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Real-world graphs (a.k.a. complex networks)

Definition
Network/Graph. A set of
nodes linked by edges.

networks nodes edges
Facebook profiles friendship
Internet computers connections

Web web pages hyperlinks
Brain neurons synapses

Even more general

Basic properties
Very large
Sparse
Many triangles
Small diameter
Heterogeneous
degrees (hubs)

Twitter Internet

I Need efficient algorithms for real-world graphs.



3 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Real-world graph algorithmics ? ? ?

Special structure⇒ special algorithmics
Finding a maximum clique: NP-hard but “easy”.
greedy + Branch & Bound. Rossi et al. WWW2014.

A polynomial complexity might not be “good”.
Length of all shortest paths Θ(n3). Floyd-Warshall.

Complexity in practice often way better than the worst case.
Convergence of the algorithm of Louvain. Blondel et al. JSTAT2008.

Algorithms for classes of graphs are not usable such as.
Perfect graphs. Chudnovsky et al. Annals of mathematics 2006.

My goal
Understanding and leveraging the structure of real-world graphs in
order to make better algorithms.
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ABSTRACT
The problem of listing and counting triangles has been inten-
sively studied by the research community, in recent years. In
contrast, the problem of listing and counting k-cliques has
received much less attention. Motivated by recent studies
in the data mining community which call for efficient al-
gorithms for such a problem, we develop the most efficient
parallel algorithm for counting and listing all k-cliques in a
graph. Our theoretical analysis shows that our algorithm
outperforms state-of-the-art algorithms for the same prob-
lem, while leveraging the sparsity of real-world graphs. Our
experimental analysis on large real-world graphs shows that
our algorithm is able to list all k-cliques in graphs containing
tens of millions of edges as well as all 10-cliques in graphs
containing billions of edges, within a few minutes and a few
hours, respectively, while achieving excellent degree of par-
allelism. Armed with such a powerful tool, we define and
study a natural generalization of the core decomposition
(which we call k-clique core decomposition) and develop an
efficient algorithm for computing such a decomposition. Our
algorithm for counting k-cliques can be employed as an ef-
fective subroutine for finding approximate k-clique densest
subgraphs. Finally, we show that our algorithms can effec-
tively find interesting events in Twitter.

1. INTRODUCTION
Finding dense subgraphs is an important research area

in graph mining [28], with applications in community de-
tection [16], spam-link farms in web graphs [20], real-time
story identification [3], motif detection in biological net-
works [19], epilepsy prediction [23], graph compression [9],
distance query indexing [24], finding correlated genes [34],
finance [17] and many others.

Cliques are the dense subgraphs par excellence. The con-
cept of a clique has been originally introduced by sociologists
to measure social cohesiveness before the advent of comput-
ers [42]. In this paper, we study the problems of listing and
counting all k-cliques, which are subgraphs with k nodes,
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each pair of which being connected with an edge. Such a
problem is a natural generalization of the problem of count-
ing triangles in a graph, which has been intensively studied
by the research community. Surprisingly, the problem of list-
ing or counting k-cliques has not received much attention in
recent years. This is due perhaps to its computational chal-
lenges and from the fact that materializing or even storing
all k-cliques might not be feasible if the input graph is both
large and dense.

Recent works in the data mining and database commu-
nity call for efficient algorithms for listing or counting all
k-cliques in the input graph. In particular, in [40] the au-
thor develops an algorithm for finding subgraphs with max-
imum average number of k-cliques, with counting k-cliques
being an important building block. In [35] an algorithm for
organizing cliques into hierarchical structures is presented,
which requires to list all k-cliques. In [3], algorithms for find-
ing cliques and quasi-cliques (i.e. cliques where a few edges
might be missing) with at most k nodes are used for story-
identification in social media. Efficient algorithms for count-
ing k-cliques would allow for the computation of a natural
generalization of the well-known core decomposition, which
we formally define in this paper and we call the k-clique core
decomposition.

Motivated by the aforementioned studies, we develop the
most efficient parallel algorithms for listing and counting all
k cliques of an input graph, with k being an input parame-
ter. Our theoretical analysis shows that even the sequential
version of our algorithm outperforms state-of-the-art algo-
rithms for the same problem, while leveraging the sparsity
of real-world graphs. Moreover, as opposed to state-of-the-
art algorithms, our algorithm is parallel which improves the
total running time even further. Our extensive experimen-
tal evaluation shows that both the sequential and parallel
versions of our algorithm outperform significantly state-of-
the-art approaches for the same problem. In particular, our
parallel algorithm is able to list all cliques in graphs con-
taining up to tens millions edges, as well as all 10-cliques in
graphs containing billions of edges, within a few minutes or
a few hours, respectively, while achieving excellent degree of
parallelism. We also show that our algorithm can be em-
ployed as an effective subroutine for computing a k-clique
core decomposition in large graphs and an approximation
of the k-clique densest subgraph [40]. A case study is also
included in our paper, where we show that our algorithm
can effectively find interesting events in Twitter.

We summarize our contributions as follows:

• We develop a parallel algorithm for listing and count-
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Motivation. Why listing k-cliques

Recent work in data mining are calling for it
Community detection: percolated k-cliques.
Uncovering the overlapping community structure of complex
networks in nature and society.
Palla et al. Nature2005.
Dense subgraph: k-clique densest subgraph.
The K-clique Densest Subgraph Problem.
Charalampos WWW2015.
K-cliques can be seen as building-blocks of real-world graphs.
Higher-order organization of complex networks.
Benson, Gleich & Leskovec Science, 2016
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A challenging problem

Many k-cliques
Number of 10-cliques in Friendster (1.8G edges, 65M nodes) =
487 090 833 092 739
Number of 5-cliques in Twitter09 (1.6G edges, 53M nodes) =
3 388 795 307 518 264

So many k-cliques
It can be very hard to store all k-cliques.
We rather suggest to compute quantities on the fly.

Our main contribution
We show that listing k-cliques is more tractable and useful than
what people think Jain et Seshadhri WWW2017.
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Outline

Algorithm
Theoretical analysis
Comparison to other methods
Application to data mining
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A naive algorithm

Algorithm 1 A naive algorithm for finding 3,4,5-cliques

1: for each edge (u, v) ∈ E(G) do
2: ∆(u, v)← ∆(u) ∩∆(v) . ∀ u ∈ V , ∆(u) = neighbors of u
3: for each w in ∆(u, v) do
4: output triangle {u, v ,w}
5: ∆(u, v ,w)← ∆(u, v) ∩∆(w)
6: for each x in ∆(u, v ,w) do
7: output 4-clique {u, v ,w , x}.
8: ∆(u, v ,w , x)← ∆(u, v ,w) ∩∆(x)
9: for each y in ∆(u, v ,w , x) do

10: output 5-clique {u, v ,w , x , y}

Problem
k-cliques outputted several times: k!

2 .
Bad worst case running time and do not scale to large graphs.
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Core decomposition

Definition. Core value
The maximum number c(G) such that there exists an induced
subgraph of G with all nodes having degree at least c(G).

Algorithm Core decomposition

1: i ← 1, c ← 0
2: while V (G) 6= ∅ do
3: Let v be a node with minimum

degree in G
4: c ← max(c,dG(v))
5: V (G)← V (G) \ {v}
6: E(G)← E(G) \∆(v)
7: η(v) = i
8: i ← i + 1
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Core decomposition

Definition. Core value
The maximum number c(G) such that there exists an induced
subgraph of G with all nodes having degree at least c(G).

Algorithm Core decomposition

1: i ← 1, c ← 0
2: while V (G) 6= ∅ do
3: Let v be a node with minimum

degree in G
4: c ← max(c,dG(v))
5: V (G)← V (G) \ {v}
6: E(G)← E(G) \∆(v)
7: η(v) = i
8: i ← i + 1

Properties
∆η(u)← sorted list of neighbors v
of u such that η(v) > η(u).
We have

∀ u, |∆η(u)| ≤ c,
∀ (u, v), ∆η(u) ∩∆η(v) can be
computed in time O(c) and
c is small in front of n.
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Our algorithm

Algorithm 2 Parallel algorithm for finding 3,4,5-cliques

1: η ← Core ordering of G
2: for each node u in G do
3: ∆η(u)← sorted list of neighbors v of u, η(v) > η(u)

4: for each edge (u, v) ∈ E(G) do . Parallel loop
5: ∆η(u, v)← ∆η(u) ∩∆η(v)
6: for each w in ∆η(u, v) do
7: output triangle {u, v ,w}
8: ∆η(u, v ,w)← ∆η(u, v) ∩∆η(w)
9: for each x in ∆η(u, v ,w) do

10: output 4-clique {u, v ,w , x}.
11: ∆η(u, v ,w , x)← ∆η(u, v ,w) ∩∆η(x)
12: for each y in ∆η(u, v ,w , x) do
13: output 5-clique {u, v ,w , x , y}
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Outline

Algorithm
Theoretical analysis
Comparison to other methods
Application to data mining
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Worst case running time

Algorithm 3 Parallel algorithm for finding 3,4,5-cliques

1: η ← Core ordering of G . O(m)
2: for each node u in G do
3: ∆η(u)← sorted list of neighbors v of u, η(v) > η(u) . O(m)

4: for each edge (u, v) ∈ E(G) do . O(m)
5: ∆η(u, v)← ∆η(u) ∩∆η(v) . O(c)
6: for each w in ∆η(u, v) do . O(N3)
7: output triangle {u, v ,w}
8: ∆η(u, v ,w)← ∆η(u, v) ∩∆η(w) . O(c)
9: for each x in ∆η(u, v ,w) do . O(N4)

10: output 4-clique {u, v ,w , x}.
11: ∆η(u, v ,w , x)← ∆η(u, v ,w) ∩∆η(x) . O(c)
12: for each y in ∆η(u, v ,w , x) do . O(N5)
13: output 5-clique {u, v ,w , x , y}

Algorithm 3 requires O(c ·
k−1∑
l=2

Nl) total number of operations.
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Theoretical analysis

Theorem 1

Algorithm 3 requires O(c ·
k−1∑
l=2

Nl) total number of operations.

It requires linear amount of memory in the size of the graph.

Lemma
Let k > 1 be an integer, it holds that Nk ≤ m ·

(c−1
k−2

)
≤ 2 ·m · (c−1

2 )k−2.

Theorem 2
Algorithm 3 requires O(m · (c−1

2 )k−2) total number of operations for
counting k-cliques.
It requires linear amount of memory in the size of the graph.

Nl denotes the number of l-cliques in G.
c denotes the core value of G.
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Comparison to other methods, in theory

O(c ·
k−1∑
l=2

Nl) is the best output sensitive bound ever reported.

O(m · (c−1
2 )k−2) is the best bound ever reported for sparse graphs.

Competitors
Finding and counting given length cycles.
Alon et al. (Algorithmica 1997).

• For triangle counting only. O(m1.41) and O(m · c).
Main-memory Triangle Computations for Very Large Sparse
Power-Law Graphs. Latapy (TCS 2008).

• For triangles only. O(m
3
2 ) and O(m · n 1

α ) for power-law graphs.

Arboricity and Subgraph Listing Algorithms.
Chiba and Nishizeki (SIAM 1986).

• Not parallel. O(m · ak−2).
a is the arboricity. Note that a ≤ c ≤ 2 · a− 1.



17 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Comparison to other methods, in practice

TABLE : Our set of large graphs (for which we are able to count all cliques)

.

networks n m c kmax Nkmax
soc-pocket 1 632 803 22 301 964 47 29 6
loc-gowalla 196 591 950 327 51 29 2

Youtube 1 134 890 2 987 624 51 17 2
cit-patents 3 774 768 16 518 947 64 11 2

zhishi-baidu 2 140 198 17 014 946 78 31 4
WikiTalk 2 394 385 4 659 565 131 26 141

TABLE : Our set of very large graphs (can count k-cliques of limited size).

networks n m c
DBLP 425 957 1 049 866 113

Wikipedia 2 080 370 42 336 692 208
Orkut 3 072 627 117 185 083 253

Friendster 124 836 180 1 806 067 135 304
LiveJournal 4 036 538 34 681 189 360

Twitter 52 579 683 1 614 106 500 2647
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Comparison to other methods, in practice
TABLE : Running time for counting triangles on our very large graphs.

Algorithms
networks # triangles CF MACE Arboricity FkCE1

DBLP 2 224 385 0.8s 1.3s 0.6s 0.4s
Wikipedia 145 707 846 1m07s 22m22s 1m04s 40s

Orkut 627 584 181 4m06s 28m02s 3m41s 2m14s
Friendster 4 173 724 142 1h50m41s 5h29m40s 2h57m21s 1h05m31s

LiveJournal 177 820 130 44s 6m13s 37s 27s
Twitter 55 428 265 841 1h57m31s >24h 3h55m38s 1h24m13s

TABLE : Time for counting all cliques on our large graphs.

Algorithms
networks MACE Arboricity FkCE1
soc-pocket 14m27s 11m23s 1m15s
loc-gowalla 8m46s 7m52s 34s

Youtube 1m05s 1m12s 3.9s
cit-patents 22s 24s 15s

zhishi-baidu 1h00m44s 32m23s 3m58s
WikiTalk >24h >24h 5h53m36s
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Comparison to other methods, in practice
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Comparison to other methods, in practice
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Parallelism
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No need to share locks among threads: we achieve an almost optimal
degree of parallelism.



22 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Outline

Algorithm
Theoretical analysis
Comparison to other methods
Application to data mining



23 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Solving new problems

Problem definition (k-clique core decomposition). Given an
undirected graph G = (V (G),E(G)) and an integer k > 1,
compute a k-clique core decomposition of G.

Algorithm
Same algorithm as the core decomposition removing a node of
minimum k-clique degree.
We use our k-clique algorithm on the whole graph to initialize the
k-clique degree of each node.
Given a node to remove, we use our k-clique algorithm on the
subgraph induced by its neighbors to update their k-clique degree.

We can solve this problem on very large real-world graphs without
storing all k-cliques.
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Solving new problems

Problem definition (k-clique densest problem). Given an
undirected graph G = (V (G),E(G)), find a subgraph H of G such
that the k-clique density is maximized.

Theorem
The k-clique densest prefix of a k-clique core decomposition is a
1
k -approximation of the k-clique densest subgraph.

We can give an approximated solution to this problem on very large
real-world graphs without storing all k-cliques.
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Conclusion and future work

Conclusion
• Best known asymptotic running time for sparse graphs
• Linear memory
• An order of magnitude faster than state-of-the-art algorithms
• Almost optimal degree of parallelism
• We generate a stream of k-cliques to compute the k-clique core

decomposition
Future Work.

• Our algorithm could be employed in graph compression, community
and event detection

• Stream of k-cliques to compute other quantities
• Our k-clique core decomposition seems to be a promising tool for

data mining
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ABSTRACT
Algorithms for finding dense regions in an input graph have
proved to be effective tools in graph mining and data anal-
ysis. Recently, Tatti and Gionis [WWW 2015] presented a
novel graph decomposition (known as the locally-dense de-
composition) that is similar to the well-known k-core decom-
position, with the additional property that its components
are arranged in order of their densities. Such a decompo-
sition provides a valuable tool in graph mining. Unfortu-
nately, their algorithm for computing the exact decomposi-
tion is based on a maximum-flow algorithm which cannot
scale to massive graphs, while the approximate decomposi-
tion defined by the same authors misses several interesting
properties. This calls for scalable algorithms for computing
such a decomposition. In our work, we devise an efficient
algorithm which is able to compute exact locally-dense de-
compositions in real-world graphs containing up to billions
of edges. Moreover, we provide a new definition of approxi-
mate locally-dense decomposition which retains most of the
properties of an exact decomposition, for which we devise an
algorithm that can scale to real-world graphs containing up
to tens of billions of edges. Our algorithm is based on the
classic Frank-Wolfe algorithm which is similar to gradient
descent and can be efficiently implemented in most of the
modern architectures dealing with massive graphs. We pro-
vide a rigorous study of our algorithms and their convergence
rates. We conduct an extensive experimental evaluation on
multi-core architectures showing that our algorithms con-
verge much faster in practice than their worst-case analysis.
Our algorithm is even more efficient for the more specialized
problem of computing a densest subgraph.

1. INTRODUCTION
Algorithms for finding dense regions in an input graph

have proved to be valuable tools in graph mining with ap-
plications in biology [20], finance [16], web mining [21], as
well as real-time story identification [3]. On the other hand,

c�2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052619

.

the well-known k-core decomposition stands out for its sim-
plicity and its ability to unravel the structural organization
of a graph. It has been successfully applied in many con-
texts such as speeding up algorithms [19, 33], finding best
spreaders [27], drawing large graphs [2], bioinformatics [5],
analyzing human brains [23] and team formation [10].

Recently, Tatti and Gionis [38] proposed a novel graph
decomposition, known as the locally-dense graph decomposi-
tion. Such a decomposition boasts similar properties to the
k-core decomposition with the additional property that its
components are nested into one another, with inner compo-
nents having larger density than outer ones. Moreover, the
locally-dense decomposition contains all the so-called locally-
dense subgraphs of the input graph. The locally-dense graph
decomposition provides a valuable tool in graph mining.

Unfortunately, their algorithm for computing the exact
decomposition does not scale to massive graphs, while the
approximate decomposition defined by the same authors may
not contain any non-trivial locally-dense subgraph.

In our work, we devise an efficient algorithm for comput-
ing exact locally-dense decompositions in massive graphs.
Our main algorithm is based on a variant of the classic
Frank-Wolfe algorithm that is similar to gradient descent
and can be efficiently implemented in most of the modern
architectures dealing with massive graphs. We provide a rig-
orous worst-case analysis of its convergence rate. We give a
different definition of approximate decomposition than the
one given in [38]. Our notion of approximation is stronger
in the sense that it computes a non-trivial subset of all
locally-dense subgraphs, while locally-dense subgraphs with
very different densities will still be distinguished. We de-
vise an efficient algorithm for computing an approximate
graph decomposition that, for any � > 0, computes a (1+�)-
approximation of the exact decomposition.

We conduct experimental evaluations on real-world graphs
containing up to 25 billion edges, for which our main algo-
rithm exhibits faster convergence rate than the worst-case
analysis. In our experiments, we focus on multi-core archi-
tectures. However, our main algorithm can be efficiently im-
plemented in other well known architectures such as MapRe-
duce and Spark thanks to its simplicity and its fast rate of
convergence on real-world graphs. Our work illustrates the
potential of the Frank-Wolfe algorithm in large scale graph
mining, which perhaps has not been fully exploited, yet.

Related work. Our paper is related to previous work on
graph decompositions as well as finding dense subgraphs.
We review some representative work on these two topics.
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Motivation. Mining large graphs

Twitter Internet

The density-friendly decomposition (Tatti and Gionis WWW2015) is
interesting as it merges two classic graph mining concepts:

1. k-core decomposition
2. dense subgraph
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A new and intuitive definition of density-friendly
A very simple, yet powerful, algorithm
Theoretical analysis via convex programing
Experiments
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A definition of density-friendly

Definition (density-friendly)
Collection of non-overlapping sets of nodes {Bi}, such that

B1 maximizes e1
n1

and has maximum size,

B2 maximizes e2+e12
n2

and has maximum size,

B3 maximizes e3+e13+e23
n3

and has maximum size, ...
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A definition of density-friendly

Theorem
Our definition is equivalent to the one of Tatti and Gionis WWW2015.

Algorithm (do not scale to huge graphs)
1. find the densest subgraph (Goldberg’s maxflow algorithm)
2. remove it and form self-loops with outgoing edges
3. go to 1. taking into account self-loops
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A simple algorithm

Algorithm Compute density score

function MKSCORE(G,t)
Set r[i] = 0 for each node i in G
iterate t times

for each edge (i , j) in G do
if r[i] ≤ r[j] then

r[i]++
else

r[j]++

return r/t

For t = 2 iterations

0 0

0
0

0
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Algorithm Compute density score

function MKSCORE(G,t)
Set r[i] = 0 for each node i in G
iterate t times

for each edge (i , j) in G do
if r[i] ≤ r[j] then

r[i]++
else
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return r/t
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A simple algorithm
Theorems
Rank the nodes in decreasing
order of density score.

For t large enough, the nodes
in the densest subgraph are
ranked first.
For t large enough, we have a
density-friendly ordering.
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Rank of node according to density score
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A new and intuitive definition of density-friendly
A very simple, yet powerful, algorithm
Theoretical analysis via convex programing
Experiments
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A quadratic convex programing

Given an edge-weighted (hyper) graph G = (V ,E ,w), we consider the
following quadratic convex programing.

CP(G)

min
∑
u∈V

r 2
u

s.t. ∀u ∈ V , ru =
∑

e:u∈e

αe
u

∀e ∈ E ,
∑
u∈e

αe
u = we

∀u ∈ e ∈ E , αe
u ≥ 0

r1

α1,2
1

α1,3
1

r2

α1,2
2

α2,3
2

r3α1,3
3

α2,3
3

r4

α4,5
4

r5

α4,5
5
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Frank-Wolfe Algorithm
The Frank-Wolfe algorithm is a projection free gradient-descent
method which has convergence guaranties for convex problems.

Applying Frank-Wolfe on “our quadratic convex programing” leads to
an algorithm very similar to “our very simple algorithm”.
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Correctness and worst case running time
Theorem (correctness)
The level sets of an optimal solution to the quadratic convex
programing give the density-friendly decomposition.
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Theorem (running time)

After t > 4∆|E |
ε2

iterations, we
have ||r (t) − rG||2 ≤ ε.



37 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Correctness and worst case running time
Theorem (correctness)
The level sets of an optimal solution to the quadratic convex
programing give the density-friendly decomposition.

0 5 10 15 20 25 30 35
Rank of node according to density score

0

1

2

3

4

5

6

7

8

De
ns

ity
 s

co
re

4 iterations

Theorem (running time)

After t > 4∆|E |
ε2

iterations, we
have ||r (t) − rG||2 ≤ ε.



38 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Outline

A new and intuitive definition of density-friendly
A very simple, yet powerful, algorithm
Theoretical analysis via convex programing
Experiments



39 / 46 22/6/2017 Institut Mines-Télécom Towards Real-World Graph Algorithmics

Experimental setup

TABLE : Our set of large graphs.

networks n m
LiveJournal 4 036 538 34 681 189
Wikipedia 2 080 370 42 336 692

Orkut 3 072 627 117 185 083
Twitter 52 579 683 1 614 106 500

Friendster 124 836 180 1 806 067 135
gsh-2015 988 490 691 25 690 705 119

We use a machine with 64G of RAM for all networks except gsh-2015
for which we use a machine with 512G of RAM.
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Convergence of the r vector
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The convergence is in practice much faster than the worst case one.
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Densest multiplicative error
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We obtain a 10−3 approximation of the densest subgraph within 300
iterations on all networks.
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Decomposition multiplicative error
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We obtain a 10−2 approximation of the full decomposition within 1000
iterations on all networks except gsh-2015 (almost 10−1).
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Comparison to maxflow algorithm

TABLE : Running time comparison of our exact algorithm to the maxflow
algorithm of Tatti and Gionis.

Networks exact TG15
LiveJournal 2m45s 12m02s
Wikipedia 2m14s 7m07s

Orkut 13m08s 1h02m23s
Twitter 4h57m28s -

Friendster 5h48m27s -

We computed the densest subgraph in gsh-2015 (25G edges) within
10 hours of computation.
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Conclusion and future work

Conclusion.
• We gave a new and intuitive definition of the density-friendly

decomposition.
• We made an interesting link between the density-friendly

decomposition and convex programing.
• We scaled up the computation of the density-friendly decomposition

using the Frank-Wolfe algorithm.
• Code on github: https://github.com/maxdan94.

Future work.
• Density-friendly decomposition, a classic subroutine like k-core?
• Spark/MapReduce implementation is possible.
• Generalize our approach to other similar decompositions.
• Investigate the potential of Frank-Wolfe for real-world graphs.

https://github.com/maxdan94
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Global conclusion and future work

We designed simple, yet powerful, algorithms leveraging the
structure of real-world graphs.
We designed algorithms to better understand the structure of
real-world graphs.
We have other work along the same lines: Branch&Bound based
algorithms.
Future work: removing "Towards" in the title of this talk.
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Thank you for your attention

https://github.com/maxdan94
maximilien.danisch@telecom-paristech.fr

https://github.com/maxdan94

