

How to know how much we know

1

Luis Galárraga

November 16th, 2017
 Data Science Seminar @ LTCI

Towards a completeness-aware Semantic Web

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

2

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

3

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

4

RDF Knowledge Bases (KBs)

Collection of structured knowledge

5

Français ofcialLanguage

Switzerland

Romance

family

citizenOf

Leonhard
Euler

ofcialLanguage
Italianofamily

RDF Knowledge Bases (KBs)

RDF KBs can be queried using SPARQL

6

Français ofcialLanguage

Switzerland

Romance

family

citizenOf

Leonhard
Euler

ofcialLanguage
Italianofamily

SELECT ?x WHERE {
 Switzerland ofcialLanguage ?x .
 ?x family Romance .
}

RDF Knowledge Bases (KBs)

RDF KBs can be queried using SPARQL

7

Français ofcialLanguauaguae

Switzerland

Romance

family

citizenOf

Leonhard
Euler

ofcialLanguauaguae
Italianofamily

SELECT ?x WHERE {
 Switzerland ofcialLanguauaguae ?x .
 ?x family Romance .
}

RDF Knowledge Bases (KBs)

RDF KBs can be queried using SPARQL

8

Français ofcialLanguauaguae

Switzerland

Romance

family

citizenOf

Leonhard
Euler

ofcialLanguauaguae
Italianofamily

SELECT ?x WHERE {
 Switzerland ofcialLanguauaguae ?x .
 ?x family Romance .
}

RDF Knowledge Bases (KBs)

RDF KBs can be queried using SPARQL

9

Français ofcialLanguauaguae

Switzerland

Romance

family

citizenOf

Leonhard
Euler

ofcialLanguauaguae
Italianofamily

SELECT ?x WHERE {
 Switzerland ofcialLanguauaguae ?x .
 ?x family Romance .
}

Plenty of KBs out there!

10

Plenty of KBs out there!

11

KBs in action

12

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

13

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

14

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies

15

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

16

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

● Problems for data producers and consumers

17

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

● Problems for data producers and consumers
– Consumers: no completeness guarantees for queries.

– Producers: which parts of the KB need to be populated?

18

Completeness in RDF KBs

19

Completeness in RDF KBs

20

This list of results is complete!

Completeness

● Defned with respect to a query q via a complete
hypothetical KB K*.

21

Completeness

● Defned with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

22

Completeness

● Defned with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland ofcialLanguage ?x }

23

Français
ofcialLanguage

Switzerland

ofcialLanguage
Italiano

Completeness

● Defned with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland ofcialLanguage ?x }

24

 Are these all the ofcial
languauaguaes of
Switzerland?

Français
ofcialLanguage

Switzerland

ofcialLanguage
Italiano

Completeness

● Defned with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland ofcialLanguage ?x }

25

 Are these all the ofcial
languauaguaes of
Switzerland?

Français
ofcialLanguage

Switzerland

ofcialLanguage
Italiano

[Incomplete query]

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

26

Completeness in RDF data

Wikidata keeps lists of subject-relation pairs with
missing values.

27

placeOfBirth

Georguae of Trebizond

Completeness in RDF data

Wikidata keeps lists of subject-relation pairs with
missing values.

28

placeOfBirth

Georguae of Trebizond

SELECT ?x WHERE { George of Trebizond placeOfBirth ?x }

Completeness in RDF data

Wikidata keeps lists of subject-relation pairs with
missing values.

29

placeOfBirth

Georguae of Trebizond

SELECT ?x WHERE { George of Trebizond placeOfBirth ?x }

[Incomplete query]

Completeness in RDF data

● Wikidata also provides no value annotations

30

Completeness in RDF data

● Wikidata also provides no value annotations

SELECT ?x WHERE { USA ofcialLanguage ?x }

31

ofcialLanguage

Completeness in RDF data

● Wikidata also provides no value annotations

SELECT ?x WHERE { USA ofcialLanguage ?x }

32

ofcialLanguage

[Complete query]

Completeness in RDF data

● Wikidata also provides no value annotations

SELECT ?x WHERE { USA ofcialLanguage ?x }

33

● Not applicable if we know some ofcial language

[Complete query]

ofcialLanguage

Completeness in RDF data

● Wikidata also provides no value annotations

SELECT ?x WHERE { USA ofcialLanguage ?x }

34

● Not applicable if we know some ofcial language

[Complete query]

Français
ofcialLanguage

Switzerland

ofcialLanguage
Italiano

ofcialLanguage

Completeness in RDF data

35

● [S. Razniewski, W. Nutt, 2011]
– Completeness formulation, table & query completeness,

complexity analysis.

– Reasoning over incomplete databases, TC-TC & TC-QC

● [X. Dong et al., 2014]
– 71% of people in Freebase does not have a place of birth

● [F. Darari et al., 2013], [F. Darari et al., 2016]
– Reasoning with RDF completeness statements and the

available data.

Completeness in RDF data

36

● [E. Muñoz, M. Nickels, 2017]
– Mine cardinalities for object values in order to assess

completeness in KBs.

● [T. P. Tanon et al., 2017]
– Obtain cardinality estimations to generate completeness

statements to better assess the quality of rules learned
from KBs.

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles [Our contribution]
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

37

Completeness oracle

● Boolean function ɷ(q, K) that guesses the
completeness of a query q in a KB K.

38

SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses
the completeness of queries of the form:

39

SELECT ?x WHERE { subject relation ?x }

SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses
the completeness of queries of the form:

40

SELECT ?x WHERE { subject relation ?x }

● We use the notation ɷ(subject, relation)

SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses
the completeness of queries of the form:

41

SELECT ?x WHERE { subject relation ?x }

● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses
the completeness of queries of the form:

42

● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

– Query is complete in KB if at least one answer
is known

SELECT ?x WHERE { subject relation ?x }

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption

43

Gold standard:
Complete instances in

the domain of
ofcialLanguage

Français

Italiano

Français

Italiano

Dansk
Français

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption

44

Français

Italiano

Français

Italiano

Dansk
Français

PCA oracle

Gold standard:
Complete instances in

the domain of
ofcialLanguage

Evaluating SR oracles

ɷ = american-country-oracle(s, r)

45

Français

Italiano

Français

Italiano

Dansk
Français

American country
oracle

PCA oracle

Gold standard:
Complete instances in

the domain of
ofcialLanguage

Evaluating SR oracles

46

Français

Italiano

Français

Italiano

Dansk
Français

American country
oracle

PCA oracle

PCA oracle
Precision = 3/5
Recall = 3/4

American country oracle
Precision = 1/2
Recall = 1/4

Gold standard:
Complete instances in

the domain of
ofcialLanguage

SR completeness oracles

● Closed World Assumption: cwa(s, r) = true
● PCA: pca(s, r) = o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o)) k ≥
● Popular entities: popularitypop(s, r) = pop(s)

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) = i {1,..,n} : o : r∀ ∊ ∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● Rule mining oracle
47

Rule mining SR oracle

48

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

Rule mining SR oracle

49

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule
mining system
– On gold standard built via crowdsourcing

Rule mining SR oracle

50

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule
mining system
– On gold standard built via crowdsourcing

– 100% F1-measure for functional relations, quite good for
relations hasChild, graduatedFrom

Performance of SR oracles

Relation CWA PCA Class AMIE
diedIn 60% 22% 99% 96%
directed 40% 96% 0% 100%
graduatedFrom 89% 4% 92% 87%
hasChild 71% 1% 78% 78%
hasGender 78% 100% 95% 100%
hasParent 1% 54% 0% 100%
isCitizenOf 4% 98% 5% 100%
isConnectedTo 87% 34% 88% 89%
isMarriedTo 55% 7% 57% 46%
wasBornIn 28% 100% 0% 100%

F1 measure of the oracles in YAGO3

51

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

52

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

53

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements

about queries

54

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements

about queries

55

SELECT DISTINCT ?y WHERE { ?x hasOfcialLanguauaguae ?y }
is complete in the KB

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements

about queries

56

statement
hasPattern

pattern
subje

ct ?x

a

predicate hasOfcialLanguage

hasProjectionVariable

object

?y
a

distinct

Variable

true

SELECT DISTINCT ?y WHERE { ?x hasOfcialLanguauaguae ?y }
is complete in the KB

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– A call to the oracle asks for the existence of the query in

the graph

57

statement
hasPattern

pattern
subje

ct ?x

a

predicate

hasProjectionVariable

object

?y
a

distinct

Variable

true

hasOfcialLanguage

SELECT DISTINCT ?y WHERE { ?x hasOfcialLanguauaguae ?y }
is complete in the KB

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a

link to a program or resource

58

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a

link to a program or resource

59

pca-citizenship
a SR-Oracle amie-oracle

a

hasFormula

RM-Oracle

 ∃ o : isCitizenOf(s, o)
precision

96%
http://example.org/rest/oracle

address

a

Providing completeness guarantees

60

This list of results is complete with confdence accordingua to ɷ

Providing completeness guarantees

61

Providing completeness guarantees

62

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Providing completeness guarantees

63

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

 How to provide
completeness guauarantees
for arbitrary queries?

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

64

D completeness oracles

● Oracle ɷd for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

65

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

66

SELECT DISTINCT ?y WHERE { ?x ofcialLanguage ?y }

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

67

SELECT DISTINCT ?y WHERE { ?x ofcialLanguage ?y }

● If ɷd(ofcialLanguauaguae) returns true, ɷd states that
the KB knows all languages that are ofcial in
some country

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

68

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

69

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

70

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

71

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

72

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?langua family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

73

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguauaguae ?langua .
 ?langua family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

74

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguauaguae ?langua .
 ?langua family Romance .
}

 It will guaenerate
false neguaatives

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

75

 If the KB misses
Liguaurian, this term
returns false

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguauaguae ?langua .
 ?langua family Romance .
}

 It will guaenerate
false neguaatives

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

76

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguauaguae ?langua .
 ?langua family Romance .
}

 Even thouguah this
term does not care,

because Liguaurian is not
ofcial in any country

Completeness guarantees for arbitrary
queries

● Multiple oracle expressions can ofer completeness
guarantees for a query.

77

Completeness guarantees for arbitrary
queries

● Multiple oracle expressions can ofer completeness
guarantees for a query.

78

ɷ1 = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

ɷ3 = ɷ(Romance, family-1) ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l)
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1) (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

Tightness for completeness guarantees

● ɷ’ ≺q ɷ’’ for q if K : ɷ’’(q, K) ∀ ɷ’(q, K)∧ :

– ɷ’’(q, K’) ɷ’(q, K’) K’ K. ⇒ ∀ ⊆

79

ɷ1 = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1) ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l)
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1) (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Tightness for completeness guarantees

● ɷ’ ≺q ɷ’’ for q if K : ɷ’’(q, K) ∀ ɷ’(q, K)∧ :

– ɷ’’(q, K’) ɷ’(q, K’) K’ K. ⇒ ∀ ⊆

80

ɷ1 = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1) ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l)
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1) (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

ɷ1 ≺q ɷ
3 ≺q ɷ

2

Cost for completeness guarantees

● Number of oracle calls required for the answer

81

ɷ1 = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1) ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l)
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1) (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Cost for completeness guarantees

● Number of oracle calls required for the answer

82

ɷ1 = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1) ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l)
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1) (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

 cost(ɷ1) = 1 + (#l: family(l, Romance))

Automatic oracle composition

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

?country
locatedIn

Europe

ofcialLanguage ?lang
family

Romance

83

monarch ?monarch

Automatic oracle composition

84

 Projection
variable

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

85

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

86

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

 Selective guaraph pattern

ofcialLanguage

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

87

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ɷ(Europe, locatedIn-1)

ofcialLanguage

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

88

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

 Non-selective
guaraph pattern

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

89

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

1. ɷd(monarch) (∧ ∧country ɷ(country, monarch))

2. ɷd(monarch-1) (∧ ∧country ɷ(country, monarch-1))

Automatic oracle composition

90

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

1. ɷd(monarch) (∧ ∧country ɷ(country, monarch))

2. ɷ
d
(monarch-1) (∧ ∧

country
 ɷ(country, monarch-1))

Automatic oracle composition

91

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

ɷ
d
(monarch) ∧

(∧country ɷ(country, monarch))

Automatic oracle composition

92

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

ɷ
d
(monarch) ∧

(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

93

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ɷ(Romance, family-1)

ɷ
d
(monarch) ∧

(∧
country

 ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ofcialLanguage

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

94

?country
locatedIn

Europe

ofcialLanguage ?lang
family

Romance

monarch ?monarch

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧

country
 ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

95

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
l : family(l, Romance)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

96

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
l : family(l, Romance)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ɷ’ = ɷd(monarch) (∧ ∧country ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧l : family(l, Romance) ɷ(l, ofcialLang-1))

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Automatic oracle composition

97

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
l : family(l, Romance)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ɷ’ = ɷd(monarch) (∧ ∧country ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧l : family(l, Romance) ɷ(l, ofcialLang-1))

Under bagua semantics
the projection

variable is irrelevant

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

ɷ’ = ɷd(monarch) (∧ ∧country ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧l : family(l, Romance) ɷ(l, ofcialLang-1))

Automatic oracle composition

98

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ɷ’’ = ɷ
d
(monarch) (∧ ∧

country
 ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

ɷ’ = ɷd(monarch) (∧ ∧country ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧l : family(l, Romance) ɷ(l, ofcialLang-1))

Automatic oracle composition

99

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ɷ’’ = ɷ
d
(monarch) (∧ ∧

country
 ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Challenguae:
Evaluate frst the oracles
with smaller cost!

ɷ’ = ɷd(monarch) (∧ ∧country ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧l : family(l, Romance) ɷ(l, ofcialLang-1))

Automatic oracle composition

100

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1)

ofcialLanguage

ɷ(Romance, family-1)

ɷd(monarch) ∧
(∧country ɷ(country, monarch))

ɷ(Europe, locatedIn-1)

ɷ’’ = ɷ
d
(monarch) ∧ (∧

country
 ɷ(country, monarch)) ɷ(Europe, locatedIn∧ -1) ∧

ɷ(Romance, family-1) (∧ ∧
c: locatedIn(c, Europe), monarch(c, x)

ɷ(l, ofcialLanguage-1))

SELECT DISTINCT ?langua WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country ofcialLanguage ?lang .
 ?lang family Romance .
}

Projection variable matters
under set semantics

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

101

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language

102

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

103

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

104

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

105

Boolean aguaguareguaation
function on sets of bindinguas

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

106

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

 Complete list?

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

107

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {
 ?county inState Delaware .
 ?county spanishSpeakers ?nspeak .
}

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

108

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {
 ?county inState Delaware .
 ?county spanishSpeakers ?nspeak .
}

Completeness oracles
to the rescue!

Outline

● Completeness in RDF knowledge bases
● State of the art on completeness
● Completeness oracles
● Vision on Completeness-aware Semantic Web

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

109

Summary

● Completeness is a dimension of data quality
– It determines the value and reliability of the data

– The state of the art provides completeness statements
and oracles for simple queries

● Semantic Web is not completeness-aware
– Vision

● Use completeness oracles for simpler queries to infer
completeness for arbitrary queries

● Embed completeness in the SPARQL query language

– Goal: Increase the value of the results delivered by queries

 110

Future work

● Augment existing RDF data with completeness
statements and oracles

● Extend query engines with completeness reasoning
– Efcient implementation for oracle composition

– Extend SPARQL to support the complete agg function

– Reasoning beyond SR and D oracles
● Use oracles that guarantee the completeness of queries with

arbitrary number of triple patterns.

– Provide confdence value for completeness guarantees.

111

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

