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loT: sensors and actuators connected by networks to
computing systems.
- Gartner predicts 20.8 billion loT devices by 2020.
- IDC projects 32 billion loT devices by 2020



loT Applications For
Energy Management
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loT Applications For
Connected/Smart Home
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loT Applications For Smart
Cities
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[OT AND INDUSTRY 4.0

- Interoperability: loT
- Information transparency: virtual copy of the physical

world
> Technical assistance: support human decisions

. Decentralized decisions: make decisions on their own



o] versus Big Data

GoogleTrends Comparer

®  Internet des objets ® Big data . .
o . + Ajouter une comparaison
Domaine d'étude Sujet
Dans tous les pays ¥ Cing derniéres années ¥ Toutes les catégories ¥ Recherche sur le Web ¥

oo

Evolution de l'intérét pour cette recherche @

Moyennes 26 févr. 20 17 nov. 2013 9 aodt 2015



Data Set

Classifier Algorithm
builds Model

Analytic Standard Approach

Finite training sets

Static models
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Data Stream Approach

Infinite training sets

Dynamic models
11

Update
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Pain Points

* Need to retrain!
* Things change over time
e How often?

e Data unused until next
update!

e \alue of data wasted

AUC

12

o ¢ iy i

. : ¥ o 0

o 5 ¢ ]

¢ Initial Model $ .

0 Online Model

.

o i

é 1'0 1'5 2'0 2|5

29 Consecutive Days

30



0T Stream Mining

* Maintain models online

Incorporate data on the fly

Unbounded training sets

Resource efficient

Detect changes and adapts

Dynamic models
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Approximation Algorithms

* (General idea, good for streaming algorithms
« Small error € with high probability 1-6
» True hypothesis H, and learned hypothesis H

e Prl|H-H| <¢g|H|]> 1-6
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Approximation Algorithms

* What is the largest number that we can store in 8

bits?
tfofifofifofifo
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Approximation Algorithms

Programming S.L. Graham, R.L. Rivest
Techniques Lditors

Counting Large
Numbers of Events in
. What is the Small Registers

Robert Morris
|argeSt number Bell Laboratories, Murray Hill, N.J.
that we can store
i N 8 b IJ[S? It is possible to use a small counter to keep

approximate counts of large numbers. The resulting
expected error can be rather precisely controlled. An
example is given in which 8-bit counters (bytes) are
used to keep track of as many as 130,000 events with a
relative error which is substantially independent of the
number n of events, This relative error can be expected
to be 24 percent or less 95 percent of the time (i.e. 0 =
n/8). The technigues could be used to advantage in
multichannel counting hardware or software used for
the monitoring of experiments or processes.



Approximation Algorithms

 What is the
largest number

1

that we can store

in 8 bits?

£(0) = 0, f(1) = 1
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Approximation Algorithms

* What is the
largest number

that we can store
in 8 bits?

f(x) =log(1 + x/30)/log(1 + 1/30)
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Approximation Algorithms

f(x) = log(1 + x,/30)/log(1 + 1/30)

100
80 -
e \What is the 0
largest number .
that we can store
' I 20 |- /
in 8 bits?
0L |
0 20 40 60 80 100

X
f(0) = 0.f(1) = 1

19



Approximation Algorithms

MORRIS APPROXIMATE COUNTING ALGORITHM

1 Init counter ¢ + 0O
2 for every event in the stream

3 do rand = random number between 0 and 1
4 if rand < p
5 thenc + c+ 1

 \What is the largest number that we can
store in 8 bits?
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Approximation Algorithms

101100011110101 0111010

Sliding Window
We can maintain simple statistics over sliding windows, using
O(!log® N) space, where

» N is the length of the sliding window
» ¢ is the accuracy parameter

% M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002
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WHAT IS MOA!



MOA

{M}assive {O}nline {A}nalysis is a framework for online learning
from data streams.

[t is closely related to WEKA

It iIncludes a collection of offline and online as well as tools for
evaluation:

» classification, regression

» clustering, frequent pattern mining

Fasy to extend, design and run experiments



WEKA: the biro




MOA: the biro

The Moa (another native NZ
bird) is not only flightless, like
the Weka, but also extinct.
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MOA: the biro

The Moa (another native NZ
bird) is not only flightless, like
the Weka, but also extinct.
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MOA: the biro

The Moa (another native NZ
bird) is not only flightless, like
the Weka, but also extinct.
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STREAM SET TING

Process an example at a time,and
inspect 1t only once (at most)

Use a limited amount of memory

Work In a limited amount of
time

Be ready to predict at any point

prediciions



STREAM EVALUATION

lraaning

- Holdout Evaluation PRI

* |nterleaved lest-1Then-TIrain or

’requential



STR

Holdout an independent

test set
' ' \“‘;" /-\
 Apply the current decision model ==
to the test set, at regular time '\ /

intervals

-AM

-VALUATION

* [he loss estimated in the holdout

IS an unblased estimator

prediciions



STREAM EVALUATION

Prequential Evaluation

* The error of a model Is computed
from the sequence of examples.

* For each example in the stream, the

actual model makes a prediction based .
only on the example attribute-values. Y

S=_ Ly i)
1=1
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COMMAND LINE

e java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar
moa.DoTask "EvaluatePeriodicHeldOutTest -1
DecisionStump -s generators.waveformGenerator -n
100000 -1 100000000 -f 1000000" > dsresult.csv

* This command creates a comma separated values file:

* training the DecisionStump classifier on the WaveformGenerator data,
* using the first 100 thousand examples for testing,

« training on a total of 100 million examples,

« and testing every one million examples



Classification



Definition ok Wt

bl O

Given a set of training X x x % o
examples belonging to nc b

. . %4 X
different classes, a classifier :‘ S
algorithm builds a model
that predicts for every Examples
unlabeled instance x the * Email spam filter

class C to which it belongs  « Twitter sentiment analyzer

35 Photo: Stephen Merity http://smerity.com



Nalve Bayes

’ P(x|C)P(C
Based on Bayes P(Clz) = (z|C)P(C)
theorem P(x)
Probability of , likelihood X prior
observing feature x posterior = evidence

given class C

Prior class probability P(Clz) H P(z|C)P(C)

Just counting! C' = argmax P(C|x)
C
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Perceptron

Linear classifier
Data stream: X,y

Vi = ha(Xi) = o(WiT Xi) Attribute 1 —— W

Attribute 2 —— W2

o(x) = 1/(1+eX) o'=0(x)(1-0(x)) |
Attribute 3 —— W3 Output hg(X;)

Ce >\ 1 . \7.\2 |
Minimize MSE J(w)="23 (yi-¥i) Attribute 4 W47

SGD Wi+ = Wi - n"VJ X Attribute 5 — Ws

o VJ = -(yi-5)¥i(1-¥)

* Wi = Wi + n(Yr¥i)¥i(1-9i)X;
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Decision Iree

Each node tests a features Car deal?
Each branch represents a value
Each leaf assigns a class
Greedy recursive induction J \x
e Sort all examples through tree
e x; = most discriminative attribute ;gh LOV{‘
* New node for x;, new branch for each QD

value, leaf assigns majority class
« Stop if no error | limit on #instances ‘ *x

38



P Domingos and G. Hulten, “Mining High-Speed Data Streams,” KDD "00

HOEF

DING

REE

Sample of stream enough for near optimal decision

Estimate merit of alternatives from prefix of stream

Choose sample size based on statistical principles

When to expand a leaf!

« Let x| be the most informative attribute,

X5 the second most informative one

* Hoeffding bound: split it G(x,) - G(x;) > € = \/

R?1In(1/9)

2n



Regression



Definition o T
Given a set of training ¥ Nt © il
examples with a numeric
label, a regression algorithm Sy
builds a model that predicts
for every unlabeled instance x Examples
the value with high accuracy » Stock price

y=F(x) * Airplane delay

41 Photo: Stephen Merity http://smerity.com



Perceptron

Linear regressor

Data stream: {Xi,yi)

Vi = ha(Xi) = WT'X;

Minimize MSE J(W)="25(yi-¥i)2

SGD W' =w - nVJ Xi

o VJ = -(yi-{i)

42

Attribute 1 — W

Attribute 2 —— W2

Attribute 3 W3

Attribute 4 — Wa

Attribute 5 — W5

™
v

Output hy; (X;)



Regression Iree

e Same structure as decision tree

* Predict = average target value or
inear model at leaf (vs majority)

* (Gain = reduction in standard deviation (vs entropy)

o= /> i —3)?/(N - 1)
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Rules

* Problem: very large decision trees Conditions
have context that is complex and ( . 0
X;>a

hard to understand

. . )
* Rules: self-contained, modular, easier ( X RS b
to interpret, no need to cover universe J

]
~
* L keeps sufficient statistics to: (Xl — C)

* make predictions }

* expand the rule < ,C >

 detect changes and anomalies Consequence

44



Adaptive Model Rules

E. Almeida, C. Ferreira, J. Gama. "Adaptive Model Rules from Data Streams." ECML-PKDD ‘13

Rulel™™ Rule2 i "Ruler &

Eo0E>) >0

Ruleset: ensemble of rules

Rule prediction: mean, linear model

Ruleset prediction @

* Weighted avg. of predictions of rules
covering instance x

* Weights inversely proportional to error Eg:x=[4,-1,1,2]
e Default rule covers uncovered ;c _ >
X) = v,
instances (%) - EES%X ) Y
/ i

45



Concept Drift



Definition

Given an input sequence
(X1,X2,...,Xt), output at instant
t an alarm signal if there is a
distribution change, and a
prediction X1 minimizing
the error |Xts+1 — Xi41]

47
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OQutputs
* Alarm indicating change
* Estimate of parameter

Photo: hitp://www.logsearch.io



Application

e Change detection on
evaluation of model

e Training error should decrease
with more examples

« Change in distribution of
training error

e Input = stream of real/binary
numbers

« Trade-off between detecting
true changes and avoiding
false alarms

48
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Cumulative Sum

Alarm when mean of input data differs from zero
Memoryless heuristic (no statistical guarantee)
Parameters: threshold h, drift speed v

Jo=0, gt=max(, g1 + &t-V)

if gt > hthen alarm; gi=0

49



Statistical Process Control

J Gama, P. Medas, G. Castillo, P. Rodrigues: “Learning with Drift Detection”. SBIA '04

* Monitor error in sliding window

* Null hypothesis:
no change between windows

:concept
adrift

* |f error > warning level
learn in parallel new model
on the current window Pt S !

min g

Error rate

new window

o
0 Number of examples processed (time) 9000

e if error > drift level
substitute new model for old

50



Concept-adapting VFDT

G. Hulten, L. Spencer, P. Domingos: “Mining Time-Changing Data Streams”. KDD ‘01

 Model consistent with sliding window on stream
» Keep sufficient statistics also at internal nodes
* Recheck periodically if splits pass Hoeffding test

 |f test fails, grow alternate subtree and swap-in
when accuracy of alternate is better

* Processing updates O(1) time, +O(W) memory

e Increase counters for incoming instance,
decrease counters for instance going out window

51



A. Bifet, R. Gavalda: “Adaptive Parameter-free Learning from Evolving Data Streams” IDA (2009)

Hoeffding Adaptive Tree

* Replace frequency counters by estimators
* No need for window of instances
e Sufficient statistics kept by estimators separately

 Parameter-free change detector + estimator with
theoretical guarantees for subtree swap (ADWIN)

* Keeps sliding window consistent with
‘no-change hypothesis”

A. Bifet, R. Gavalda: “Learning from Time-Changing Data with Adaptive Windowing”. SDM ‘07
52



ADWIN

ADWIN

An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

Problem
Given an input sequence z1,3,...,Z,... we want to output

@ a prediction Z;,; minimizing prediction error:

1Tt 1 — T g1

@ an alert if change is detected




ADWIN

Optimal Change Detector and Predictor
@ High accuracy

@ Fast detection of change
@ Low false positives and false negatives ratios

@ Low computational cost: minimum space and time needed

ADWIN
@ Theoretical guarantees

@ No parameters needed




ADWIN

Theorem

At every time step we have:

© (False positive rate bound). If u; remains constant
wrthin W, the probability that ADWIN shrinks the
wrndow at this step 1s at most §.

© (False negative rate bound). Suppose that for some
partition of W in two parts Wo W, (where Wi contains
the most recent items) we have |pw, — pw,| > 2€c. Then

wnth probability 1—0 ADWIN shrinks W to Wi, or
shorter.

ADWIN tunes itself to the data stream at hand, with no need for
the user to hardwire or precompute parameters.




ADWIN

@ Classification

Adaptive Naive Bayes (Bifet et al. 2007)

Decision Trees: Hoeffding Adaptive Trees (Bifet et al. 2009)
ADWIN Bagging (Bifet et al. 2009)

Leveraging Bagging (Bifet et al. 2010)

Stacking of Restricted Hoeffding Trees (Bifet et al. 2012)
Multilabel Classification (Read et al. 2012)

Adaptive kNN (Bifet et al. 2013)

Random Forests (Marron et al. 2014)

@ Frequent Pattern Mining

Frequent Closed Tree Mining (Bifet et al. 2008)
Frequent Closed Graph Mining (Bifet et al. 2011)

56



Adaptive Random Forest

 Why Random Forests?
e Off-the-shelf learner
« Good learning performance Related publication

Adaptive random forests for evolving data stream
classification.

Gomes, H M; Bifet, A; Read, J; Barddal, J P; Enembreck, F:
Ptharinger, B; Holmes, G; Abdessalem, T.

Machine Learning, Springer, 2017.
* Based on the original Random Forest by Breiman
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Adaptive Random Forest

1.

2.

3.

Simulates resampling through leveraging bagging
Randomly select subsets of features for splits
Uses Hoeftding Trees as the base learner

1 drift and 1 warning detector per tree

Train trees in the background before adding them

Trees are completely independent (can train in
parallel)

58



SAM-KNN

KNN Classifier with Self
Adjusting Memory for
Heterogeneous Concept Drift.

Viktor Losing, Barbara
Hammer, Heiko Wersing:

Best Paper Award
ICDM 2016: 291-300
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Micro-Clusters

Tian Zhang, Raghu Ramakrishnan, Miron Livny: “BIRCH: An Efficient Data Clustering Method for Very Large Databases”. SIGMOD '96

« AKA, Cluster Features CF
Statistical summary structure

« Maintained in online phase, AT
input for offline phase fr#I‘C_I' .j.
(N __'.‘y “
 Data stream (Xp, d dimensions - v -
Xi) A%
7 S
 Cluster feature vector t:.:,:o}
N:  number of points Sy
LS;;  sum of values (for dim. j) _
SS;;  sum of squared values (for dim. j) Properties:
e Centroid = LS/N
« Easy to update, easy to merge o Radius = \/SS/N — (LS/N)2
- Constant space irrespective to the o Diameter = | /ZxNs5502xLS"

number of examples!
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MOA Algorithms

Editing option: Stream

Multi-label/ Multi-target
Outlier Detection
Concept Drift Detection
Active Learning
Frequent ltemset Mining
Frequent Graph Mining

Recommendation Systems
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What’s next”?



I1: Validation Methodology

k classifiers in paraliel

L
l 1
Validgation 1
Methodology -‘Q. L

Classifier (fold)

Theory suggests k-fold
e Cross-validation
e Split-validation
e Bootstrap validation

Classifier (fold)

Classifier (fold)

Classifier (fold)

Classifier (fold)




I1: Validation Methodology

k classifiers in paraliel

L
.
L
|

Classifier (fold)

lvmaum
Memooouogyg

Theory suggests k-fold

e Cross-validation
e Split-validation
e Bootstrap validation

{ Classifier (fold)
4 Classifier (fold)
/

Classifier (fold)

Classifier (fold)



I1: Validation Methodology

k classifiers in paraliel

A Training weights ~ Poisson(1)

‘ etoaoiay s% H L‘Ll
Classifier (fold)
Classifier (fold)
Theory suggests k-fold \
e Cross-validation R,
e Split-validation

e Bootstrap validation

Classifier (fold)

Classifier (fold)




K-fold: who wins¢ [Bifet etal 2015]

» Cross-validation strongest, but most expensive
» Split-validation weakest, but cheapest

» Booftstrap: in between, but closer to cross-validation



Evaluation can be misleading

Electricity Dataset, Accuracy

100 ' T T T
. 80 %W @@Q\q
2 . :
= 60 N , ‘ e :
'y ' Siilan ! '
o 40
<
20
% 1 2 3 4
Time, instances .104
—-— VFDT -~ Majority Class

—o— Naive Bayes




“Magic” classifier

Electricity Dataset, Accuracy

100

80 |
2 A
= 60
©
3 40
<

20 |

0

0 1 2 3 a4

Time, instances 104

e Magic Classifier -~ VFDT
Majority Class -+ Naive Bayes




Published resulis

Electricity Dataset, Accuracy

Algorithm name Acc. (%) Algorithm name Acc. (%)
DDM 89.6" Local detection 80.4
Learn++.CDS 88.5 Perceptron 791
KNN-SPRT 88.0 AUEZ2 77.3
GRI 88.0 ADWIN 76.6
FISHS3 86.2 EAE 76.6
EDDM-IB1 85.7 Prop. method 76.1
Magic classifier 85.3 Cont. \-perc. 741
ASHT 84.8 CALDS 72.5
bagADWIN 82.8 TA-SVM 68.9
DWM-NB 80.8

* tested on a subset



Problem is Auto-correlation

Use for evaluation: Kappa-plus
Exploit for better prediction

Image frequency: Last 1 hour every 7.5 minutes

® Hide Radar Locations

Auckiand Radar

Taranaki Ray

Gisborne/Hawke's
Bay Radar

o D) 11:13am [KOSEIFELR

Image frequency: Last 1 hour every 7.5 minutes

® Hide Radar Locations

Auckland Radar

sborrig/Hawke's
Bay Radar

Westland Ra@hr.

Southland Refflar__ -



Kappa Plus Statistic

\J

Po: classifier's prequential accuracy
Pe: No-change classifier's prequential accuracy

T statistic
+ Po — Pe

e

1 — pPe
7 = 1 if the classifier is always correct
7+ = 0 iIf the predictions coincide with the correct ones as

often as those of the no-change classifier



SWT: Temporally Augmented Classifier

Prclassis c] = h(z®,c*%,...,c" 1)



SWT: Accuracy and Kappa Plus, Electricity
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Accuracy, %

Accuracy, %
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http://huawei-noah.github.io/streamDM-Cpp/

streamDM C++

0 C++ -

St EmM chine Learning in C#+




Vision

Streaming Distributed

0T Big Data Stream Mining

/6



http://samoa-project.net

APACHE SAMOA

G. De Francisci Morales, A. Bifet: “SAMOA: Scalable Advanced Massive Online Analysis”. JMLR (2014)

Data
Mining

Stream Stream

[\[e]g]

Distributed Distributed

Storm, S4,
Samza

Mahout
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SAMOA ARCHITECTURE
Casir

V
] e




Vertical Partitioning

N. Kourtellis, G. De Francisci Morales, A. Bifet, A. Murdopo: “VHT: Vertical Hoeffding Tree”, 2016 Big Data Conference 2016
Model Stats

Attributes

Stream —» ‘ »| Stats
VN
‘ f

Stats

/

Slﬂg|e attrlbute .................................................. ;L
tracked in Splits
single node
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Kappa Architecture
&3 kafka

producer \ / consumer

producer — —=>  consumer

/ \

producer consumer

* Apache Kafka is a fast, scalable, durable, and
fault-tolerant publish-subscribe messaging system.
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http://huawei-noah/github.io/streamDM

StreamDM

streamDM: Data Mining
for Spark Streaming
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summary

e |oT Streaming useful for finding approximate solutions with
reasonable amount of time & limited resources

« MOA: Massive Online Analytics
* Available and open-source
o http://moa.cms.waikato.ac.nz/
 SAMOA: A Platform for Mining Big Data Streams

« Available and open-source (incubating @ASF)

» http://samoa.incubator.apache.org
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Open Challenges

Times Series + Stream Mining
Structured output

Millions of classes

Ease of use

Applications: Predictive Maintenance, Al for loT
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Thanks!

W @abifet




