeness guarantees for a query.

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

$$\begin{split} & \omega^{1} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{l:family(I, Romance)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{2} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{l:family(I, f)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{3} = \omega(\text{Romance, family}^{-1}) \wedge \omega_{d}(\text{officialLanguage}) \wedge (\Lambda_{\text{c:officialLanguage(c, I)}} \omega(\text{c, officialLanguage})) \end{split}$$

Tightness for completeness guarantees

•
$$\omega' \prec_q \omega''$$
 for q if $\forall K : \omega''(q, K) \land \omega'(q, K) :$

- $ω''(q, K') \Rightarrow ω'(q, K') ∀ K' ⊆ K.$

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

$$\begin{split} & \omega^{1} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{I:family(I, Romance)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{2} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{I:family(I, f)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{3} = \omega(\text{Romance, family}^{-1}) \wedge \omega_{d}(\text{officialLanguage}) \wedge (\Lambda_{\text{c:officialLanguage(c, I)}} \omega(\text{c, officialLanguage})) \end{split}$$

Tightness for completeness guarantees

•
$$\omega' \prec_q \omega''$$
 for q if $\forall K : \omega''(q, K) \land \omega'(q, K) :$

- $ω''(q, K') \Rightarrow ω'(q, K') ∀ K' ⊆ K.$

SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

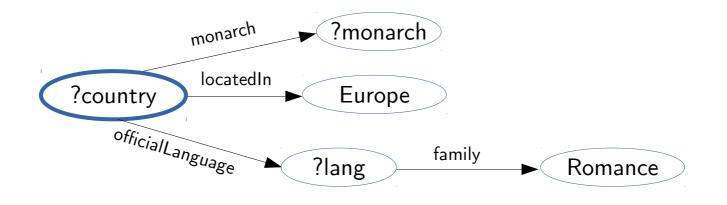
$$\begin{split} & \omega^{1} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{l:family}(I, \text{Romance})} \omega(I, \text{ officialLanguage}^{-1})) \\ & \omega^{2} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{l:family}(I, f)} \omega(I, \text{ officialLanguage}^{-1})) \\ & \omega^{3} = \omega(\text{Romance, family}^{-1}) \wedge \omega_{d}(\text{officialLanguage}) \wedge (\Lambda_{\text{c:officialLanguage}(c, I)} \omega(c, \text{ officialLanguage})) \end{split}$$

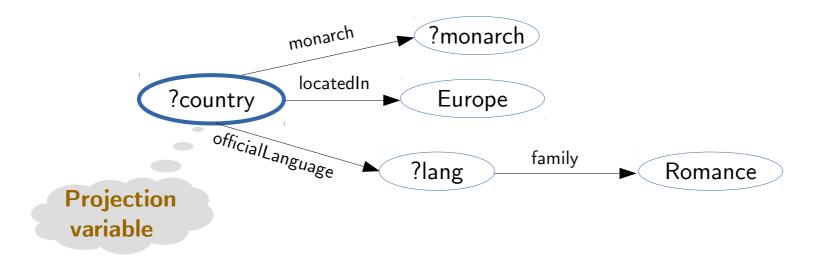
Cost for completeness guarantees

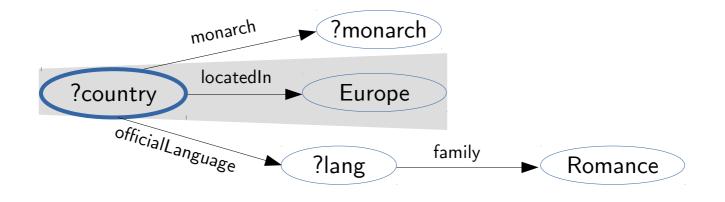
• Number of oracle calls required for the answer

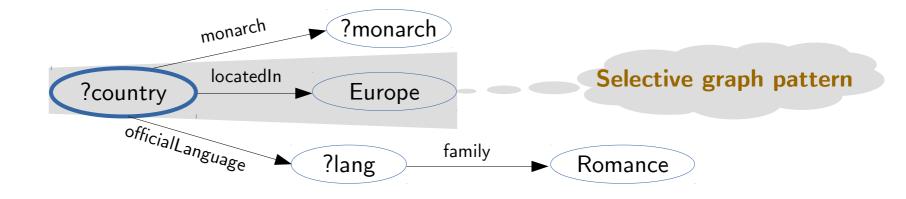
SELECT ?country WHERE {
 ?country officialLanguage ?lang .
 ?lang family Romance .
}

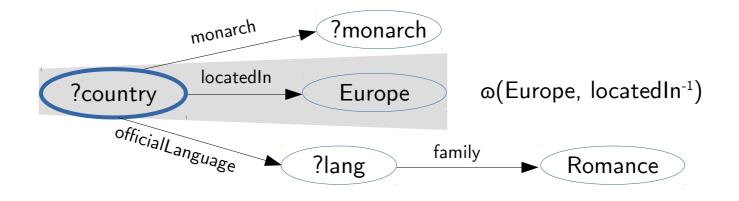
$$\begin{split} & \omega^{1} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{I:family(I, Romance)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{2} = \omega(\text{Romance, family}^{-1}) \wedge (\Lambda_{\text{I:family(I, f)}} \omega(\text{I, officialLanguage}^{-1})) \\ & \omega^{3} = \omega(\text{Romance, family}^{-1}) \wedge \omega_{d}(\text{officialLanguage}) \wedge (\Lambda_{\text{c:officialLanguage(c, I)}} \omega(\text{c, officialLanguage})) \end{split}$$

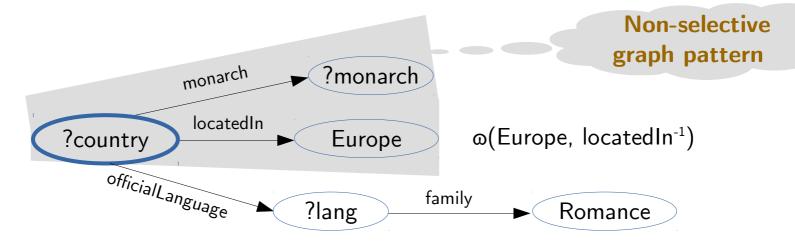

Cost for completeness guarantees

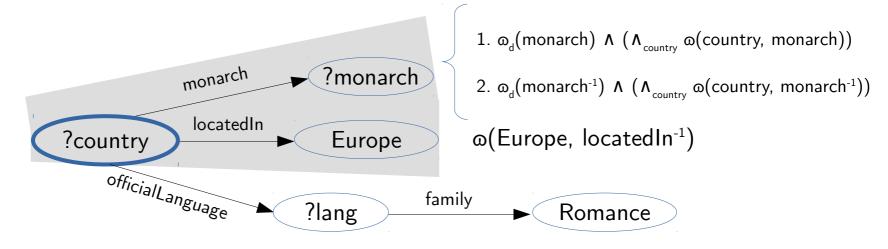

• Number of oracle calls required for the answer

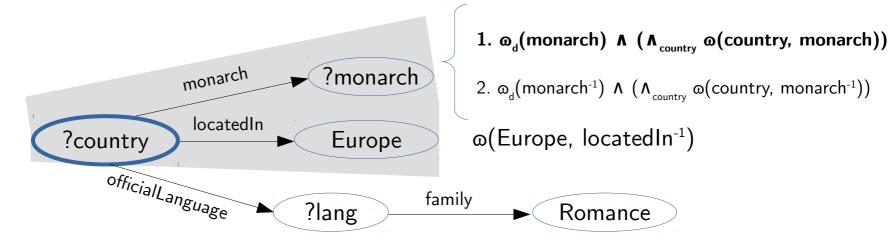

SELECT ?country WHERE {
ficialLanguage ?lang .
1 + (#4 family(L Remanage)) among a

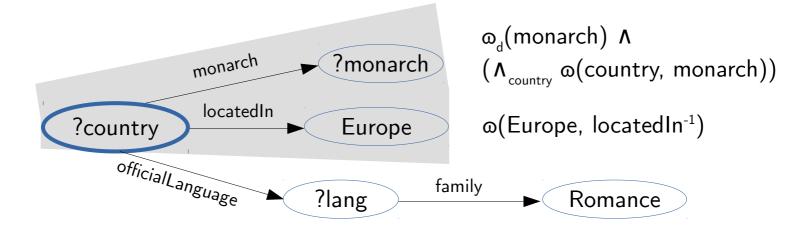

 $cost(\omega^1) = 1 + (\#I: family(I, Romance))$ smance.

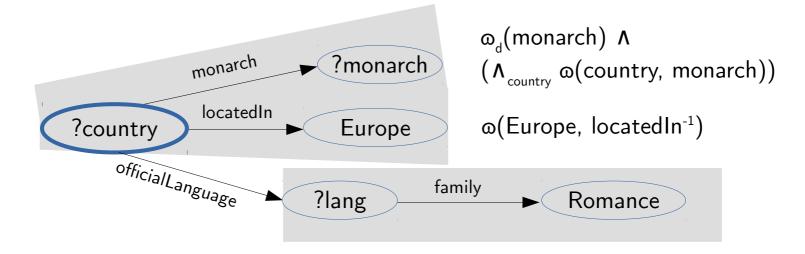

$$\begin{split} \varpi^{1} &= \varpi(\text{Romance, family}^{-1}) \land (\Lambda_{\text{I:family}(I, \text{Romance})} \varpi(I, \text{ officialLanguage}^{-1})) \\ \varpi^{2} &= \varpi(\text{Romance, family}^{-1}) \land (\Lambda_{\text{I:family}(I, f)} \varpi(I, \text{ officialLanguage}^{-1})) \\ \varpi^{3} &= \varpi(\text{Romance, family}^{-1}) \land \varpi_{d}(\text{officialLanguage}) \land (\Lambda_{\text{c:officialLanguage}(c, I)} \varpi(c, \text{ officialLanguage})) \end{split}$$

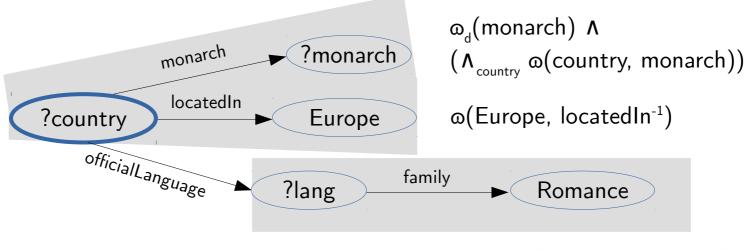


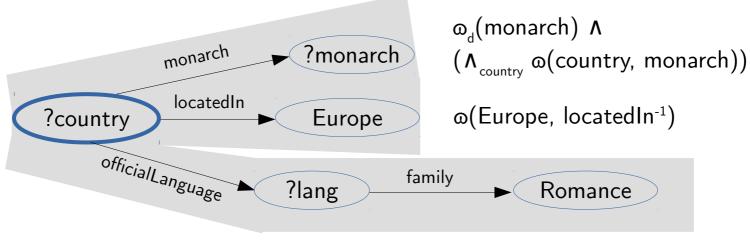


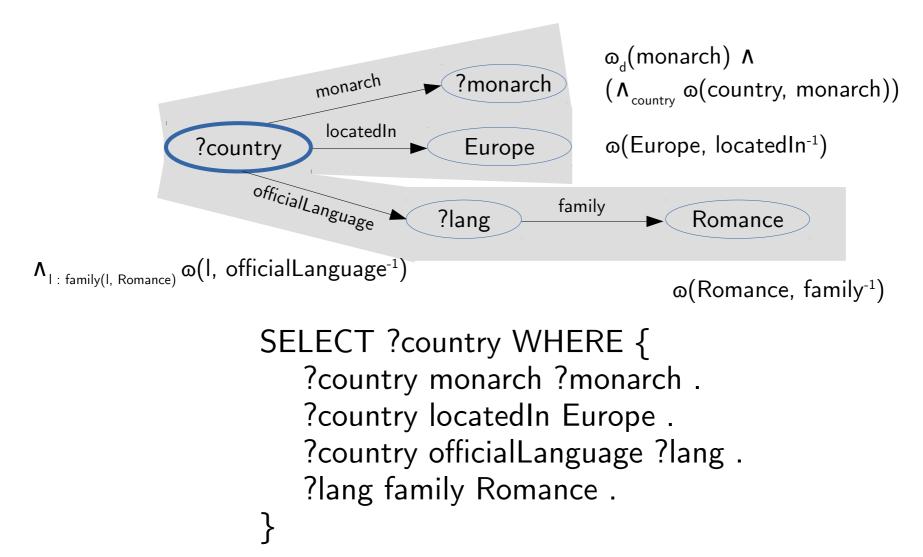


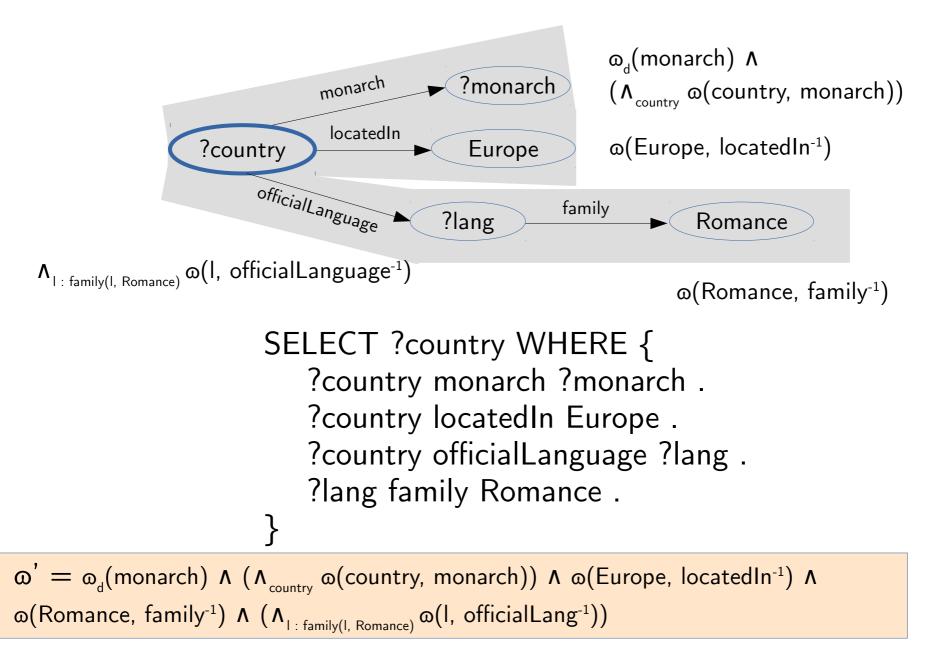


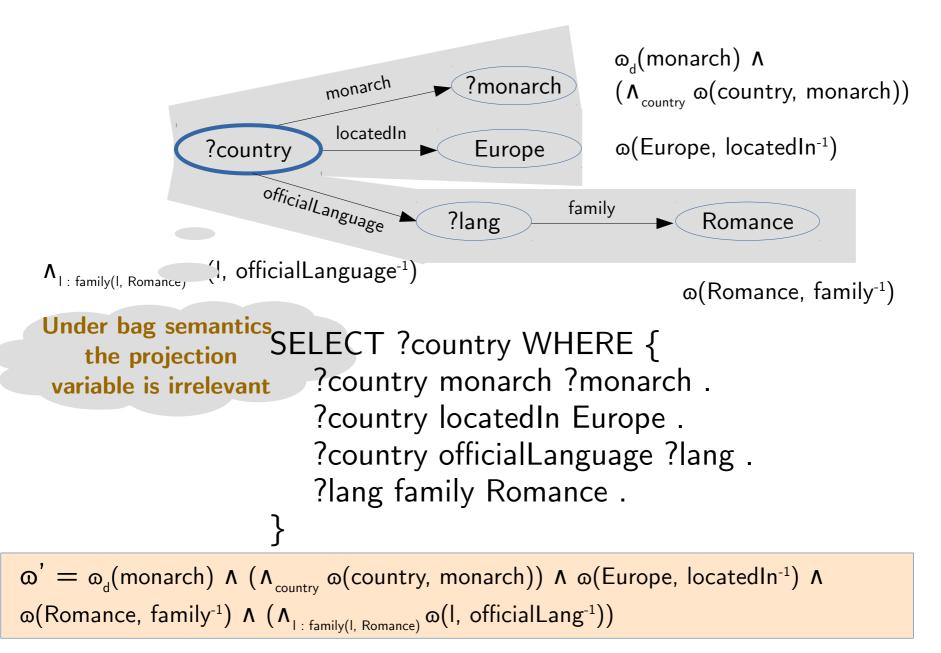


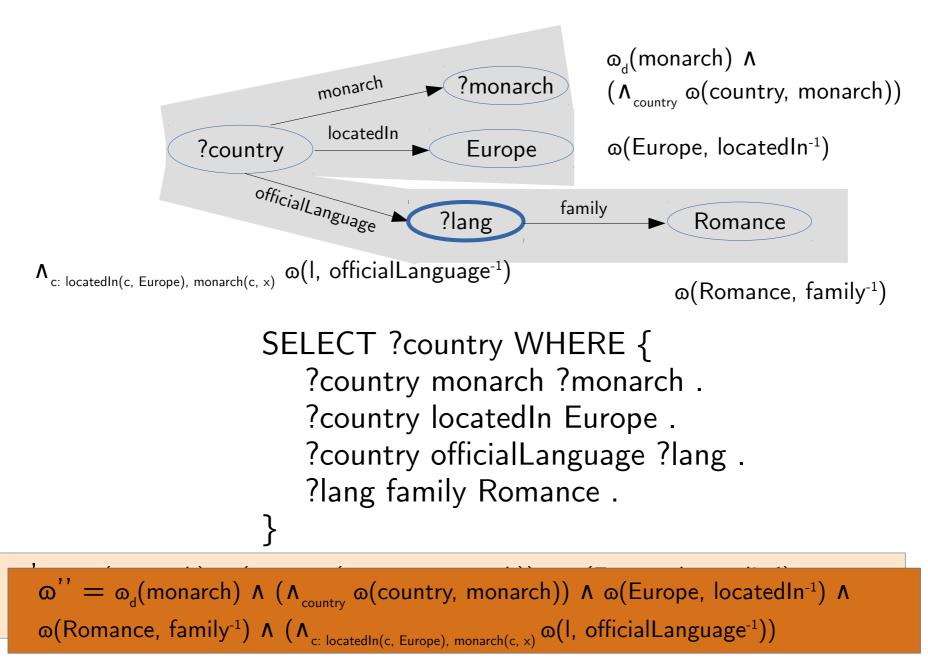


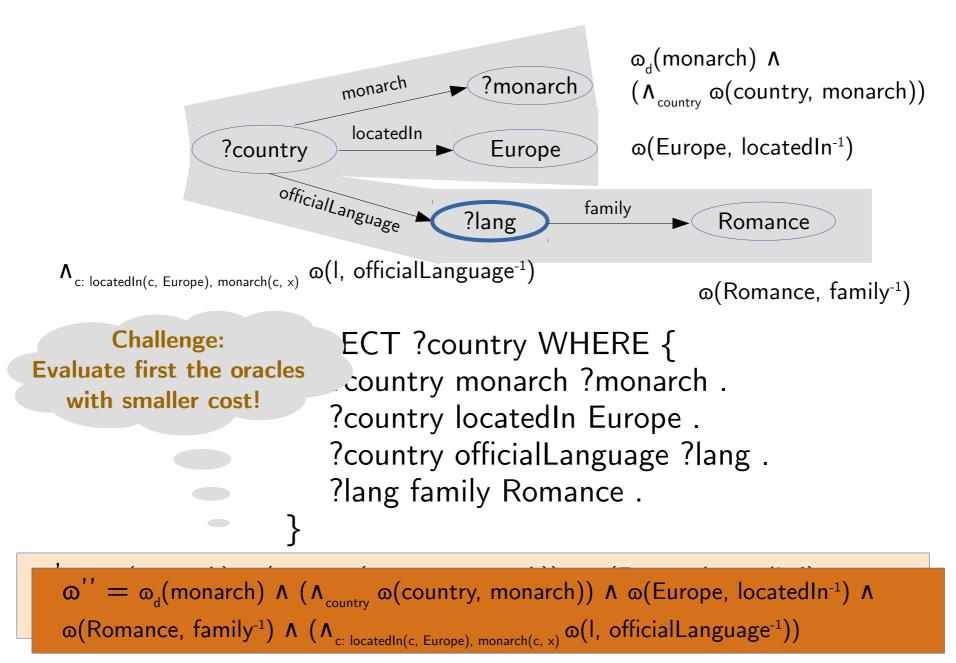


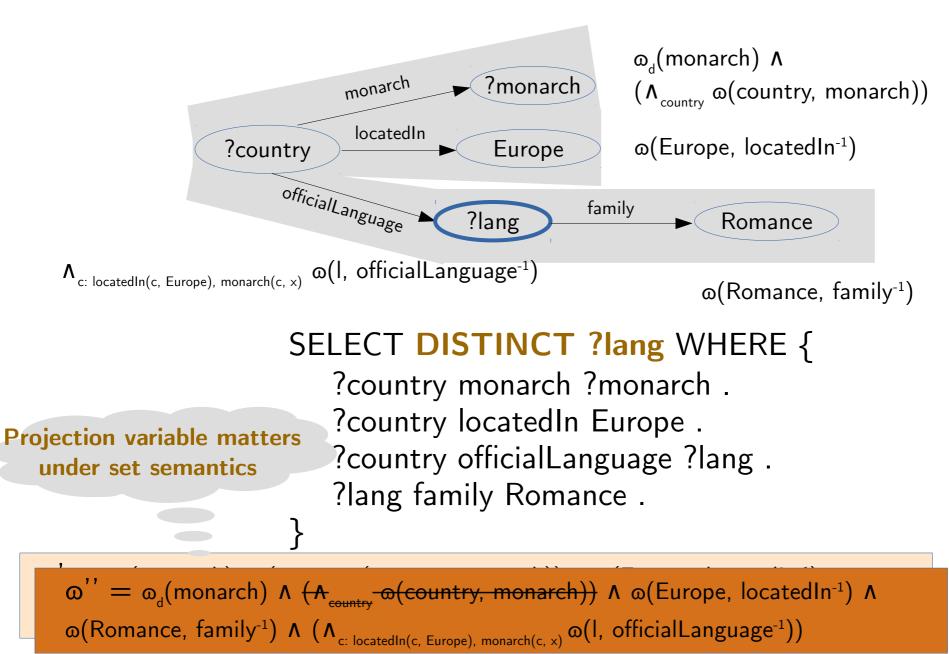





ω(Romance, family⁻¹)




ω(Romance, family⁻¹)



Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

• Calls to completeness oracles could be embedded in the query language

- Calls to completeness oracles could be embedded in the query language
 - Example: aggregated number of Spanish speakers in a county per state, only for *those states with complete information*

- Calls to completeness oracles could be embedded in the query language
 - Example: aggregated number of Spanish speakers in a county per state, only for *those states with complete information*

SELECT ?state sum(?nspeak) WHERE {

?county inState ?state .

?county spanishSpeakers ?nspeak .

- Calls to completeness oracles could be embedded in the query language
 - Example: aggregated number of Spanish speakers in a county per state, only for *those states with complete information*

Boolean aggregation function on sets of bindings

SELECT ?state sum(?nspeak) WHERE {

?county inState ?state .

?county spanishSpeakers ?nspeak .

• For each value of *?state* check if the bindings for *?nspeak* are complete

?state	?county	?nspeak
	New Castle	2000
Delaware	Kent	4300
	Sussex	1200
Hawaii	Hawaii	30000
	Kalawao	1200

?county spanishSpeakers ?nspeak .

• For each value of *?state* check if the bindings for *?nspeak* are complete

?state	?county	?nspeak	SELECT complete (?nspeak) WHERE {
Delaware	New Castle Kent	2000 4300	?county inState Delaware
	Sussex	1200	?county spanishSpeakers ?nspeak .
Hawaii	Hawaii	30000	}
	Kalawao	1200	

?county spanishSpeakers ?nspeak .

• For each value of *?state* check if Completeness oracles to the rescue!

?state	?county	?nspeak		SELECT complete(?nspeak) WHERE {
	New Castle	2000		?county inState Delaware
Delaware	Kent	4300	>	
	Sussex	1200		?county spanishSpeakers ?nspeak .
Hawaii	Hawaii	30000		}
	Kalawao	1200		-

?county spanishSpeakers ?nspeak .

Outline

- Completeness in RDF knowledge bases
- State of the art on completeness
- Completeness oracles
- Vision on Completeness-aware Semantic Web
 - Representations for completeness oracles
 - Reasoning with completeness oracles
 - Enabling completeness in SPARQL
- Summary & conclusions

Summary

- Completeness is a dimension of data quality
 - It determines the value and reliability of the data
 - The state of the art provides completeness statements and oracles for simple queries
- Semantic Web is not completeness-aware
 - Vision
 - Use completeness oracles for simpler queries to infer completeness for arbitrary queries
 - Embed completeness in the SPARQL query language
 - Goal: Increase the value of the results delivered by queries

Future work

- Augment existing RDF data with completeness statements and oracles
- Extend query engines with completeness reasoning
 - Efficient implementation for oracle composition
 - Extend SPARQL to support the *complete* agg function
 - Reasoning beyond SR and D oracles
 - Use oracles that guarantee the completeness of queries with arbitrary number of triple patterns.
 - Provide confidence value for completeness guarantees.