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A fundamental statistical learning roblem

Given a sample drawn from some unknown probability distribution,
Learn as much as possible about that sample-generating distribution.
The first two questions to ask:

What prior knowledge does the learn have?

What does the learn wish to deduce about that distribution?



The most ambitious framework

» Assume the learner starts with no prior knowledge (namely, no
assumptions about the unknown distributions).

» The learner aims to find what that distribution is (namely, come up
with a reliable tight estimation of that distribution, say in the total

variance sense).



Such an ambitious task is provably impossible

Proof idea:
Consider a discrete finite domain set. Denote its size by N.

Any sample of size n< sqrt(N) containing no repetitions, is as
likely to have been generated by a uniform distribution over X
as it is to have been generated by a uniform distribution over a
subset of size [X[/2 (that contains all members of that sample).



Both types of problem restriction are important

» Assuming the generating distribution belongs to (or is well
approximated by a member of) a restricted family of distributions
(e.g., mixtures of Gaussian distributions).

» Require the learner to discover only some limited information
about the unknown distribution

(being able to predict labels, cluster, find means or higher order
moments, etc.)



Density estimation

i.i.d. samples D ~D
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Fundamental & well-studied problem with many applications!
[Feldman et al. ’06; Suresh et al. '14; Ashtiani et al. '17; Diakonikolas et al. ‘14-"18, etc.]

Q [D16]: “For a distribution class F, is there a complexity measure that
characterizes the sample complexity of F?”



Learning Gaussians
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Mixture of # Gaussians in R4
Q: Are o@ka?/e2 ) samples sufficient?

Know that o @1 /et1 ) are sufficient. [Ashtiani &BD
‘17]

Note: We aim to recover density, not parameters of the mixture.



Main Tool: Sample Compression Schemes

« “Other things being equal, simpler explanations are generally

better...” [William of Ockham]
* One manifestation of this in learning theory is “sample compression”.

A sample compression scheme is a way to replace every training sample with a small
subsample that conveys all the relevant information contain in the full sample.

For example, any set of points on the line, labeled by membership in some interval,
can be replaced by just the leftmost and rightmost positive labeled points.

Littlestone, Warmuth 1986 showed that the existence of such a scheme for a class of
binary valued functions implies PAC learnability of that class.

Moran, Yehudayoff 2016 showed that the convers holds as well.
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Main Contribution

We introduce a simple & sample-efficient technique for density
estimation via compression schemes.

Our scheme allows compressing any large enough sample generated by
a mixture of Gaussians to a subsample whose size is independent of the
size of the full sample.

Our compression scheme yields upper bounds of O(kd?/ &?) (up to
logarithmic factors) of mixtures of k Gaussians in dimension d.

We also prove matching lower bounds on the sample complexity of this
task.
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Compressing Gaussians in R
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Two samples are sufficient to encode N (4, 072 ).
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Compression Framework

F: a class of distributions (e.g. Gaussians)

Y .
i.i.d. samples ¢ ° ¢ points
from per oo ©

— Compression
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Knows ¥

If Alice sends #points and Bob approximates D then we say
F has compression of size ¢



Compression Theorem

Theorem [aBHLMP ‘18] If # has a compression scheme of size ¢ then

sample complexity to learn  (up to zu -error ¢) is
O (t/eT2 ).

o ¢) hides polylog factors

Small compression schemes imply
sample-efficient algorithms.
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Proof idea.
« Compression is used to find small set of “representative” distributions.
« Now, we can learn with respect to a finite class.
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Cheat: assume a uniform mixture. N (i3, ai312)
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Compression Of Mixtures

Cheat: assume a uniform mixture. N (@3, 0i312)

If F has a compression of size ¢ then
k mixtures of F have a compression of size ~£t.



Compression Theorem for Mixtures
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Compression Theorem for Mixtures

Theorem [aBHLMP ‘18] If # has a compression scheme of size ¢ then

sample complexity to learn # mixtures of 7 (up to zu-error ¢) is
O (kt/eT2 ).

o ¢) hides polylog factors

Small compression schemes imply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
(e.g. VC-dimension)?




Application: Learning Mixtures of Gaussians
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Application: Learning Mixtures of Gaussians
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Application: Learning Mixtures of Gaussians
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Application: Learning Mixtures of Gaussians

Theorem [ABHLMP 18] Sample complexity for learning mixtures of

# Gaussians in r7z up to zu-error «1is
O (kd12 /€2 )

o ) hides polylog factors

* Improves upon:
* O(kT4 dT4 /€72 ) via a VC-dimension argument
o 0 (kdT2 [€T4) [Ashtiani, Ben-David, Mehrabian “17]

* This is nearly-tight! We show Q (4472 /€712 ) samples are necessary.
* Improves on previous bound of ) (4d/eT2 ) [Suresh et al. NeurIPS “14]

» Compression ideas can be extended to agnostic learning as well.




Summary

* We introduced a compression framework for density estimation.
* Application: improved upper bounds for learning mixtures of
Gaussians.
* Q: Other applications of compression?
* Q: Can we get a more computationally-efficient algorithm?
« We also show a nearly-matching lower bound for learning mixtures
of Gaussians.
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Thank you!



