Distributed Optimization in Multiagent Systems

The Consensus Problem

The Consensus Problem

$=$

The Consensus Problem

$=$

No single agent knows the target function to optimize

Formally

$$
\min _{x \in \mathcal{X}} \sum_{n=1}^{N} f_{n}(x)
$$

- $N=$ number of nodes / agents
- $\mathcal{X}=\mathbb{R}^{d}$
- f_{n} is the cost function of agent n
- Two agents n and m can exchange messages if $n \sim m$

Numerous works on that problem
Early work: Tsitsiklis '84

Example \#1: Wireless Sensor Networks
$Y_{n}=$ random observation of sensor n $x=$ unknown parameter to be estimated

The maximum likelihood estimate writes

$$
\hat{x}=\arg \max _{x} \sum_{n} \ln p_{n}\left(Y_{n} ; x\right)
$$

[Schizas'08, Moura'11]

Example \#2: Machine Learning

Data set formed by T samples $\left(X_{i}, Y_{i}\right)(i=1 \ldots T)$

- $Y_{i}=$ variable to be explained
- $X_{i}=$ explanatory features

$$
\min _{x} \sum_{i=1}^{T} \ell\left(x^{T} X_{i}, Y_{i}\right)+r(x)
$$

Split data into N batches

$$
\min _{x} \sum_{n=1}^{N} \sum_{i} \ell\left(x^{T} X_{i, n}, Y_{i, n}\right)+r(x)
$$

n.b.: some problems are more involved (I. Colin'16)

$$
\min _{x} \sum_{i} \sum_{j} f\left(x ; X_{i}, Y_{i}, X_{j}, Y_{j}\right)+r(x)
$$

Example \#3: Resource Allocation

3
Let x_{n} be the resource of an agent n

- Agents share a resource $b: \sum_{n} x_{n} \leq b$
- Agent n gets reward $R_{n}\left(x_{n}\right)$ for using resource x_{n}
- Maximize the global reward

$$
\max _{x: \sum_{n} x_{n} \leq b} \sum_{n=1}^{N} R_{n}\left(x_{n}\right)
$$

The dual of a sharing problem is a consensus problem

Networks

Distributed:

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Adapt-and-combine (Tsitsiklis'84)

- [Local step] Each agent n generates a temporary update

$$
\tilde{x}_{n}^{k+1}=x_{n}^{k}-\gamma_{k} \nabla f_{n}\left(x_{n}^{k}\right)
$$

- [Agreement step] Connected agents merge their temporary estimates

$$
x_{n}^{k+1}=\sum_{m \sim n} A(n, m) \tilde{x}_{m}^{k+1}
$$

where A satisfies technical constraints (must be doubly stochastic)

Adapt-and-combine (Tsitsiklis'84)

- [Local step] Each agent n generates a temporary update

$$
\tilde{x}_{n}^{k+1}=x_{n}^{k}-\gamma_{k} \nabla f_{n}\left(x_{n}^{k}\right)
$$

- [Agreement step] Connected agents merge their temporary estimates

$$
x_{n}^{k+1}=\sum_{m \sim n} A(n, m) \tilde{x}_{m}^{k+1}
$$

where A satisfies technical constraints (must be doubly stochastic)

Convergence rates (e.g. [Nedic'09], [Duchi'12])

- Decreasing step size $\gamma_{k} \rightarrow 0$ is needed in general
- Sublinear converges rates

More problems

1. Asynchronism

Some agents are active at time n, others aren't Random link failures
2. Noise

Gradients may be observed up to a random noise (online algorithms)
3. Constraints

$$
\text { Minimize } \sum_{n=1}^{N} f_{n}(x) \text { subject to } x \in C
$$

$$
\begin{aligned}
\tilde{x}_{n}^{k+1} & =\operatorname{proj}_{C}\left[x_{n}^{k}-\gamma_{k}\left(\nabla f_{n}\left(x_{n}^{k}\right)+\text { noise }\right)\right] \\
x_{n}^{k+1} & =\sum_{m \sim n} A_{k+1}(n, m) \tilde{x}_{m}^{k+1}
\end{aligned}
$$

Distributed stochastic gradient algorithm

Under technical conditions,
Convergence (Bianchi et al.'12): x_{n}^{k} tends to a KKT point x^{*}
Convergence rate (Morral et. al'12): If $x^{\star} \in \operatorname{int}(C)$

$$
{\sqrt{\gamma_{k}}}^{-1}\left(x_{n}^{k}-x^{\star}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \Sigma_{O P T}+\Sigma_{N E T}\right)
$$

- $\Sigma_{\text {OPT }}$ is the covariance corresponding to the centralized setting
- $\Sigma_{N E T}$ is the excess variance due to the distributed setting

Remark: $\Sigma_{N E T}=0$ for some protocols which can be characterized

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Alternating Direction Method of Multipliers

Consider the generic problem

$$
\min _{x} F(x)+G(M x)
$$

where F, G are convex. Rewrite as a constrained problem

$$
\min _{z=M x} F(x)+G(z)
$$

The augmented Lagrangian is:

$$
\mathcal{L}_{\rho}(x, z ; \lambda)=F(x)+G(z)+\langle\lambda, M x-z\rangle+\frac{\rho}{2}\|M x-z\|^{2}
$$

ADMM

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x} \mathcal{L}_{\rho}\left(x, z^{k} ; \lambda^{k}\right) \rightarrow \text { only } F \text { needed } \\
z^{k+1} & =\arg \min _{z} \mathcal{L}_{\rho}\left(x^{k+1}, z ; \lambda^{k}\right) \rightarrow \text { only } G \text { needed } \\
\lambda^{k+1} & =\lambda^{k}+\rho\left(M x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

Back to our problem

All functions $f_{n}: X \rightarrow \mathbb{R}$ are assumed convex. Consider the problem:

$$
\min _{u \in X} \sum_{n=1}^{N} f_{n}(u)
$$

Main trick: Define

$$
F: x=\left(x_{1}, \ldots, x_{N}\right) \mapsto \sum_{n} f_{n}\left(x_{n}\right)
$$

Equivalent problem:

$$
\min _{x \in X^{N}} F(x)+\iota_{\operatorname{sp}(1)}(x)
$$

where $\iota_{\operatorname{sp}(1)}(x)= \begin{cases}0 & \text { if } x_{1}=\cdots=x_{N} \\ +\infty & \text { otherwise }\end{cases}$

- F is separable in x_{1}, \ldots, x_{N}
- $G=\iota_{\mathrm{sp}(1)}$ couples the variables but is simple

ADMM illustrated

Set $\bar{x}^{k}=\frac{1}{N} \sum_{n} x_{n}^{k}$

Algorithm (see e.g. [Boyd'11])

For all $n, \quad \lambda_{n}^{k}=\lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\bar{x}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho}{2}\left\|\bar{x}^{k}-\rho^{-1} \lambda_{n}^{k}-y\right\|^{2}
$$

1. Transmit current estimates

ADMM illustrated

Set $\bar{x}^{k}=\frac{1}{N} \sum_{n} x_{n}^{k}$

Algorithm (see e.g. [Boyd'11])

For all $n, \quad \lambda_{n}^{k}=\lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\bar{x}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho}{2}\left\|\bar{x}^{k}-\rho^{-1} \lambda_{n}^{k}-y\right\|^{2}
$$

ADMM illustrated

Set $\bar{x}^{k}=\frac{1}{N} \sum_{n} x_{n}^{k}$

Algorithm (see e.g. [Boyd'11])

For all $n, \quad \lambda_{n}^{k}=\lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\bar{x}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho}{2}\left\|\bar{x}^{k}-\rho^{-1} \lambda_{n}^{k}-y\right\|^{2}
$$

ADMM illustrated

Set $\bar{x}^{k}=\frac{1}{N} \sum_{n} x_{n}^{k}$

Algorithm (see e.g. [Boyd'11])

For all $n, \quad \lambda_{n}^{k}=\lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\bar{x}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho}{2}\left\|\bar{x}^{k}-\rho^{-1} \lambda_{n}^{k}-y\right\|^{2}
$$

4. Compute $\lambda_{n}^{k}, x_{n}^{k+1}$ for all n

ADMM illustrated

Set $\bar{x}^{k}=\frac{1}{N} \sum_{n} x_{n}^{k}$
Algorithm (see e.g. [Boyd'11])
For all $n, \quad \lambda_{n}^{k}=\lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\bar{x}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho}{2}\left\|\bar{x}^{k}-\rho^{-1} \lambda_{n}^{k}-y\right\|^{2}
$$

4. Compute $\lambda_{n}^{k}, x_{n}^{k+1}$ for all n

The algorithm is parallel but not distributed on the graph

Subgraph consensus

Let $A_{1}, A_{2}, \cdots, A_{L}$ be subsets of agents

$$
A_{1}=\{1,3\}, A_{2}=\{2,3\}, A_{3}=\{3,4,5\}
$$

Subgraph consensus

Let $A_{1}, A_{2}, \cdots, A_{L}$ be subsets of agents

Subgraph consensus

Let $A_{1}, A_{2}, \cdots, A_{L}$ be subsets of agents

Subgraph consensus

Let $A_{1}, A_{2}, \cdots, A_{L}$ be subsets of agents

$$
\begin{aligned}
& \binom{x_{1}}{x_{3}} \in \operatorname{sp}\binom{1}{1} \\
& \binom{x_{2}}{x_{3}} \in \operatorname{sp}\binom{1}{1} \\
& \left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \in \operatorname{sp}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

$$
A_{1}=\{1,3\}, A_{2}=\{2,3\}, A_{3}=\{3,4,5\}
$$

Subgraph consensus

Let $A_{1}, A_{2}, \cdots, A_{L}$ be subsets of agents

$A_{1}=\{1,3\}, A_{2}=\{2,3\}, A_{3}=\{3,4,5\}$
consensus within subgraphs \Leftrightarrow global consensus

Example (Cont.)

The initial problem is

$$
\begin{gathered}
\min _{x \in X^{N}} F(x)+G(M x) \\
\text { where } M x=\left(\begin{array}{l}
x_{1} \\
x_{3} \\
x_{2} \\
x_{3} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \text { that is: } M=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

and where G is the indicator function of the subspace of vectors of the form

$$
\left(\begin{array}{l}
\alpha \\
\alpha \\
\beta \\
\beta \\
\delta \\
\delta \\
\delta
\end{array}\right)
$$

Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas'08])

$$
\text { For all } \begin{aligned}
n, \quad \Lambda_{n}^{k} & =\Lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\chi_{n}^{k}\right) \\
x_{n}^{k+1} & =\arg \min _{y} f_{n}(y)+\frac{\rho\left|\sigma_{n}\right|}{2}\left\|\chi_{n}^{k}-\rho^{-1} \Lambda_{n}^{k}-y\right\|^{2}
\end{aligned}
$$

where $\left|\sigma_{n}\right|=$ number of "neighbors" of n

1. For each subgraph, compute average $\bar{x}_{A_{\ell}}^{k}$

Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas'08])

$$
\text { For all } \begin{aligned}
n, \quad \Lambda_{n}^{k} & =\Lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\chi_{n}^{k}\right) \\
x_{n}^{k+1} & =\arg \min _{y} f_{n}(y)+\frac{\rho\left|\sigma_{n}\right|}{2}\left\|\chi_{n}^{k}-\rho^{-1} \Lambda_{n}^{k}-y\right\|^{2}
\end{aligned}
$$

where $\left|\sigma_{n}\right|=$ number of "neighbors" of n

1. For each subgraph, compute average $\bar{x}_{A_{\ell}}^{k}$

Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas'08])

For all $n, \quad \Lambda_{n}^{k}=\Lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\chi_{n}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho\left|\sigma_{n}\right|}{2}\left\|\chi_{n}^{k}-\rho^{-1} \Lambda_{n}^{k}-y\right\|^{2}
$$

where $\left|\sigma_{n}\right|=$ number of "neighbors" of n

1. For each subgraph, compute average $\bar{x}_{A_{\ell}}^{k}$

Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas'08])

For all $n, \quad \Lambda_{n}^{k}=\Lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\chi_{n}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho\left|\sigma_{n}\right|}{2}\left\|\chi_{n}^{k}-\rho^{-1} \Lambda_{n}^{k}-y\right\|^{2}
$$

where $\left|\sigma_{n}\right|=$ number of "neighbors" of n

2. For each n, compute $\chi_{n}^{k}=$ Average $\left(\bar{x}_{A_{\ell}}^{k}: \ell\right.$ s.t. $\left.n \in A_{\ell}\right)$

Distributed ADMM illustrated

Distributed ADMM (early works by [Schizas'08])

For all $n, \quad \Lambda_{n}^{k}=\Lambda_{n}^{k-1}+\rho\left(x_{n}^{k}-\chi_{n}^{k}\right)$

$$
x_{n}^{k+1}=\arg \min _{y} f_{n}(y)+\frac{\rho\left|\sigma_{n}\right|}{2}\left\|\chi_{n}^{k}-\rho^{-1} \Lambda_{n}^{k}-y\right\|^{2}
$$

where $\left|\sigma_{n}\right|=$ number of "neighbors" of n

3. For each n, compute λ_{n}^{k} and x_{n}^{k+1}

Linear convergence of the Distributed ADMM

Assumption: $H_{\star}:=\sum_{n} \nabla^{2} f_{n}\left(x_{\star}\right)>0$ at the minimizer x_{\star}

$$
\left\|x_{n}^{k}-x_{*}\right\| \sim \alpha^{k} \quad \text { as } k \rightarrow \infty
$$

- [Shi et al.' 13] non-asymptotic bound but pessimistic
- [lutzeler et al.' 16] asymptotic but tight

Example: ring network

Define $\alpha=\lim _{k \rightarrow \infty}\left\|x_{n}^{k}-x_{*}\right\|^{1 / k}$
Set $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{n}^{\prime \prime}\left(x_{\star}\right)=\sigma^{2}$

$$
\alpha \geq \sqrt{\frac{1+\cos \frac{2 \pi}{N}}{2\left(1+\sin \frac{2 \pi}{N}\right)}} \text { with equality when } \rho=\frac{\sigma^{2}}{2 \sin \frac{2 \pi}{N}}
$$

Asynchronous D-ADMM

- All agents must complete their arg min computation before combining
- The network waits for the slowest agents

Our objective: allow for asynchronism

Revisiting ADMM as a fixed point algorithm

Set $\zeta^{k}=\lambda^{k}+\rho z^{k}$. Fact: $\lambda^{k}=P\left(\zeta^{k}\right)$ where P is a projection.
ADMM can be written as a fixed point algorithm [Gabay,83] [Eckstein,92]

$$
\zeta^{k+1}=J\left(\zeta^{k}\right)
$$

where J is firmly non-expansive i.e.,

$$
\left\|J(x)-\left.J(y)\right|^{2} \leq\right\| x-y\left\|^{2}-\right\|(I-J)(x)-(I-J)(y) \|^{2}
$$

Random coordinate descent

Introducing the block-components of $\zeta^{k+1}=J\left(\zeta^{k}\right)$:

$$
\left(\begin{array}{c}
\zeta_{1}^{k+1} \\
\vdots \\
\zeta_{\ell}^{k+1} \\
\vdots \\
\zeta_{L}^{k+1}
\end{array}\right)=\left(\begin{array}{c}
J_{1}\left(\zeta^{k}\right) \\
\vdots \\
J_{\ell}\left(\zeta^{k}\right) \\
\vdots \\
J_{L}\left(\zeta^{k}\right)
\end{array}\right)
$$

Random coordinate descent

If only one block $\ell=\ell(k+1)$ is active at time $k+1$:

$$
\left(\begin{array}{c}
\zeta_{1}^{k+1} \\
\vdots \\
\zeta_{\ell}^{k+1} \\
\vdots \\
\zeta_{L}^{k+1}
\end{array}\right)=\left(\begin{array}{c}
\zeta_{1}^{k} \\
\vdots \\
J_{\ell}\left(\zeta^{k}\right) \\
\vdots \\
\zeta_{L}^{k}
\end{array}\right)
$$

Random coordinate descent

If only one block $\ell=\ell(k+1)$ is active at time $k+1$:

$$
\left(\begin{array}{c}
\zeta_{1}^{k+1} \\
\vdots \\
\zeta_{\ell}^{k+1} \\
\vdots \\
\zeta_{L}^{k+1}
\end{array}\right)=\left(\begin{array}{c}
\zeta_{1}^{k} \\
\vdots \\
J_{\ell}\left(\zeta^{k}\right) \\
\vdots \\
\zeta_{L}^{k}
\end{array}\right)
$$

Convergence of the Asynchronous ADMM [lutzeler'13]

This algorithm still converges if active components are chosen at random

Main idea: For a well-chosen norm $\left\|\|\right.$.$\| and a fixed point \zeta^{\star}$ of J, prove

$$
\mathbb{E}\left(\left\|\zeta^{k+1}-\zeta^{\star}\right\|^{2} \mid \mathcal{F}_{k}\right) \leq\left\|\zeta^{k}-\zeta^{\star}\right\|^{2}
$$

$\Rightarrow \zeta^{k}$ is getting "stochastically" closer to ζ^{\star}

Asynchronous ADMM explicited

Activate two nodes $A_{\ell}=\{m, n\}$

Asynchronous ADMM explicited

Activate two nodes $A_{\ell}=\{m, n\}$

- Agent n computes

$$
x_{n}^{k+1}=\arg \min _{x} f_{n}(x)+\sum_{j \sim k}\left(\left\langle x, \lambda_{j, n}^{k}\right\rangle+\frac{\rho}{2}\left\|x-\bar{x}_{j, n}^{k}\right\|^{2}\right)
$$

and similarly for Agent m.

Asynchronous ADMM explicited

Activate two nodes $A_{\ell}=\{m, n\}$

- Agent n computes

$$
x_{n}^{k+1}=\arg \min _{x} f_{n}(x)+\sum_{j \sim k}\left(\left\langle x, \lambda_{j, n}^{k}\right\rangle+\frac{\rho}{2}\left\|x-\bar{x}_{j, n}^{k}\right\|^{2}\right)
$$

and similarly for Agent m.

- They exchange x_{m}^{k+1} and x_{n}^{k+1}
- Agent n computes

$$
\begin{gathered}
\bar{x}_{m, n}^{k+1}=\frac{1}{2}\left(x_{m}^{k+1}+x_{n}^{k+1}\right), \\
\lambda_{m, n}^{k+1}=\lambda_{m, n}^{k}+\rho \frac{x_{n}^{k+1}-x_{m}^{k+1}}{2}
\end{gathered}
$$

and similarly for Agent m.

Generalization: Distributed Vũ-Condat algorithm

- Vũ-Condat algorithm generalizes ADMM (allows "gradients" evaluations)
- Distributed Vũ-Condat algorithm is applicable using the same principle
- Bianchi'16, Fercoq'17 provide a random coordinate descent version
- The algorithm is asynchronous at the node level and not at the edge level

Stochastic Optimization

$$
\min _{x \in \mathcal{X}} \sum_{n=1}^{N} \mathbb{E}\left(f_{n}\left(x, \xi_{n}\right)\right)
$$

- Law of ξ_{n} unknown, but revealed on-line through random copies $\xi_{n}^{1}, \xi_{n}^{2}, \ldots$
- Stochastic approximation: at time k, replace the unknown function $\mathbb{E}\left(f_{n}\left(., \xi_{n}\right)\right)$ by its random version $f_{n}\left(., \xi_{n}^{k}\right)$
Example : stochastic gradient descent
- Thesis of A. Salim: Stochastic versions of generic optimization algorithms (Forward-Backward, Douglas-Rachford, ADMM, Vũ-Condat, etc.)
- Byproduct : distributed stochastic algorithms

Outline

Distributed gradient descent

Distributed Alternating Direction Method of Multipliers (D-ADMM)

Total Variation Regularization on Graphs

Total variation regularization (1/2)

Notation: On a graph $G=(V, E)$, the total variation of $x \in \mathbb{R}^{V}$ is

$$
\operatorname{TV}(x)=\sum_{\{i, j\} \in E}\left|x_{i}-x_{j}\right|
$$

General problem:

$$
\min _{x \in \mathbb{R}^{V}} F(x)+\mathrm{TV}(x)
$$

- Trend filtering: $F(x)=\frac{1}{2}\|x-m\|^{2}$ where $m \in \mathbb{R}^{V}$ are noisy measurements
- Graph inpainting: complete possibly missing measurements on the nodes

Proximal gradient algorithm:

$$
x_{n+1}=\operatorname{prox}_{\gamma \mathrm{TV}}\left(x_{n}-\gamma \nabla F\left(x_{n}\right)\right)
$$

- Computing prox $_{\text {TV }}$ is difficult over large unstructured graphs
- But efficient algorithms exist for 1D-graphs (Mammen'97) (Condat'13)

Total variation regularization (2/2)

Write TV as an expectation: Let ξ be simple random walk in G of fixed length

$$
\operatorname{TV}_{G}(x) \propto \mathbb{E}\left(\mathrm{TV}_{\xi}(x)\right)
$$

Algorithm (Salim'16) At time n,

- Draw a random walk ξ_{n+1}
- Compute $x_{n+1}=\operatorname{prox}_{\gamma_{n}} \mathrm{TV}_{\xi_{n+1}}\left(x_{n}-\gamma_{n} \nabla F\left(x_{n}\right)\right) \rightarrow$ easy, 1D

Hidden difficulty: one should avoid loops when choosing the walk...

Trend filtering example. Cost function vs time(s). Stochastic block model 10^{5} nodes, 25.10^{6} edges.
Blue: Stochastic proximal gradient, Green: dual proximal gradient, Red: dual L-BFGS-B

