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A fundamental sta-s-cal learning roblem

		Given	a	sample	drawn	from	some	unknown	probability	distribu6on,	

			Learn	as	much	as		possible	about	that	sample-genera6ng	distribu6on.	
	
			The	first	two	ques6ons	to	ask:	
	
			What	prior	knowledge	does	the	learn	have?	
	
			What	does	the	learn	wish	to	deduce	about	that	distribu6on?	



The most ambi-ous framework

Ø 		Assume	the	learner	starts	with	no	prior	knowledge	(namely,	no	
assump6ons	about	the	unknown	distribu6ons).	

Ø 		The	learner	aims	to	find	what	that	distribu6on	is	(namely,	come	up	
						with	a	reliable	6ght	es6ma6on	of	that	distribu6on,	say	in	the	total	
						variance	sense).		
	
			



Such an ambi-ous task is provably impossible

				Proof	idea:	
				Consider	a	discrete	finite	domain	set.	Denote	its	size	by	N.	
	
				Any	sample	of	size	n<	sqrt(N)	containing	no	repe88ons,	is	as	
				likely	to	have	been	generated	by	a	uniform	distribu8on	over	X	
				as	it	is	to	have	been	generated	by	a	uniform	distribu8on	over	a	
				subset	of	size	|X|/2	(that	contains	all	members	of	that	sample).	



Both types of problem restric-on are important

	
Ø 					Assuming	the	genera6ng	distribu6on	belongs	to	(or	is	well		
								approximated	by	a	member	of)	a	restricted	family	of	distribu6ons		
							(e.g.,	mixtures	of	Gaussian	distribu6ons).	

Ø 				Require	the	learner	to	discover	only	some	limited	informa6on	
about	the	unknown	distribu6on		

			(being	able	to	predict	labels,	cluster,	find	means	or	higher	order	
					moments,	etc.)	



Density estimation

Unknown 
Distribution 𝒟

i.i.d. samples	 𝒟 ≈𝒟	
(in 𝐿↓1 -distance)



Density estimation

Unknown 
Distribution 𝒟

i.i.d. samples	 𝒟 ≈𝒟	
(in 𝐿↓1 -distance)

Fundamental & well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. ’14; Ashtiani et al. ’17; Diakonikolas et al. ‘14-’18, etc.]

Q [D ‘16]: “For a distribution class ℱ, is there a complexity measure that 
characterizes the sample complexity of ℱ?”



Learning Gaussians

Single Gaussian in ℝ↑𝒅 .
𝑂(𝑑↑2 /𝜖↑2  ) samples are sufficient to
recover Gaussian up to 𝐿↓1 -error 𝜖.



Learning Gaussians

Single Gaussian in ℝ𝑑↑ .
𝑂(𝑑2/ε2) samples are sufficient to
recover Gaussian up to 𝐿1↓ -error 𝜖.

Mixture of 𝒌 Gaussians in Rd

Q: Are	𝑂(𝑘𝑑2/ε2 ) samples sufficient?
Know that 𝑂 (𝑘𝑑2↑ /𝜖4↑  ) are sufficient. [Ashtiani &BD 
‘17]

Note: We aim to recover density, not parameters of the mixture.



Main Tool: Sample Compression Schemes

Poster #100

•  “Other things being equal, simpler explanations are generally 
better…” [William of Ockham]
•  One manifestation of this in learning theory is “sample compression”.

   A sample compression scheme is a way to replace every training sample with a small
•  subsample that conveys all the relevant information contain in the full sample.

•  For example, any set of points on the line, labeled by membership in some interval,
•  can be replaced by just the leftmost and rightmost positive labeled points.

•  Littlestone, Warmuth 1986 showed that the existence of such a scheme for a class of 
binary valued functions implies PAC learnability of that class.

•  Moran, Yehudayoff 2016 showed that the convers holds as well.



Main Contribution

We introduce a simple & sample-efficient technique for density 
estimation via compression schemes.

Our scheme allows compressing any large enough sample generated by 
a mixture of Gaussians to a subsample whose size is independent of the 
size of the full sample.

Our compression scheme yields upper bounds of O(kd2/ε2) (up to 
logarithmic factors) of mixtures of k Gaussians in dimension d.

We also prove matching lower bounds on the sample complexity of this 
task.
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𝜇	 𝜇+𝜎	𝜇−𝜎	

Compressing Gaussians in ℝ

𝑋↓1 	 𝑋↓2 	

𝒩(𝜇, 𝜎↑2 )	

Two samples are sufficient to encode 𝒩(𝜇, 𝜎↑2 ).	

𝑋↓2 − 𝑋↓1 /2 
≈𝜎		

𝑋↓2 + 𝑋↓1 /2 
≈𝜇	



Compression Framework
ℱ: a class of distributions (e.g. Gaussians)

Knows 𝒟, ℱ	 Knows ℱ	



Compression Framework

i.i.d. samples
from 𝒟∈ℱ	
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ℱ: a class of distributions (e.g. Gaussians)



Compression Framework

If Alice sends 𝑡 points and Bob approximates 𝒟 then we say
ℱ has compression of size 𝑡.

i.i.d. samples
from 𝒟∈ℱ	

𝒟 ≈𝒟	reconstruct	

Knows 𝒟, ℱ	 Knows ℱ	

ℱ: a class of distributions (e.g. Gaussians)

Compression𝑡 points	



Compression Theorem
Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size 𝒕 then 
sample complexity to learn ℱ (up to 𝐿↓1 -error 𝜖) is
𝑶 (𝒕/𝝐↑𝟐  ).

Small compression schemes imply
sample-efficient algorithms.

O (∙)	hides polylog factors



Compression Theorem
Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size 𝒕 then 
sample complexity to learn ℱ (up to 𝐿↓1 -error 𝜖) is
𝑶 (𝒕/𝝐↑𝟐  ).

Small compression schemes imply
sample-efficient algorithms.

Proof idea.
•  Compression is used to find small set of “representative” distributions.
•  Now, we can learn with respect to a finite class.

O (∙)	hides polylog factors
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Cheat: assume a uniform mixture.
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Compression Of Mixtures

𝑋↓1 	 𝑋↓2 	 𝑋↓3 	 𝑋↓4 	 𝑋↓5 	𝑋↓6 	

Cheat: assume a uniform mixture.

𝒩(𝜇↓1 , 𝜎↓1↑2 )	 𝒩(𝜇↓2 , 𝜎↓2↑2 )	

𝒩(𝜇↓3 , 𝜎↓3↑2 )	

𝑋↓1 ≈𝜇↓1 − 𝜎↓1 	
𝑋↓2 ≈𝜇↓1 + 𝜎↓1 	

𝑋↓3 ≈𝜇↓2 − 𝜎↓2 	
𝑋↓4 ≈𝜇↓2 + 𝜎↓2 	

𝑋↓5 ≈𝜇↓3 − 𝜎↓3 	
𝑋↓6 ≈𝜇↓3 + 𝜎↓3 	



Compression Of Mixtures

If ℱ has a compression of size 𝒕 then
𝒌 mixtures of ℱ have a compression of size ≈𝒌𝒕.

𝑋↓1 	 𝑋↓2 	 𝑋↓3 	 𝑋↓4 	 𝑋↓5 	𝑋↓6 	

Cheat: assume a uniform mixture.

𝒩(𝜇↓1 , 𝜎↓1↑2 )	 𝒩(𝜇↓2 , 𝜎↓2↑2 )	

𝒩(𝜇↓3 , 𝜎↓3↑2 )	



Compression Theorem for Mixtures
Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size 𝒕 then 
sample complexity to learn 𝒌 mixtures of ℱ (up to 𝐿↓1 -error 𝜖) is
𝑶 (𝒌𝒕/𝝐↑𝟐  ).

Small compression schemes imply
sample-efficient algorithms for mixtures.

O (∙)	hides polylog factors



Compression Theorem for Mixtures
Theorem [ABHLMP ‘18] If ℱ has a compression scheme of size 𝒕 then 
sample complexity to learn 𝒌 mixtures of ℱ (up to 𝐿↓1 -error 𝜖) is
𝑶 (𝒌𝒕/𝝐↑𝟐  ).

Small compression schemes imply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
     (e.g. VC-dimension)?

O (∙)	hides polylog factors



Application: Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid 
is sufficient to recover 𝒩(𝜇, Σ). 
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Ellipsoid defined by 𝜇, Σ.	
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Application: Learning Mixtures of Gaussians

Encoding center and axes of ellipsoid 
is sufficient to recover 𝒩(𝜇, Σ). 

In general, 𝑂 (𝑑↑2 ) compression is 
possible for Gaussians in ℝ↑𝑑 .

𝑣↓1 	 𝑣↓2 	

Ellipsoid defined by 𝜇, Σ.	
Points drawn from 𝒩(𝜇, Σ).	

𝑋↓1 	

𝑋↓2 	



Application: Learning Mixtures of Gaussians
Theorem [ABHLMP ’18] Sample complexity for learning mixtures of 
𝑘 Gaussians in ℝ↑𝑑  up to 𝐿↓1 -error 𝜖 is
𝐎 (𝒌𝒅↑𝟐 /𝝐↑𝟐  )

O (∙)	hides polylog factors

•  Improves upon:
•  𝑂( 𝑘↑4 𝑑↑4 / 𝜖↑2 ) via a VC-dimension argument
•  𝑂 (𝑘𝑑↑2 / 𝜖↑4 ) [Ashtiani, Ben-David, Mehrabian ‘17]

•  This is nearly-tight! We show Ω (𝑘𝑑↑2 / 𝜖↑2 ) samples are necessary.
•  Improves on previous bound of Ω (𝑘𝑑/ 𝜖↑2 ) [Suresh et al. NeurIPS ‘14]

• Compression ideas can be extended to agnostic learning as well.



Summary
• We introduced a compression framework for density estimation.
• Application: improved upper bounds for learning mixtures of 

Gaussians.
• Q: Other applications of compression?
• Q: Can we get a more computationally-efficient algorithm?

• We also show a nearly-matching lower bound for learning mixtures 
of Gaussians.



Summary

Thank you!

• We introduced a compression framework for density estimation.
• Application: improved upper bounds for learning mixtures of 

Gaussians.
• Q: Other applications of compression?
• Q: Can we get a more computationally-efficient algorithm?

• We also show a nearly-matching lower bound for learning mixtures 
of Gaussians.


