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Motivation

I Clustering is a fundamental problem in data science

I The objective is to group together items that are “similar” to
each other −→ unsupervised learning

Many applications:

I Recommendation

I Anomaly detection

I Visualization

I Storage / processing

I Search engines

I Image segmentation

I NLP



An ill-posed problem

I What is a good clustering?

I How many clusters?



Kleinberg’s impossibility theorem

Viewing clustering as a function f : Rn×d → P({1, . . . , n})

Axioms

1. Scale-invariance: ∀α > 0, f (αx) = f (x)

2. Richness: f surjective

3. Consistency: ∀y � x , f (y) = f (x)

There is no clustering function f satisfying these 3 axioms!
Kleinberg, NIPS 2002

In fact, this is possible with 3 replaced by:

3’. Refined consistency: ∀y � x , f (y) = f (x) or |f (y)| 6= |f (x)|
Cohen-Addad, Kanade & Mallmann-Trenn, NIPS 2018



Hierarchical clustering

Data Dendrogram



Example in biology

2,035 tumors, 16,634 non-redundant genes

Large Expression Dataset: ExpO (GSE2109)

Data from Expression Oncology Project (http://www.intgen.org)

2035 tumors (various types), with 16634 non-redundant genes (after remapping
to the NM subset of RefSeq).

)
zoom

Computation time: ⇠11 minutes. Peak memory usage: ⇠1 Gb

9

Wirapati 2009



Hierarchical clustering algorithms

Divisive algorithms

I e.g., through successive k-means

Agglomerative algorithms

I Successive merges of the closest clusters a, b ⊂ {1, . . . , n}
Linkage d(a, b)

Single mini∈a,j∈b ||xi − xj ||
Complete maxi∈a,j∈b ||xi − xj ||
Average 1

|a||b|
∑

i∈a,j∈b ||xi − xj ||
Ward |a||b|

|a|+|b| ||ga − gb||2

Lance & Williams 1967

I Local search by the nearest-neighbor chain
Bruynooghe 1977, Benzécri 1982, Murtagh 1983



Graph data

Many datasets can be represented by graphs:

I social networks, transport networks, databases, etc.
→ explicit links

I authors-papers, words-documents, consumers-products, etc.
→ implicit links

These graphs can be represented by sparse matrices
Dataset #nodes #edges density

Amazon 335k 925k ≈ 10−5

Wikipedia 12M 378M ≈ 10−6

Twitter 42M 1.5G ≈ 10−6

Usual clustering algorithms do not apply as pairwise distances are
not defined and the number of node pairs is huge!



Questions

1. How to cluster a graph?

2. How to assess the quality of this clustering?
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Notation

Weighted, undirected graph G of n nodes
The weights represent the strengths of the links

wij =

{
weight of edge i , j , if any
0 otherwise

wi =
∑
j

wij w =
∑
i

wi =
∑
i ,j

wij



Node pair sampling

p(i , j) =
wij

w
p(i) =

∑
j

p(i , j) =
wi

w



Entropy

A simple metric for assessing the complexity of the graph:

H = −
∑
i ,j

p(i , j) log p(i , j)

Note: This is not what is known as graph entropy...
Körner 1973

H ≈ 12 bits



Mutual information

A simple metric for assessing the clustering structure of the graph:

I =
∑
i ,j

p(i , j) log
p(i , j)

p(i)p(j)

Alush, Friedman & Goldberger 2016

I ≈ 4 bits



Outline

1. Node pair sampling

2. Flat clustering

3. Hierarchical clustering

4. Quality metric

5. Experiments



Modularity

Quality of a clustering c : {1, . . . , n} → {1, . . . , k}

M(c) =
∑
i ,j

(p(i , j)− p(i)p(j)) δc(i),c(j)

Newman & Girvan 2004



Cluster pair sampling

For any clustering C ∈ P({1, . . . , n}):

∀a, b ∈ C , p(a, b) =
∑

i∈a,j∈b
p(i , j) p(a) =

∑
i∈a

p(i)



Modularity at cluster level

Quality of a clustering C ∈ P({1, . . . , n}):

M(C ) =
∑
c∈C

p(c , c)−
∑
c∈C

p(c)2

Simpson 1949



Modularity maximization

max
C

M(C )

I NP-hard problem

I The Louvain algorithm, fast and efficient
Blondel, Guillaume, Lambiotte & Lefebvre 2008



Clustering of OpenFlights by Louvain

3,097 airports, 18,193 flights

M(C ) ≈ 0.66



Resolution parameter

For some parameter γ > 0:

Mγ(c) =
∑
i ,j

(p(i , j)− γp(i)p(j)) δc(i),c(j)

Reichardt & Bornholdt 2006



Clustering of OpenFlights by Louvain

3,097 airports, 18,193 flights

γ = 2
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An agglomerative algorithm
We need a measure of proximity between nodes

σ(i , j) =
p(i , j)

p(i)p(j)

Observe that

σ(i , j) =
p(i |j)
p(i)

=
p(j |i)
p(j)



The maximum resolution

Mγ(c) =
∑
i ,j

(p(i , j)− γp(i)p(j)) δc(i),c(j)

γ+ = max
i ,j

p(i , j)

p(i)p(j)



Algorithm

While there are at least 2 nodes:

I find the node pair i , j maximizing σ(i , j)

I merge nodes i , j

I update σ

Sequence of similarities / resolutions σ1 ≥ σ2 ≥ . . . ≥ σn−1



Hierarchical clustering of Openflights

3,097 airports, 18,193 flights



Other hierarchical clustering algorithms

Divisive algorithms

I e.g., through successive bisections

Agglomerative algorithms

I Successive merges of the two closest clusters a, b ⊂ {1, . . . , n}
Linkage σ(a, b)

Single maxi∈a,j∈b p(i , j)
Average 1

|a||b|p(a, b)

Sampling ratio p(a,b)
p(a)p(b)

I Local search by the nearest-neighbor chain

See also Newman 2004, Pons & Latapy 2005, Chang 2011
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Intuition

I Two nodes sampled from the edges are expected to have a
common ancestor relatively low in the hierarchy

I This corresponds to the smallest cluster of the hierarchy
containing these two nodes



Example on Openflights



Example on Openflights



Example on Openflights



Example on Openflights



Tree sampling

I Let T be any rooted binary tree with leaves {1, . . . , n}
I For any node x ∈ T ,

p(x) =
∑

i ,j :i∧j=x

p(i , j)

I We denote by c(x) the corresponding cluster



Dasgupta’s cost

I Average cluster size: ∑
x∈T

p(x)|c(x)|

Dasgupta 2016
Cohen-Addad et. al. 2017



Back to tree sampling

I Let T be any rooted binary tree with leaves {1, . . . , n}
I For any node x ∈ T ,

p(x) =
∑

i ,j :i∧j=x

p(i , j) q(x) =
∑

i ,j :i∧j=x

p(i)p(j)



Tree sampling divergence

I Kullback-Leibler divergence between sampling distributions:

Q(T ) =
∑
x∈T

p(x) log
p(x)

q(x)



Tree sampling divergence

I Kullback-Leibler divergence between sampling distributions:

Q(T ) =
∑
x∈T

p(x) log
p(x)

q(x)

I Interpretable in terms of graph reconstruction!



Graph reconstruction
Given a tree T and the node weights w1, . . . ,wn,
what is the best reconstruction of the graph (say Ĝ )?

I Build the graph Ĝ with weights:

ŵij ∝ wiwj σ̂(x)

where σ̂(x) is some similarity attached to x = i ∧ j

I Apply the loss function:

D(p||p̂) =
∑
i ,j

p(i , j) log
p(i , j)

p̂(i , j)

Main result

min
p̂←T

D(p||p̂) = I − Q(T )



Hierarchical clustering of Openflights

3,097 airports, 18,193 flights

H ≈ 15 bits I ≈ 4 bits Q ≈ 2.6 bits Q̄ =
Q

I
≈ 0.65



General trees

The tree sampling divergence is applicable to any tree T :

Q(T ) =
∑
x∈T

p(x) log
p(x)

q(x)



General trees

The tree sampling divergence is applicable to any tree T :

Q(T ) =
∑
x∈T

p(x) log
p(x)

q(x)

In particular, it can be used for:

I Flat clustering (trees of height 2)

I Tree compression



Flat clustering
For any clustering C ∈ P({1, . . . , n}):

Q(C ) =
∑
c∈C

p(c , c) log
p(c, c)

p(c)2

+

(
1−

∑
c∈C

p(c , c)

)
log

1−
∑

c p(c , c)

1−
∑

c p(c)2



Tree compression of Openflights

3,097 airports, 18,193 flights

Full hierarchy (3097 levels) Compact hierarchy (97 levels)



Local hierarchy: Beijing Capital International Airport



Local hierarchy: Carrasco International Airport
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Experiments

Remind the two metrics:

I Dasgupta’s cost ∑
x∈T

p(x)|c(x)|

I Tree sampling divergence∑
x∈T

p(x) log
p(x)

q(x)

Comparison of these metrics on two tasks:

1. Tree detection

2. Graph reconstruction



Tree detection

Idea:

I Generate two noisy versions G1,G2 of some graph G

I Compute the corresponding trees T1,T2

I Guess the tree associated with each graph G1,G2

T̂1 = arg max
T=T1,T2

Q1(T ) T̂2 = arg max
T=T1,T2

Q2(T )

The score is the fraction of correct answers:

1

2
(P(T̂1 = T1) + P(T̂2 = T2))



Results
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Graph reconstruction

Idea:

I Generate some hierarchical random graph G

I Compute trees with different linkages

I For each tree, reconstruct the graph Ĝ

I Compare the quality of the tree and the reconstruction
scores

Reconstruction scores:
Streaming the edges of Ĝ in decreasing order of weights,

I Area-Under-ROC

I Average-Precision-Score

I Average rank of each edge of G
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Summary

Viewing graphs as probability measures:

I A novel agglomerative algorithm, based on the linkage:

σ(i , j) =
p(i , j)

p(i)p(j)

I A novel quality metric, the Tree Sampling Divergence:∑
x∈T

p(x) log
p(x)

q(x)

interpretable in terms of graph reconstruction

Ongoing work on:

I TSD for flat clustering

I Fast hierarchical clustering



scikit-network

A Python package under development, inspired by scikit-learn:
https://github.com/sknetwork-team/scikit-network

https://github.com/sknetwork-team/scikit-network

