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RDF Knowledge Bases (KBs)

Collection of structured knowledge

5

Français ofcialLanguage

Switzerland

Romance

family

citizenOf

Leonhard 
Euler 

ofcialLanguage
Italianofamily



  

RDF Knowledge Bases (KBs)

RDF KBs can be queried using SPARQL
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Plenty of KBs out there! 
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KBs in action 
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– 1% of people have a citizenship in YAGO
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Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the 

KB may be incomplete

● Problems for data producers and consumers
– Consumers: no completeness guarantees for queries.

– Producers: which parts of the KB need to be populated?
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Completeness in RDF KBs
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Completeness in RDF KBs
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This list of results is complete!



  

Completeness

● Defned with respect to a query q via a complete 
hypothetical KB K*. 
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Completeness in RDF data

Wikidata keeps lists of subject-relation pairs with 
missing values. 
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placeOfBirth

Georguae of Trebizond

SELECT ?x WHERE { George of Trebizond  placeOfBirth  ?x }



  

Completeness in RDF data

Wikidata keeps lists of subject-relation pairs with 
missing values. 
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Georguae of Trebizond

SELECT ?x WHERE { George of Trebizond  placeOfBirth  ?x }

[Incomplete query]



  

Completeness in RDF data

● Wikidata also provides no value annotations

30
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SELECT ?x WHERE { USA ofcialLanguage ?x }
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SELECT ?x WHERE { USA ofcialLanguage ?x }
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Completeness in RDF data

● Wikidata also provides no value annotations

SELECT ?x WHERE { USA ofcialLanguage ?x }
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● Not applicable if we know some ofcial language

[Complete query]
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Completeness in RDF data
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● [S. Razniewski, W. Nutt, 2011]
– Completeness formulation, table & query completeness, 

complexity analysis.

– Reasoning over incomplete databases, TC-TC & TC-QC

● [X. Dong et al., 2014] 
– 71% of people in Freebase does not have a place of birth

● [F. Darari et al., 2013], [F. Darari et al., 2016]
– Reasoning with RDF completeness statements and the 

available data.



  

Completeness in RDF data
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● [E. Muñoz, M. Nickels, 2017]
– Mine cardinalities for object values in order to assess 

completeness in KBs.

● [T. P. Tanon et al., 2017] 
– Obtain cardinality estimations to generate completeness 

statements to better assess the quality of rules learned 
from KBs.
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Completeness oracle

● Boolean function ɷ(q, K) that guesses the 
completeness of a query q in a KB K. 
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SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses 
the completeness of queries of the form:  
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SELECT ?x WHERE { subject relation ?x }
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SELECT ?x WHERE { subject relation ?x }

● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption



  

SR completeness oracle

● [Galárraga et. al., 2017] Function ɷ that guesses 
the completeness of queries of the form:
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● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

– Query is complete in KB if at least one answer 
is known

SELECT ?x WHERE { subject relation ?x }



  

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption
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Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption
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Français
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Evaluating SR oracles

ɷ = american-country-oracle(s, r)
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Evaluating SR oracles
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Français

Italiano

Français

Italiano

Dansk
Français

American country 
oracle

PCA oracle

PCA oracle
Precision = 3/5
Recall = 3/4

American country oracle
Precision = 1/2
Recall = 1/4

Gold standard: 
Complete instances in 

the domain of 
ofcialLanguage



  

SR completeness oracles

● Closed World Assumption: cwa(s, r) = true
● PCA: pca(s, r) =  o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o))  k ≥
● Popular entities: popularitypop(s, r) = pop(s)  

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) =  i  {1,..,n} :  o : r∀ ∊ ∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● Rule mining oracle
47



  

Rule mining SR oracle
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● Based on completeness rules 

notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒
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notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒
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● Learned using the AMIE [Galárraga et. al, 2013] rule 
mining system
– On gold standard built via crowdsourcing



  

Rule mining SR oracle
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● Based on completeness rules 

notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule 
mining system
– On gold standard built via crowdsourcing

– 100% F1-measure for functional relations, quite good for 
relations hasChild, graduatedFrom   



  

Performance of SR oracles

Relation CWA PCA Class AMIE
diedIn 60% 22% 99% 96%
directed 40% 96% 0% 100%
graduatedFrom 89% 4% 92% 87%
hasChild 71% 1% 78% 78%
hasGender 78% 100% 95% 100%
hasParent 1% 54% 0% 100%
isCitizenOf 4% 98% 5% 100%
isConnectedTo 87% 34% 88% 89%
isMarriedTo 55% 7% 57% 46%
wasBornIn 28% 100% 0% 100%

F1 measure of the oracles in YAGO3
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Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements 

about queries 
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● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements 

about queries 
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SELECT DISTINCT ?y WHERE { ?x hasOfcialLanguauaguae ?y } 
is complete in the KB



  

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– An oracle is a collection of completeness statements 

about queries 
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SELECT DISTINCT ?y WHERE { ?x hasOfcialLanguauaguae ?y } 
is complete in the KB



  

Representing completeness oracles

● Extensional approach [Darari, et al, 2013]
– A call to the oracle asks for the existence of the query in 

the graph 
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pattern
subje
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is complete in the KB



  

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a 

link to a program or resource   
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Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a 

link to a program or resource   
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pca-citizenship
a SR-Oracle amie-oracle

a

hasFormula

RM-Oracle

 ∃ o : isCitizenOf(s, o)
precision

96%
http://example.org/rest/oracle

address

a



  

Providing completeness guarantees
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This list of results is complete with confdence   accordingua to ɷ 
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SELECT ?country WHERE {  
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Providing completeness guarantees
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SELECT ?country WHERE {  
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

  How to provide 
completeness guauarantees 
for arbitrary queries? 
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D completeness oracles

● Oracle ɷd for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }
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D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }
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SELECT DISTINCT ?y WHERE { ?x ofcialLanguage ?y }



  

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)
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SELECT DISTINCT ?y WHERE { ?x relation ?y }
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SELECT DISTINCT ?y WHERE { ?x ofcialLanguage ?y }

● If ɷd(ofcialLanguauaguae) returns true, ɷd states that 
the KB knows all languages that are ofcial in 
some country 



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort
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    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort

● Reuse existing SR and D oracles 

71

ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage))

SELECT ?country WHERE {  
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    ?lang family Romance .
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguauaguae ?langua .
    ?langua family Romance .
}
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Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort

● Reuse existing SR and D oracles 
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  If the KB misses 
Liguaurian, this term
returns false 

ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguauaguae ?langua .
    ?langua family Romance .
}

  It will guaenerate 
false neguaatives 



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort

● Reuse existing SR and D oracles 
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguauaguae ?langua .
    ?langua family Romance .
}

  Even thouguah this 
term does not care, 

because Liguaurian is not 
ofcial in any country



  

Completeness guarantees for arbitrary 
queries

● Multiple oracle expressions can ofer completeness 
guarantees for a query.
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Completeness guarantees for arbitrary 
queries

● Multiple oracle expressions can ofer completeness 
guarantees for a query.
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ɷ1 = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

ɷ3 = ɷ(Romance, family-1)  ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l) 
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1)  (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))



  

Tightness for completeness guarantees 

● ɷ’ ≺q ɷ’’ for q if  K : ɷ’’(q, K) ∀  ɷ’(q, K)∧  :

–  ɷ’’(q, K’)  ɷ’(q, K’)  K’  K. ⇒ ∀ ⊆
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ɷ1 = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1)  ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l) 
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1)  (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

ɷ1 ≺q ɷ
3 ≺q ɷ

2  



  

Cost for completeness guarantees 

● Number of oracle calls required for the answer
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Cost for completeness guarantees 

● Number of oracle calls required for the answer
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ɷ1 = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, ofcialLanguage-1))

ɷ3 = ɷ(Romance, family-1)  ɷ∧ d(ofcialLanguage) ∧ (∧c:ofcialLanguage(c, l) 
ɷ(c, ofcialLanguage))

ɷ2 = ɷ(Romance, family-1)  (∧ ∧l:family(l, f) ɷ(l, ofcialLanguage-1))

SELECT ?country WHERE {  
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

   cost(ɷ1) = 1 + (#l: family(l, Romance))



  

Automatic oracle composition

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

?country
locatedIn

Europe

ofcialLanguage ?lang
family

Romance

83

monarch ?monarch



  

Automatic oracle composition
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  Projection 
variable 

?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

  Selective guaraph pattern 

ofcialLanguage

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ɷ(Europe, locatedIn-1)

ofcialLanguage

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

  Non-selective 
guaraph pattern 

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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?country
locatedIn

Europe

?lang
family

Romance

monarch ?monarch

ofcialLanguage

ɷ(Europe, locatedIn-1)

SELECT ?country WHERE {
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Under bagua semantics 
the projection

variable is irrelevant
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Challenguae:
Evaluate frst the oracles
with smaller cost! 
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d
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ɷ(Romance, family-1)  (∧ ∧
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ɷ(l, ofcialLanguage-1)) 

SELECT DISTINCT ?langua WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country ofcialLanguage ?lang .
    ?lang family Romance .
}

Projection variable matters
under set semantics 
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Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded 
in the query language
– Example: aggregated number of Spanish speakers in a 

county per state, only for those states with complete 
information  

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))
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in the query language
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county per state, only for those states with complete 
information  
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Boolean aguaguareguaation 
function on sets of bindinguas

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))



  

Enabling completeness in SPARQL

● For each value of ?state check if the bindings 
for ?nspeak are complete
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?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

 Complete list? 
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?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {  
    ?county inState Delaware .
    ?county spanishSpeakers ?nspeak .
}



  

Enabling completeness in SPARQL

● For each value of ?state check if the bindings 
for ?nspeak are complete
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?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {  
    ?county inState Delaware .
    ?county spanishSpeakers ?nspeak .
}

Completeness oracles 
to the rescue!
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Summary

● Completeness is a dimension of data quality
– It determines the value and reliability of the data

– The state of the art provides completeness statements 
and oracles for simple queries

● Semantic Web is not completeness-aware
– Vision 

● Use completeness oracles for simpler queries to infer 
completeness for arbitrary queries

● Embed completeness in the SPARQL query language

– Goal: Increase the value of the results delivered by queries 
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Future work

● Augment existing RDF data with completeness 
statements and oracles

● Extend query engines with completeness reasoning
– Efcient implementation for oracle composition 

– Extend SPARQL to support the complete agg function

– Reasoning beyond SR and D oracles
● Use oracles that guarantee the completeness of queries with 

arbitrary number of triple patterns.

– Provide confdence value for completeness guarantees.
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