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Motivation

» Clustering is a fundamental problem in data science

> The objective is to group together items that are “similar” to
each other — unsupervised learning

Many applications:
» Recommendation
» Anomaly detection
» Visualization
» Storage / processing
» Search engines
> Image segmentation
» NLP



An ill-posed problem

» What is a good clustering?

» How many clusters?
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Kleinberg's impossibility theorem

Viewing clustering as a function f : R™9 — P({1,...,n})

Axioms
1. Scale-invariance: Yo > 0, f(ax) = f(x)
2. Richness: f surjective
3. Consistency: Vy > x, f(y) = f(x)

There is no clustering function f satisfying these 3 axioms!
Kleinberg, NIPS 2002

In fact, this is possible with 3 replaced by:
3". Refined consistency: Vy > x, f(y) = f(x) or |f(y)| # |f(x)|
Cohen-Addad, Kanade & Mallmann-Trenn, NIPS 2018



Hierarchical clustering
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Example in biology

2,035 tumors, 16,634 non-redundant genes
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Hierarchical clustering algorithms

Divisive algorithms
> e.g., through successive k-means

Agglomerative algorithms

» Successive merges of the closest clusters a, b C {1,...

Linkage d(a, b)

Single minjcajeb |[xi — xjl|

Complete rlnaXiea,jeb |[xi — Xj”

Average TallBl %:,‘eajeb [xi — xj] |
|al|b 2

Ward [a[-+]b] Hga gb||

Lance & Williams 1967

> Local search by the nearest-neighbor chain
Bruynooghe 1977, Benzécri 1982, Murtagh 1983



Graph data

Many datasets can be represented by graphs:

» social networks, transport networks, databases, etc.
— explicit links

» authors-papers, words-documents, consumers-products, etc.
— implicit links
These graphs can be represented by sparse matrices
Dataset #nodes | #edges | density
Amazon 335k 925k | ~ 107>
Wikipedia | 12M 378M | ~ 1076
Twitter 42M 1.5G | ~10°°

Usual clustering algorithms do not apply as pairwise distances are
not defined and the number of node pairs is huge!



Questions

1. How to cluster a graph?

2. How to assess the quality of this clustering?
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Notation

Weighted, undirected graph G of n nodes
The weights represent the strengths of the links

| weight of edge /,j, if any
Y71 0 otherwise

W,':E W,'J' W:E W,':E W,'j
i iJ




Node pair sampling




Entropy

A simple metric for assessing the complexity of the graph:
i

Note: This is not what is known as graph entropy...
Korner 1973

H ~ 12 bits



Mutual information

A simple metric for assessing the clustering structure of the graph:
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| ~ 4 bits
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Modularity

Quality of a clustering ¢ : {1,...,n} — {1,... k}
M(c) = (p(i.4) = p(1)P()) Seiy.ci
isj

Newman & Girvan 2004




Cluster pair sampling

For any clustering C € P({1,...,n}):

Vabe C, plab)= Y p(ij)  p(a)=>_p(i)

i€a,jeb ica




Modularity at cluster level

Quality of a clustering C € P({1,...,n}):

M(C) =" ple.c) = 3 ple)?

ceC ceC

Simpson 1949




Modularity maximization

mCaxM(C)

» NP-hard problem

» The Louvain algorithm, fast and efficient
Blondel, Guillaume, Lambiotte & Lefebvre 2008




Clustering of OpenFlights by Louvain

3,097 airports, 18,193 flights

M(C) ~ 0.66



Resolution parameter

For some parameter v > O:
My (c) = (p(i.J) = vp(NP()) dc(iy.c
ij

Reichardt & Bornholdt 2006




Clustering of OpenFlights by Louvain

3,097 airports, 18,193 flights
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An agglomerative algorithm

We need a measure of proximity between nodes

Observe that




The maximum resolution




Algorithm

While there are at least 2 nodes:
» find the node pair i, j maximizing o (i, )
» merge nodes /i, j
» update o

Sequence of similarities / resolutions 01 > 09 > ... > 051




Hierarchical clustering of Openflights

3,097 airports, 18,193 flights




Other hierarchical clustering algorithms

Divisive algorithms
» e.g., through successive bisections

Agglomerative algorithms

» Successive merges of the two closest clusters a, b C {1, ...

Linkage o(a, b)
Single maxicajeb P(isJ)
Average b—l‘b‘p(a, b)

. . p(a;b)
Sampling ratio 5(2)p(b)

> Local search by the nearest-neighbor chain
See also Newman 2004, Pons & Latapy 2005, Chang 2011
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Intuition

» Two nodes sampled from the edges are expected to have a
common ancestor relatively low in the hierarchy

» This corresponds to the smallest cluster of the hierarchy
containing these two nodes
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Example on Openflights




Example on Openflights




Example on Openflights
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Example on Openflights




Tree sampling

» Let T be any rooted binary tree with leaves {1,...,n}

» Forany node x € T,

p(x)= > pli.j)

INRINES'S

» We denote by c(x) the corresponding cluster
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Dasgupta's cost

> Average cluster size:

> p()le(x)]

xeT

Dasgupta 2016
Cohen-Addad et. al. 2017
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Back to tree sampling

» Let T be any rooted binary tree with leaves {1,...,n}

» For any node x € T,

i "r'v il ﬂﬂ { ';'l “ll{!:ﬁ!m i




Tree sampling divergence

» Kullback-Leibler divergence between sampling distributions:

QT) =3 px)log 2

xeT

q(x)




Tree sampling divergence

» Kullback-Leibler divergence between sampling distributions:

QT) =3 plx)log 2

xeT ( )

> Interpretable in terms of graph reconstruction!




Graph reconstruction

Given a tree T and the node weights wy, ..., wp,
what is the best reconstruction of the graph (say G)?

> Build the graph G with weights:
Wij o wjw;G(x)

where 6(x) is some similarity attached to x =i A
> Apply the loss function:

p(i,Jj)

D(pl[p) = _ pij)log 50

i

Main result

min D(p||p) = I — Q(T)
p—T




Hierarchical clustering of Openflights

3,097 airports, 18,193 flights
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General trees

The tree sampling divergence is applicable to any tree T:

QT) =3 p(x)log ”E 3

xeT




General trees

The tree sampling divergence is applicable to any tree T:

QIT) =Y n log S

xeT

In particular, it can be used for:

» Flat clustering (trees of height 2)

» Tree compression




Flat clustering
For any clustering C € P({1,..., n}):




Tree compression of Openflights

3,097 airports, 18,193 flights
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Full hierarchy (3097 levels) ~ Compact hierarchy (97 levels)



Local hierarchy: Beijing Capital International Airport




Local hierarchy: Carrasco International Airport
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Experiments

Remind the two metrics:

» Dasgupta's cost

> p(x)le(x)]

xeT

» Tree sampling divergence

p(x
>~ plx)tog 2
xeT q
Comparison of these metrics on two tasks:
1. Tree detection

2. Graph reconstruction



Tree detection

Idea:
» Generate two noisy versions Gy, Gy of some graph G
» Compute the corresponding trees T1, T»
» Guess the tree associated with each graph Gy, G;

71 =arg - max QUT) Tr=arg - max @(T)

=T1,T» =T1,T»
The score is the fraction of correct answers:
1

E(P(ﬁ =T)+P(T2=Ta))



Results
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Graph reconstruction

Idea:
» Generate some hierarchical random graph G

» Compute trees with different linkages

v

For each tree, reconstruct the graph G

v

Compare the quality of the tree and the reconstruction
scores

Reconstruction scores:
Streaming the edges of G in decreasing order of weights,

» Area-Under-ROC
> Average-Precision-Score

» Average rank of each edge of G



Results
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Summary

Viewing graphs as probability measures:
> A novel agglomerative algorithm, based on the linkage:
o p(iJ)
0'(/7j) = N7
Q0

> A novel quality metric, the Tree Sampling Divergence:

> p(x)log plx)

xeT q(X)
interpretable in terms of graph reconstruction
Ongoing work on:

» TSD for flat clustering
> Fast hierarchical clustering



scikit-network

A Python package under development, inspired by scikit-learn:
https://github.com/sknetwork-team/scikit-network

In [ ]: from sknetwork import clustering .

In [ ]: louvain = clustering.Louvain(resolution = 4) SC|k|t
ork
In [ ]: louvain.fit(X)


https://github.com/sknetwork-team/scikit-network

