Distributed Optimization in Multiagent Systems

TELECOM
ParisTech

54 T

The Consensus Problem

1/25

The Consensus Problem

1/25

The Consensus Problem

/

No single agent knows the target function to optimize

1/25

Formally

N
mip 2)
n=1
» N = number of nodes / agents
» ¥ =R

f» is the cost function of agent n

v

» Two agents n and m can exchange messages if n ~ m

Numerous works on that problem
Early work: Tsitsiklis '84

2/25

Example #1: Wireless Sensor Networks

» = random observation of sensor n
x = unknown parameter to be estimated

p(Y1, -, Yuix) = pr(Ya; x) - - pu(Y x)

The maximum likelihood estimate writes

X =arg mfxz In pn(Ya; x)

[Schizas'08, Moura'11]

3/25

Example #2: Machine Learning

Data set formed by T samples (X, Y;) (i=1...T)
» Y; = variable to be explained

» X; = explanatory features

T
min ZE(XTX,-, Y:) + r(x)
i=1
Split data into N batches

N
miny > U(x" Xin, Yin) + r(x)
n=1 i

n.b.: some problems are more involved (l. Colin'16)

minZZf(X;Xh Yi, X, Vi) + r(x)

! J

4/25

Example #3: Resource Allocation

Let x, be the resource of an agent n

» Agents share a resource b: Zx,, <b

n

> Agent n gets reward R,(x,) for using resource x,

> Maximize the global reward

N
max Z Ra(xn)
n=1

X2 xn<b

The dual of a sharing problem is a consensus problem

5/25

Networks

Parallel:

Distributed:

6/25

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Adapt-and-combine (Tsitsiklis'84)

> [Local step] Each agent n generates a temporary update

% = X — %V ha(xh)

> [Agreement step] Connected agents merge their temporary estimates

Xkt = okt1
* EAnme+

mn~n

where A satisfies technical constraints (must be doubly stochastic)

7/25

Adapt-and-combine (Tsitsiklis'84)

> [Local step] Each agent n generates a temporary update

% = X — %V ha(xh)

> [Agreement step] Connected agents merge their temporary estimates

Xkt = okt1
* EAnme+

mn~n

where A satisfies technical constraints (must be doubly stochastic)

Convergence rates (e.g. [Nedic’'09], [Duchi'12])
» Decreasing step size v« — 0 is needed in general

» Sublinear converges rates

7/25

More problems

1. Asynchronism
Some agents are active at time n, others aren’t
Random link failures

2. Noise
Gradients may be observed up to a random noise (online algorithms)

3. Constraints
N

Minimize Z fa(x) subject to x € C

n=1

gt = projc[x,',(—’yk(an(x,’f)+noise)]
X = Y Aa(nm) R

mn~on

8/25

Distributed stochastic gradient algorithm

Under technical conditions,

Convergence (Bianchi et al.'12): x¥ tends to a KKT point x*
Convergence rate (Morral et. al'12): If x* € int(C)

VT = xY) =N N (0, XopT + XneT)

> Y opr7 is the covariance corresponding to the centralized setting

> Y nNeT is the excess variance due to the distributed setting

Remark: yer = 0 for some protocols which can be characterized

9/25

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Alternating Direction Method of Multipliers

Consider the generic problem
mXin F(x) + G(Mx)

where F, G are convex. Rewrite as a constrained problem
i F(6) + 62

The augmented Lagrangian is:

Lp(x,2:X) = F(x) + G(2) + (A, Mx = 2) + 2| Mx — |

arg min £,(x, z%; \¥) — only F needed

= arg min L,,(Xk+1,z;)\k) — only G needed

)\k+1 _ >\k + p(MXk+l _ zk+1)

10/25

Back to our problem

All functions f, : X — R are assumed convex. Consider the problem:

N

i 2 A
n=1

Main trick: Define

F:x:(xl,...,xN)Han(Xn)

Equivalent problem:
min F(x) + tep1)(X)

xeXN

0 fxi=--=xn

where 150)(x) = {+Oo otherwise

> F is separable in x1,...,xy

> G = 155(1) couples the variables but is simple

11/25

ADMM illustrated

—k _ 1 k
Set X = § >, %

Algorithm (see e.g. [Boyd'11])

Foralln, X = X1y p(x,’,(— 7’()

k+1

X! = arg myin f(y) + gHYk —p A=yl

1. Transmit current estimates

12/25

ADMM illustrated

—k _ 1 k
Set X = § >, %

Algorithm (see e.g. [Boyd'11])

Foralln, X = X1y p(x,’,(— 7’()
™= argmin fiy) + SR — o7 N — P
T+ 2. Compute average 7"

12/25

ADMM illustrated

—k _ 1 k
Set X = § >, %

Algorithm (see e.g. [Boyd'11])

Foralln, X = X1y p(x,’,(— 7’()

™= argmin fiy) + SR — o7 N — P

3. Transmit Z" to all agents

12/25

ADMM illustrated

—k _ 1 k
Set X = § >, %

Algorithm (see e.g. [Boyd'11])

Foralln, X = X1y p(x,’,(— Yk)

= argmin fi(y) + 5IR —p 7ML — P

4. Compute A, x5+ for all n

12/25

ADMM illustrated

ok _ 1 K
Set X = 5 >, Xn

Algorithm (see e.g. [Boyd'11])

Foralln, X = X1y p(x,'; —Yk)

= argmin fily) + 5% — o~ ALy

4. Compute A, x5+1 for all n

The algorithm is parallel but not distributed on the graph

12/25

Subgraph consensus

Let A1, Az, - -+, AL be subsets of agents

Ar ={1,3}, A2 ={2,3}, A3 ={3,4,5}

13/25

Subgraph consensus

Let Ai, Az, - -+, AL be subsets of agents

2

A = {1,3}, ,‘4;7”::{2,3}, As = {3,4,5}

13/25

Subgraph consensus
Let Ai, Az, -+, AL be subsets of agents

X1

X3) €sp(})

| (X > €sp(y)

X3

A; = {1,3}, A, = {2,3}, As = {3,4,5}

13/25

Subgraph consensus

Let A1, Az, -+ , AL be subsets of agents

X1
X3
X2
X3

X3
X4
X5

N o/~ —~

A= (13}, A= (2.3}, As = (3.4.5)

esp(})

esp(})

1
esp (1)

S——

13/25

Subgraph consensus

Let A1, Az, -+ , AL be subsets of agents

X1
X3
X2
X3

X3

X4
X5

A = {1,3}, A, = {2,3}, As = {3,4,5}

esp(})

> esp(})
)

1
esp (1)

consensus within subgraphs < global consensus

13/25

Example (Cont.)
The initial problem is
X1
X3

where Mx = X3

and where G is the indicator function of the subspace of vectors of the form

min F(x) + G(Mkx)

xeXxN

that is:

M =

O O o

o = O o

= O = O

[N eNeNel

o O O o

14/25

Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas'08])

Foralln, Af = A4 p(xk —x5)
. . ploal k —1,k 2
X = argmin fa(y) + T”Xn —p A=yl

where |o,| = number of “neighbors” of n

Compute 7%,

1. For each subgraph, compute average Yf\e

15/25

Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas'08])

Forall n, A = A 4 p(xk —xk)

. g _
= arg min fn(yH%"'IIxﬁ—p NS~y

where |o,] = number of “neighbors” of n

Compute 7%,

1. For each subgraph, compute average Yﬁe

15/25

Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas'08])

Foralln, Af = A4 p(xk —x5)

Ian

XX = arg myin fo(y) + —— | s — o *As = yII?

where |o,| = number of “neighbors” of n

Compute %,

1. For each subgraph, compute average 7’)\‘5

15/25

Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas'08])

Foralln, A = A4 p(xk—xY)

X
Il

. g, _
argmin fu(y) + %leﬁ —p A=y

where |o,| = number of “neighbors” of n

2. For each n, compute y& = Average(?ﬁl :lst. neA)

15/25

Distributed ADMM illustrated
Distributed ADMM (early works by [Schizas'08])

Forall n, A = AT 4 p(xk—x¥)

X = arg myin faly) + %‘"Hlxﬁ —p N~y

where |o,| = number of “neighbors” of n

3. For each n, compute A5 and x/+!

15/25

Linear convergence of the Distributed ADMM

Assumption: H, := 3" V?f,(x.) > 0 at the minimizer x.

[xK = x.|| ~ o* as k — o0

> [Shi et al.” 13] non-asymptotic bound but pessimistic
> [lutzeler et al.” 16] asymptotic but tight

¥ ¢ Simulation
05F ---log o =-0.19
—Bound of Shi = -5e-4
0.4F
0.3
.
02F 4
0k °,
0 A
.O
-0.1F *
’ 0000
[| SR EEE PP EPRMAA A i
I i i I i i I i i
0 10 20 30 40 50 60 70 80 90 100
Number of iterations
% log ||x¥ — 1 ® xy|| as a function of k

16/25

Example: ring network

Define a = limy_ o0 || x5 — x.||'/*

Set f, : R — R and £,/ (x,) = o?

O 2 40 60 80 100 120 140 160 180 200 © N
1+cos?r)] o2
— N with equality when p = ———
2(1 +sin N) 2sin &

17/25

Asynchronous D-ADMM

> All agents must complete their arg min computation before combining

> The network waits for the slowest agents

Our objective: allow for asynchronism

18/25

Revisiting ADMM as a fixed point algorithm

Set ¢¥ = A + pz". Fact: * = P(¢¥) where P is a projection.

ADMM can be written as a fixed point algorithm [Gabay,83] [Eckstein,92]
<k+l _ J(Ck)

where J is firmly non-expansive i.e.,

190¢) = JW* < lx = yI? = 10 = Dx) = (1 = HO)I?

19/25

Random coordinate descent

Introducing the block-components of ¢**! = J(¢¥) :

k+1
1

k+1

14

kil
"

h(¢")
JZ(-Ck)

(¢

20/25

Random coordinate descent

If only one block ¢ = £(k + 1) is active at time k + 1:

{(+1 Ck
= 4

ki1 &
¢ (L

20/25

Random coordinate descent

If only one block £ = £(k + 1) is active at time k + 1:

e &
Cf-“ =1 4 (-Ck)
Cf:“ C:f

Convergence of the Asynchronous ADMM

This algorithm still converges if active components are chosen at random

Main idea: For a well-chosen norm || . || and a fixed point {* of J, prove

(s

2

2 k *
7)< [¢
= (¥ is getting “stochastically” closer to ¢*

20/25

Asynchronous ADMM explicited

Activate two nodes A, = {m, n}

21/25

Asynchronous ADMM explicited

Activate two nodes A, = {m, n}

> Agent n computes

XK = arg mln fa(x) +Z (X,)\k

Jrk

and similarly for Agent m.

p
)+ Llx = 2fal?)

21/25

Asynchronous ADMM explicited

Activate two nodes A, = {m, n}

> Agent n computes

X,‘,(H—argmlnf(x +Z(X)\k gl|X7XJ,,H)

J~k
and similarly for Agent m.

» They exchange x5 and x**!

» Agent n computes

k+1 %(k+1 + Xk+1),

Xm,n -
k+1 k+1
k+1 _ Kk Xn — Xm
)\m,n -)‘m,n + P 2

and similarly for Agent m.

21/25

Generalization: Distributed Vii-Condat algorithm

» Vii-Condat algorithm generalizes ADMM (allows “gradients” evaluations)

v

Distributed Vii-Condat algorithm is applicable using the same principle

\4

Bianchi'16, Fercoq'l7 provide a random coordinate descent version

v

The algorithm is asynchronous at the node level and not at the edge level

22/25

Stochastic Optimization

min E (fa(x,&n))

xeX
n=1

v

Law of &, unknown, but revealed on-line through random copies &3, €2, . ..

v

Stochastic approximation: at time k, replace the unknown function
E (f.(.,&,)) by its random version f,(., £X)

Example : stochastic gradient descent

v

Thesis of A. Salim: Stochastic versions of generic optimization algorithms
(Forward-Backward, Douglas-Rachford, ADMM, Vii-Condat, etc.)

» Byproduct : distributed stochastic algorithms

23/25

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Total variation regularization (1/2)

Notation: On a graph G = (V, E), the total variation of x € RY is

VG = > i
{ijYeE
General problem:

min F(x) 4+ TV(x)

x€RY

» Trend filtering: F(x) = 3|/x — m||*> where m € R" are noisy measurements

» Graph inpainting: complete possibly missing measurements on the nodes
Proximal gradient algorithm:

Xn+1 = ProxX_ vy (xn — YV F(xa))

» Computing proxy is difficult over large unstructured graphs
> But efficient algorithms exist for 1D-graphs (Mammen'97) (Condat'13)

24/25

Total variation regularization (2/2)
Write TV as an expectation: Let £ be simple random walk in G of fixed length
TVe(x) x E(TVe(x))

Algorithm (Salim’'16) At time n,
» Draw a random walk &ni1
> Compute xp41 = prox,, rv, » (X — ¥aVF(xn)) — easy, 1D

Hidden difficulty: one should avoid loops when choosing the walk. . .

55

50
45
40

35

T~
oo

e N

o

25

o 50 100 150 200 250 300 350 400

Trend filtering example. Cost function vs time(s). Stochastic block model 10° nodes, 25.10° edges.

Blue: Stochastic proximal gradient, Green: dual proximal gradient, Red: dual L-BFGS-B

25/25

	Distributed gradient descent
	Distributed Alternating Direction Method of Multipliers (D-ADMM)
	Total Variation Regularization on Graphs

