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Formally

min
x∈X

N∑
n=1

fn(x)

I N = number of nodes / agents

I X = Rd

I fn is the cost function of agent n

I Two agents n and m can exchange messages if n ∼ m

Numerous works on that problem
Early work: Tsitsiklis ’84
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Example #1: Wireless Sensor Networks

Yn = random observation of sensor n
x = unknown parameter to be estimated

p(Y1, · · · ,YN ; x) = p1(Y1; x) · · · pN(YN ; x)

The maximum likelihood estimate writes

x̂ = arg max
x

∑
n

ln pn(Yn; x)

[Schizas’08, Moura’11]
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Example #2: Machine Learning

Data set formed by T samples (Xi ,Yi ) (i = 1 . . .T )

I Yi = variable to be explained

I Xi = explanatory features

min
x

T∑
i=1

`(xTXi ,Yi ) + r(x)

Split data into N batches

min
x

N∑
n=1

∑
i

`(xTXi,n,Yi,n) + r(x)

n.b.: some problems are more involved (I. Colin’16)

min
x

∑
i

∑
j

f (x ;Xi ,Yi ,Xj ,Yj) + r(x)
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Example #3: Resource Allocation

Let xn be the resource of an agent n

I Agents share a resource b:
∑
n

xn ≤ b

I Agent n gets reward Rn(xn) for using resource xn

I Maximize the global reward

max
x :
∑

n xn≤b

N∑
n=1

Rn(xn)

The dual of a sharing problem is a consensus problem
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Networks

Parallel:

.

.

Distributed:

.

.

6/25



Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs



Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs



Adapt-and-combine (Tsitsiklis’84)

I [Local step] Each agent n generates a temporary update

x̃k+1
n = xk

n − γk∇fn(xk
n )

I [Agreement step] Connected agents merge their temporary estimates

xk+1
n =

∑
m∼n

A(n,m) x̃k+1
m

where A satisfies technical constraints (must be doubly stochastic)

Convergence rates (e.g. [Nedic’09], [Duchi’12])

I Decreasing step size γk → 0 is needed in general

I Sublinear converges rates
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More problems

1. Asynchronism
Some agents are active at time n, others aren’t
Random link failures

2. Noise
Gradients may be observed up to a random noise (online algorithms)

3. Constraints

Minimize
N∑

n=1

fn(x) subject to x ∈ C

x̃k+1
n = projC [xk

n − γk(∇fn(xk
n )+noise)]

xk+1
n =

∑
m∼n

Ak+1(n,m) x̃k+1
m

8/25



Distributed stochastic gradient algorithm

Under technical conditions,

Convergence (Bianchi et al.’12): xk
n tends to a KKT point x?

Convergence rate (Morral et. al’12): If x? ∈ int(C)

√
γk
−1(xk

n − x?)
L−→ N (0,ΣOPT + ΣNET )

I ΣOPT is the covariance corresponding to the centralized setting

I ΣNET is the excess variance due to the distributed setting

Remark: ΣNET = 0 for some protocols which can be characterized
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Alternating Direction Method of Multipliers

Consider the generic problem

min
x

F (x) + G(Mx)

where F ,G are convex. Rewrite as a constrained problem

min
z=Mx

F (x) + G(z)

The augmented Lagrangian is:

Lρ(x , z ;λ) = F (x) + G(z) + 〈λ,Mx − z〉+
ρ

2
‖Mx − z‖2

ADMM

xk+1 = arg min
x
Lρ(x , zk ;λk) → only F needed

zk+1 = arg min
z
Lρ(xk+1, z ;λk) → only G needed

λk+1 = λk + ρ(Mxk+1 − zk+1)
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Back to our problem

All functions fn : X → R are assumed convex. Consider the problem:

min
u∈X

N∑
n=1

fn(u)

Main trick: Define

F : x = (x1, . . . , xN) 7→
∑
n

fn(xn)

Equivalent problem:
min
x∈XN

F (x) + ιsp(1)(x)

where ιsp(1)(x) =

{
0 if x1 = · · · = xN
+∞ otherwise

I F is separable in x1, . . . , xN

I G = ιsp(1) couples the variables but is simple
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ADMM illustrated
Set xk = 1

N

∑
n x

k
n

Algorithm (see e.g. [Boyd’11])

For all n, λk
n = λk−1

n + ρ(xk
n − xk)

xk+1
n = arg min

y
fn(y) +

ρ

2
‖xk − ρ−1λk

n − y‖2

.

xk
n

1. Transmit current estimates

.
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y
fn(y) +
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4. Compute λk
n, xk+1

n for all n

.

The algorithm is parallel but not distributed on the graph
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Subgraph consensus

Let A1,A2, · · · ,AL be subsets of agents

.

2

4

531

.
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x1

x3

)
∈ sp (1

1)(
x2

x3

)
∈ sp (1

1) x3

x4

x5

 ∈ sp
(

1
1
1

)

consensus within subgraphs ⇔ global consensus
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Example (Cont.)

The initial problem is
min
x∈XN

F (x) + G(Mx)

where Mx =



x1

x3

x2

x3

x3

x4

x5


that is: M =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and where G is the indicator function of the subspace of vectors of the form

α
α
β
β
δ
δ
δ


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Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas’08])

For all n, Λk
n = Λk−1

n + ρ(xk
n − χk

n)

xk+1
n = arg min

y
fn(y) +

ρ|σn|
2
‖χk

n − ρ−1Λk
n − y‖2

where |σn| = number of “neighbors” of n

.

Compute xk
A1

.

1. For each subgraph, compute average xk
A`
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Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas’08])

For all n, Λk
n = Λk−1

n + ρ(xk
n − χk

n)

xk+1
n = arg min

y
fn(y) +

ρ|σn|
2
‖χk

n − ρ−1Λk
n − y‖2

where |σn| = number of “neighbors” of n

.

.

2. For each n, compute χk
n = Average(xk

A`
: ` s.t. n ∈ A`)
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Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas’08])

For all n, Λk
n = Λk−1

n + ρ(xk
n − χk

n)

xk+1
n = arg min

y
fn(y) +

ρ|σn|
2
‖χk

n − ρ−1Λk
n − y‖2

where |σn| = number of “neighbors” of n

.

.

3. For each n, compute λk
n and xk+1

n

15/25



Linear convergence of the Distributed ADMM

Assumption: H? :=
∑

n∇
2fn(x?) > 0 at the minimizer x?

‖xk
n − x?‖ ∼ αk as k →∞

I [Shi et al.’ 13] non-asymptotic bound but pessimistic

I [Iutzeler et al.’ 16] asymptotic but tight
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Simulation

log α = −0.19

Bound of Shi = −5e−4

1
k

log ‖xk − 1⊗ x?‖ as a function of k
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Example: ring network
.

.

Define α = limk→∞ ‖xk
n − x?‖1/k

Set fn : R→ R and f ′′n (x?) = σ2

α ≥

√
1 + cos 2π

N

2(1 + sin 2π
N

)
with equality when ρ =

σ2

2 sin 2π
N
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Asynchronous D-ADMM

I All agents must complete their arg min computation before combining

I The network waits for the slowest agents

Our objective: allow for asynchronism
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Revisiting ADMM as a fixed point algorithm

Set ζk = λk + ρzk . Fact: λk = P(ζk) where P is a projection.

ADMM can be written as a fixed point algorithm [Gabay,83] [Eckstein,92]

ζk+1 = J(ζk)

where J is firmly non-expansive i.e.,

‖J(x)− J(y)|2 ≤ ‖x − y‖2 − ‖(I − J)(x)− (I − J)(y)‖2

.

yx

JA(y)

JA(x)

.
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Random coordinate descent

Introducing the block-components of ζk+1 = J(ζk) :

ζk+1
1

...
ζk+1
`

...
ζk+1
L


=



J1(ζk)
...

J`(ζ
k)

...
JL(ζk)



Convergence of the Asynchronous ADMM [Iutzeler’13]

This algorithm still converges if active components are chosen at random

Main idea: For a well-chosen norm ||| . ||| and a fixed point ζ? of J, prove

E
(∣∣∣∣∣∣∣∣∣ζk+1 − ζ?

∣∣∣∣∣∣∣∣∣2 |Fk

)
≤
∣∣∣∣∣∣∣∣∣ζk − ζ?∣∣∣∣∣∣∣∣∣2

⇒ ζk is getting “stochastically” closer to ζ?
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Random coordinate descent
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Asynchronous ADMM explicited

.

mn

.

Activate two nodes A` = {m, n}

I Agent n computes

xk+1
n = arg min

x
fn(x)+

∑
j∼k

(
〈x , λk

j,n〉+
ρ

2
‖x − x̄k

j,n‖2
)

and similarly for Agent m.

I They exchange xk+1
m and xk+1

n

I Agent n computes

x̄k+1
m,n =

1

2
(xk+1

m + xk+1
n ),

λk+1
m,n = λk

m,n + ρ
xk+1
n − xk+1

m

2

and similarly for Agent m.
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Generalization: Distributed Vũ-Condat algorithm

I Vũ-Condat algorithm generalizes ADMM (allows “gradients” evaluations)

I Distributed Vũ-Condat algorithm is applicable using the same principle

I Bianchi’16, Fercoq’17 provide a random coordinate descent version

I The algorithm is asynchronous at the node level and not at the edge level
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Stochastic Optimization

min
x∈X

N∑
n=1

E (fn(x , ξn))

I Law of ξn unknown, but revealed on-line through random copies ξ1
n , ξ

2
n , . . .

I Stochastic approximation: at time k, replace the unknown function
E (fn( . , ξn)) by its random version fn( . , ξkn )

Example : stochastic gradient descent

I Thesis of A. Salim: Stochastic versions of generic optimization algorithms
(Forward-Backward, Douglas-Rachford, ADMM, Vũ-Condat, etc.)

I Byproduct : distributed stochastic algorithms
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Total variation regularization (1/2)

Notation: On a graph G = (V ,E), the total variation of x ∈ RV is

TV(x) =
∑
{i,j}∈E

|xi − xj |

General problem:
min
x∈RV

F (x) + TV(x)

I Trend filtering: F (x) = 1
2
‖x −m‖2 where m ∈ RV are noisy measurements

I Graph inpainting: complete possibly missing measurements on the nodes

Proximal gradient algorithm:

xn+1 = proxγTV(xn − γ∇F (xn))

I Computing proxTV is difficult over large unstructured graphs

I But efficient algorithms exist for 1D-graphs (Mammen’97) (Condat’13)
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Total variation regularization (2/2)

Write TV as an expectation: Let ξ be simple random walk in G of fixed length

TVG (x) ∝ E(TVξ(x))

Algorithm (Salim’16) At time n,

I Draw a random walk ξn+1

I Compute xn+1 = proxγnTVξn+1
(xn − γn∇F (xn)) → easy, 1D

Hidden difficulty: one should avoid loops when choosing the walk. . .

Trend filtering example. Cost function vs time(s). Stochastic block model 105 nodes, 25.106 edges.

Blue: Stochastic proximal gradient, Green: dual proximal gradient, Red: dual L-BFGS-B
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