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Abstract
The field of knowledge compilation establishes the tractability of many tasks by
studying how to compile them to Boolean circuit classes obeying some requirements
such as structuredness, decomposability, and determinism. However, in other settings
such as intensional query evaluation on databases, we obtain Boolean circuits that
satisfy some width bounds, e.g., they have bounded treewidth or pathwidth. In this
work, we give a systematic picture of many circuit classes considered in knowledge
compilation and show how they can be systematically connected to width measures,
through upper and lower bounds. Our upper bounds show that bounded-treewidth cir-
cuits can be constructively converted to d-SDNNFs, in time linear in the circuit size
and singly exponential in the treewidth; and that bounded-pathwidth circuits can sim-
ilarly be converted to uOBDDs. We show matching lower bounds on the compilation
of monotone DNF or CNF formulas to structured targets, assuming a constant bound
on the arity (size of clauses) and degree (number of occurrences of each variable):
any d-SDNNF (resp., SDNNF) for such a DNF (resp., CNF) must be of exponen-
tial size in its treewidth, and the same holds for uOBDDs (resp., n-OBDDs) when
considering pathwidth. Unlike most previous work, our bounds apply to any for-
mula of this class, not just a well-chosen family. Hence, we show that pathwidth
and treewidth respectively characterize the efficiency of compiling monotone DNFs
to uOBDDs and d-SDNNFs with compilation being singly exponential in the corre-
sponding width parameter. We also show that our lower bounds on CNFs extend to
unstructured compilation targets, with an exponential lower bound in the treewidth
(resp., pathwidth) when compiling monotone CNFs of constant arity and degree to
DNNFs (resp., nFBDDs).
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1 Introduction

Knowledge compilation studies how problems can be solved by compiling them into
classes of Boolean circuits or binary decision diagrams (BDDs) to which general-
purpose algorithms can be applied. This field has introduced numerous such classes
or compilation targets, defined by various restrictions on the circuits or BDDs, and
studied which operations can be solved on them; e.g., the class of d-DNNFs requires
that negation is only applied at the leaves, ∧-gates are on disjoint variable subsets, and
∨-gates have mutually exclusive inputs. However, a different way to define restricted
classes is to bound some graph-theoretic width parameters, e.g., treewidth, which
measures how the data can be decomposed as a tree, or pathwidth, the special case
of treewidth with path-shaped decompositions. Such restrictions have been used in
particular in the field of database theory and probabilistic databases [49] in the so-
called intensional approach where we compute a lineage circuit [34] that represents
the output of a query or the possible worlds that make it true, and where these circuits
can sometimes be shown to have bounded treewidth [2, 3, 33].

At first glance, classes such as bounded-treewidth circuits seem very different
from usual knowledge compilation classes such as d-DNNF. Yet, for some tasks such
as probability computation (computing the probability of the circuit under an inde-
pendent distribution on the variables), both classes are known to be tractable: the
problem can be solved in linear time on d-DNNFs by definition of the class [26], and
for bounded-treewidth circuits we can use message passing [36] to solve probability
computation in time linear in the circuit and exponential in the treewidth. This hints
at the existence of a connection between traditional knowledge compilation classes
and bounded-width classes.

This paper presents such a connection and shows that the width of circuits is inti-
mately linked to many well-known knowledge compilation classes. Specifically, we
show a link between the treewidth of Boolean circuits and the width of their repre-
sentations in common circuit targets; and show a similar link between the pathwidth
of Boolean circuits and the width of their representation in BDD targets. We demon-
strate this link by showing upper bound results on compilation targets, to show that
bounded-width circuits can be compiled to circuits or BDD targets in linear time
and with singly exponential complexity in the width parameter. We also show cor-
responding lower bound results that establish that these compilation targets must
be exponential in the width parameters, already for a restricted class of Boolean
formulas. We now present our contributions and results in more detail.

The first contribution of this paper (in Section 3) is to give a systematic picture of
the 12 knowledge compilation circuit classes that we investigate. We classify them
along three independent axes:

– Conjunction: we distinguish between BDD classes, such as OBDDs (ordered
binary decision diagrams [18]), where logical conjunction is only used to test the
value of a variable and where computation follows a path in the structure; and
circuit classes which allow decomposable conjunctions and where computation
follows a tree.
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– Structuredness: we distinguish between structured classes, where the circuit
or BDD always decomposes the variables along the same order or v-tree
[40], and unstructured classes where no such restriction is imposed except
decomposability (each variable must be read at most once).

– Determinism: we distinguish between classes that feature no disjunctions beyond
decision on a variable value (OBDDs, FBDDs, and dec-DNNFs), classes that
feature unambiguous or deterministic disjunctions (uOBDDs, uFBDDs, and d-
DNNFs), and classes that feature arbitrary disjunctions (nOBDDs, nFBDDs, and
DNNFs).

This landscape is summarized in Fig. 1, and we review known translations and
separation results that describe the relative expressive power of these features.

The second contribution of this paper (in Sections 4 and 5) is to show an
upper bound on the compilation of bounded-treewidth classes to d-SDNNFs, and
of bounded-pathwidth classes to OBDD variants. For pathwidth, existing work had
already studied the compilation of bounded-pathwidth circuits to OBDDs [34, Corol-
lary 2.13], which can be made constructive [4, Lemma 6.9]. Specifically, they show
that a circuit of pathwidth � k can be converted in polynomial time into an OBDD
of width � 2(k+2)2k+2

. Our first contribution is to show that, by using unambiguous
OBDDs (uOBDDs), we can do the same but with linear time complexity, and with
the size of the uOBDD as well as its width (in the classical knowledge compilation
sense) being singly exponential in the pathwidth. Specifically:

Result 1 (see Theorem 4.4) Given as input a Boolean circuit C of pathwidth k on n

variables, we can compute in time O(|C| × f (k)) a complete uOBDD equivalent to
C of width � f (k) and size O(n × f (k)), where f is singly exponential.

For treewidth, we show that bounded-treewidth circuits can be compiled to the
class of d-SDNNF circuits:

Result 2 (see Corollary 4.3) Given as input a Boolean circuit C of treewidth k on n

variables, we can compute in time O(|C| × f (k)) a complete d-SDNNF equivalent
to C of width � f (k) and size O(n × f (k)), where f is singly exponential.

The proof of Result 2, and its variant that shows Result 1, is quite challenging: we
transform the input circuit bottom-up by considering all possible valuations of the
gates in each bag of the tree decomposition, and keeping track of additional informa-
tion to remember which guessed values have been substantiated by a corresponding
input. Result 2 generalizes a recent theorem of Bova and Szeider in [16] which we
improve in two ways. First, our result is constructive, whereas [16] only shows a
bound on the size of the d-SDNNF, without bounding the complexity of effectively
computing it. Second, our bound is singly exponential in k, whereas [16] is dou-
bly exponential; this allows us to be competitive with message passing (also singly
exponential in k), and we believe it can be useful for practical applications. We also
explain how Result 2 implies the tractability of several tasks on bounded-treewidth
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Fig. 1 Dimensions of the knowledge compilation classes consider in this paper (left), and diagram of the
classes (right). Arrows indicate polynomial-time compilation; all classes are separated and no arrows are
missing (except those implied by transitivity). Double arrows indicate that the classes are exponentially
separated; when an arrow is not double, quasi-polynomial compilation in the reverse direction exists

circuits, e.g., probabilistic query evaluation, enumeration [1], quantification [22],
MAP inference [31], etc.

The third contribution of this paper is to show lower bounds on how efficiently we
can convert from width-based classes to the compilation targets that we study. Our
bounds already apply to a weaker formalism of width-based circuits, namely, mono-
tone formulas in CNF (conjunctive normal form) or DNF (disjunctive normal form).
Our first two bounds (in Sections 6 and 7) are shown for structured compilation tar-
gets, i.e., OBDDs, where we follow a fixed order on variables, and SDNNFs, where
we follow a fixed v-tree; and they apply to arbitrary monotone CNFs and DNFs. The
first lower bound concerns pathwidth and OBDD representations: we show that, up
to factors in the formula arity (maximal size of clauses) and degree (maximal number
of variable occurrences), any OBDD for a monotone CNF or DNF must be of width
exponential in the pathwidth pw(ϕ) of the formula ϕ. Formally:

Result 3 (Corollary 7.5) For any monotone CNF ϕ (resp., monotone DNF ϕ) of
constant arity and degree, the size of the smallest nOBDD (resp., uOBDD) computing
ϕ is 2Ω(pw(ϕ)).

This result generalizes several existing lower bounds in knowledge compilation
that exponentially separate CNFs from OBDDs, such as [30] and [15, Theorem 19].

Our second lower bound shows the analogue of Result 3 for the treewidth tw(ϕ)

of the formula ϕ and (d-)SDNNFs:

Result 4 (Corollary 7.6) For any monotone CNF ϕ (resp., monotone DNF ϕ) of con-
stant arity and degree, the size of the smallest SDNNF (resp., d-SDNNF) computing
ϕ is 2Ω(tw(ϕ)).

These two lower bounds contribute to a vast landscape of knowledge compilation
results giving lower bounds on compiling specific Boolean functions to restricted
circuits classes, e.g., [15, 30, 43] to OBDDs, [19] to dec-SDNNF, [8] to senten-
tial decision diagrams (SDDs), [14, 41] to d-SDNNF, [14, 20, 21] to d-DNNFs and
DNNFs. However, all those lower bounds (with the exception of some results in
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[20, 21]) apply to well-chosen families of Boolean functions (usually CNF), whereas
Results 3 and 4 apply to any monotone CNF and DNF. Together with Result 1, these
generic lower bounds point to a strong relationship between width parameters and
structure representations, on monotone CNFs and DNFs of constant arity and degree.
Specifically, the smallest width of OBDD representations of any such formula ϕ is in
2Θ(pw(ϕ)), i.e., precisely singly exponential in the pathwidth; and an analogous bound
applies to d-SDNNF size and treewidth of DNFs.

To prove these two lower bounds, we leverage known results from knowledge
compilation and communication complexity [14] (in Section 6) of which we give a
unified presentation. Specifically, we show that Boolean functions captured by uOB-
DDs (resp., nOBDDs) and d-SDNNF (resp., SDNNF) variants can be represented
via a small cover (resp., disjoint cover) of so-called rectangles. We also show two
Boolean functions (set covering and set intersection) which are known not to have
any such covers. We then bootstrap the lower bounds on these two functions to a gen-
eral lower bound in Section 7, by rephrasing pathwidth and treewidth to new notions
of pathsplitwidth and treesplitwidth, which intuitively measure the performance of
a variable ordering or v-tree. We then show that, for DNFs and CNFs with a high
pathsplitwidth (resp., treesplitwidth), we can find the corresponding hard function
“within” the CNF or DNF, and establish hardness.

Our last lower bound result is shown in Section 8, where we lift the assumption
that the compilation targets are structured:

Result 5 (Corollary 8.5) For any monotone CNF ϕ of constant arity and degree, the
size of the smallest nFBDD computing ϕ is 2Ω(pw(ϕ)), and the size of the smallest
DNNF computing ϕ is 2Ω(tw(ϕ)).

This result generalizes Results 3 and 4 by lifting the structuredness assump-
tion, but they only apply to CNFs (and not to DNFs). The proof of these results
reuses the notions of pathsplitwidth and treesplitwidth, along with a more involved
combinatorial argument on the size of rectangle covers.

The current article extends the conference article [5] in many ways:

– We added Section 3 which gives a systematic presentation of knowledge
compilation classes and reviews known results that relate them.

– In Section 4, the upper bound result on uOBDDs (Result 1) was added, the results
were rephrased in terms of width, and the size of the circuit has been improved1

to be linear in the number of variables like in [16].
– The presentation of the lower bounds in Sections 6 and 7 was restructured to

clarify the connection with communication complexity. The lower bounds on
OBDDs (Result 3) was extended to uOBDDs and nOBDDs.

– The bounds on unstructured representations in Section 8 are new.
– We include full proofs for all results.

1This observation is due to Stefan Mengel and is adapted from the recent article [22].
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2 Preliminaries

We give preliminaries on trees, hypergraphs, treewidth, and Boolean functions.

Graphs, Trees, and DAGs We use the standard notions of directed and undirected
graphs, of paths in a graph, and of cycles. All graphs considered in the paper are
finite.

A tree T is an undirected graph that has no cycles and that is connected (i.e., there
exists exactly one path between any two different nodes). Its size |T | is its number of
edges. A tree T is rooted if it has a distinguished node r called the root of T . Given
two adjacent nodes n1, n2 of a rooted tree T with root r , if n1 lies on the (unique)
path from r to n2, we say that n1 is the parent of n2 and that n2 is a child of n1. A
leaf of T is a node that has no child, and an internal node of T is a node that is not
a leaf. Given a set U of nodes of T , we denote the set of leaves of U by Leaves(U).
A node n′ is a descendant of a node n in a rooted tree if n �= n′ and n lies on the
path from n′ to the root. For n ∈ T , we denote by Tn the subtree of T rooted at n. A
rooted tree is binary if all nodes have at most two children, and it is full if all internal
nodes have exactly two children. A rooted full binary tree is called right-linear if the
children of each internal node are ordered (we then talk of a left or right child), and
if every right child is a leaf.

A directed acyclic graph (or DAG) D is a directed graph that has no cycles. A
DAG D is rooted if it has a distinguished node r such that there is a path from r to
every node in D. A leaf of D is a node that has no child.

Hypergraphs, Treewidth, Pathwidth A hypergraph H = (V , E) consists of a finite
set of nodes (or vertices) V and of a set E of hyperedges (or simply edges) which
are non-empty subsets of V . We always assume that hypergraphs have at least one
edge. For a node v of H , we write E(v) for the set of edges of H that contain v. The
arity of H , written arity(H), is the maximal size of an edge of H . The degree of H ,
written degree(H), is the maximal number of edges to which a vertex belongs, i.e.,
maxv∈V |E(v)|.

A tree decomposition of a hypergraph H = (V , E) is a rooted tree T , whose nodes
b (called bags) are labeled by a subset λ(b) of V , and which satisfies:

(i) for every hyperedge e ∈ E, there is a bag b ∈ T with e ⊆ λ(b);
(ii) for all v ∈ V , the set of bags {b ∈ T | v ∈ λ(b)} is a connected subtree of T .

For brevity, we often identify a bag b with its domain λ(b). The width of T is
maxb∈T |λ(b)| − 1. The treewidth of H , denoted tw(H), is the minimal width of
a tree decomposition of H . Pathwidth (denoted pw(H)) is defined similarly but
with path decompositions, tree decompositions where all nodes have at most one
child.

It is NP-hard to determine the treewidth of a hypergraph (V , E), but we can com-
pute a tree decomposition in linear time when parametrizing by the treewidth. This
can be done in time O(|V | × 2(32+ε)k3

) with the classical result of [9], or, using a
recent algorithm by Bodlaender et al. [10], in time O(|V | × 2ck):
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Theorem 2.1 [10] There exists a constant c such that, given a hypergraph H =
(V , E) and an integer k ∈ N, we can check in time O(|V |×2ck) whether tw(H) � k,
and if yes output a tree decomposition of H of width � 5k + 4.

For simplicity, we will often assume that a tree decomposition is v-friendly, for a
node v ∈ V , meaning that:

1. it is a full binary tree, i.e., each node has exactly zero or two children;
2. for every internal bag b with children bl, br we have b ⊆ bl ∪ br ;
3. for every leaf bag b we have |b| � 1;
4. the root bag of T only contains the node v.

Assuming a tree decomposition to be v-friendly for a fixed v can be done without
loss of generality:

Lemma 2.2 Given a tree decomposition T of a hypergraph H of width k and a node
v of H , we can compute in time O(k × |T |) a v-friendly tree decomposition T ′ of H
of width k.

Proof We first create a bag broot containing only the node v, and make this bag the
root of T by connecting it to a bag of T that contains v (if there is no such bag then
we connect broot to an arbitrary bag of T ). Then, we make the tree decomposition
binary (but not necessarily full) by replacing each bag b with children b1, . . . , bn with
n > 2 by a chain of bags with the same label as b to which we attach the children
b1, . . . , bn. This process is in time O(|T |) and does not change the width.

We then ensure the second and third conditions, by applying a transformation to
leaf bags and to internal bags. We first modify every leaf bag b containing more
than one vertex by a chain of at most k internal bags with leaves where the vertices
are added one after the other. Then, we modify every internal bag b that contains
elements v1, . . . , vn not present in the union D of its children: we replace b by a
chain of at most k internal bags b′

1, . . . , b
′
n containing respectively b, b \ {vn}, b \

{vn, vn−1}, . . . , D, each bag having a child introducing the corresponding gate vi .
This is in time O(k × |T |), and again it does not change the width; further, the
result of the process is a tree decomposition that satisfies the second, third and fourth
conditions and is still a binary tree.

The only missing part is to ensure that the tree decomposition is full, which we
can simply do in linear time by adding bags with an empty label as a second children
for internal nodes that have only one child. This is obviously in linear time, does not
change the width, and does not affect the other conditions, concluding the proof.

Boolean Functions A (Boolean) valuation of a set V is a function ν : V → {0, 1},
which can also be seen as the set of elements of V mapped to 1. A Boolean function
ϕ on variables V is a mapping ϕ : 2V → {0, 1} that associates to each valuation ν of
V a Boolean value ϕ(ν) in {0, 1} called the evaluation of ϕ according to ν. We write
#ϕ the number of satisfying valuations of ϕ. Given two Boolean functions ϕ1, ϕ2, we
write ϕ1 ⇒ ϕ2 when every satisfying valuation of ϕ also satisfies ϕ2. We write ⊥ the
Boolean function that maps every valuation to 0.
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Let X, Y be two disjoint sets, ν a valuation on X and ν′ a valuation on Y . We
denote by ν ∪ ν′ the valuation on X ∪ Y such that (ν ∪ ν′)(a) is ν(a) if a ∈ X and
is ν′(a) if a ∈ Y . Let ϕ be a Boolean function on V , and ν be a valuation on a set
X ⊆ V . We denote by ν(ϕ) the Boolean function on variables V \ X such that, for
any valuation ν′ of V \X, ν(ϕ)(ν′) = ϕ(ν ∪ν′). When ν is a Boolean valuation on V

and X ⊆ V , we denote by ν|X the Boolean valuation on X defined by ν|X(x) = ν(x)

for all x in X.
Two simple formalisms for representing Boolean functions are Boolean circuits

and formulas in conjunctive normal form or disjunctive normal form. We will dis-
cuss more elaborate formalisms, namely binary decision diagrams and decomposable
normal negation forms, in Section 3.

BooleanCircuits A (Boolean) circuit C = (G, W, goutput, μ) is a DAG (G, W) whose
vertices G are called gates, whose edges W are called wires, where goutput ∈ G is
the output gate, and where each gate g ∈ G has a type μ(g) among var (a variable
gate), ¬, ∨, ∧. The inputs of a gate g ∈ G is the set W(g) of gates g′ ∈ G such
that (g′, g) ∈ W ; the fan-in of g is its number of inputs. We require ¬-gates to have
fan-in 1 and var-gates to have fan-in 0. The treewidth of C is that of the hypergraph
(G, W ′), where W ′ is {{g, g′} | (g, g′) ∈ W }. Its size |C| is the number of wires.
The set Cvar of variable gates of C are those of type var. Given a valuation ν of Cvar,
we extend it to an evaluation of C by mapping each variable g ∈ Cvar to ν(g), and
evaluating the other gates according to their type. We recall the convention that ∧-
gates (resp., ∨-gates) with no input evaluate to 1 (resp., 0). The Boolean function on
Cvar captured (or computed, or represented) by the circuit is the one that maps ν to
the evaluation of goutput under ν. Two circuits are equivalent if they capture the same
function.

DNFs and CNFs We also study other representations of Boolean functions, namely,
Boolean formulas in conjunctive normal form (CNFs) and in disjunctive normal form
(DNFs). A CNF (resp., DNF) ϕ on a set of variables V is a conjunction (resp., dis-
junction) of clauses, each of which is a disjunction (resp., conjunction) of literals on
V , i.e., variables of V (a positive literal) or their negation (a negative literal).

A monotone CNF (resp., monotone DNF) is one where all literals are positive,
in which case we often identify a clause to the set of variables that it contains. We
always assume that monotone CNFs and monotone DNFs are minimized, i.e., no
clause is a subset of another. This ensures that every monotone Boolean function has
a unique representation as a monotone CNF (the disjunction of its prime implicants),
and likewise for monotone DNF. In addition, when we consider a valuation ν of a
subset X of the variables of a monotone CNF/DNF ϕ, we always take the Boolean
function ν(ϕ) to be the equivalent minimized monotone CNF/DNF.

We assume that monotone CNFs and DNFs always contain at least one non-empty
clause (in particular, they cannot represent constant functions). Monotone CNFs and
DNFs ϕ are isomorphic to hypergraphs: the vertices are the variables of ϕ, and the
hyperedges are the clauses of ϕ. We often identify ϕ with its hypergraph. In particular,
the pathwidth pw(ϕ) and treewidth tw(ϕ) of ϕ, and its arity and degree, are defined
as that of its hypergraph.
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Observe that there is a connection between the treewidth and pathwidth of a mono-
tone CNF or DNF with the treewidth and pathwidth of the natural Boolean circuit
computing it. Namely:

Observation 1 For any monotone CNF or DNF formula ϕ, there is a circuit Cϕ

capturing ϕ such that tw(Cϕ) � tw(ϕ) + 2 and pw(Cϕ) � pw(ϕ) + 2.

Proof Fix ϕ and define Cϕ as follows if ϕ is a CNF: Cϕ has one input gate ix
for each variable x of ϕ, one ∨-gate vK for each clause K of ϕ whose inputs are
the ix for each variable x of K , and one ∧-gate o which is the output gate of Cϕ

and whose inputs are all the vK . If ϕ is a DNF we replace ∨-gates by ∧-gates and
vice-versa.

We claim that tw(Cϕ) � tw(ϕ) + 2. Indeed, given a tree decomposition T of the
hypergraph of ϕ of width tw(ϕ), we can construct a tree decomposition T ′ of Cϕ

as follows. First, we replace each bag b of T in T ′ by b′ = {ix | x ∈ b} ∪ {o}.
Second, for every clause K , we consider a bag β(K) of T containing all variables of
K (which must exist because T is a tree decomposition of ϕ): we modify T ′ to make
β injective by creating sufficiently many copies of each bag in the image of β and
connecting them to the original bag. Third, we add vK to the domain of β(K) for each
clause K .

The connectedness of T ′ follows by the connectedness of T and by the fact that
for each clause K , vK appears only once in T ′ and o appears in every bag of T ′.
Moreover, every edge of Cϕ is covered by some bag of T ′: indeed, both the edges of
the form (o, vK) and the edges of the form (vK, ix) are covered in the (only) bag of
T ′ containing vK . It is then immediate that T ′ has the prescribed width.

The proof for pathwidth is the same, because if T is a path then T ′ can also be
constructed to be a path.

Note that there is no obvious converse to this result, e.g., the family of single-
clause CNFs x1∨· · ·∨xn has unbounded treewidth but can be captured by a circuit of
treewidth 1. A finer connection can be made by considering the incidence treewidth
[50] of CNFs and DNFs, but we do not investigate this in this work.

3 Knowledge Compilation Classes: BDDs and DNNFs

We now review some representation formalisms for Boolean functions that are used
in knowledge compilation, based either on binary decision diagrams (also known as
branching programs [52]) or on Boolean circuits in decomposable negation normal
form [25]; in the rest of the paper we will study translations between bounded-width
Boolean circuits and these classes. The classes that we consider have all been intro-
duced in the literature (see, in particular, [29] for the main ones) but we sometimes
give slightly different (but equivalent) definitions in order to see them in a common
framework. An element C of a knowledge compilation class C is associated with
its size |C| (describing how compact it is) and with the Boolean function ϕ that it
captures.
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A summary of the classes considered is provided in Fig. 1. This figure also shows
(with arrows) when a class can be compiled into another in polynomial-time (i.e.,
when one can transform an element C of class C capturing a Boolean function ϕ into
C′ of class C′ capturing ϕ, in time polynomial in |C|). All classes shown in Fig. 1 are
unconditionally separated and some (cf. double arrows) are exponentially separated.
Specifically, we say that a class C is separated (resp., exponentially separated) from a
class C′ if there exists a family of Boolean functions (ϕk) captured by elements (Ck)

of class C such that all families of class C′ capturing (ϕk) have size Ω(|Ck|α) for all
α ≥ 0 (resp., of size Ω(2|Ck |α ) for some α > 0).

We first consider general classes, then structured variants of these classes, and
further introduce the notion of width of these structured classes. When introducing
classes of interest, we recall or prove non-trivial polynomial-time compilation and
separation results related to that class.

3.1 Unstructured Classes

We start by defining general, unstructured classes, i.e., those in the background
of Fig. 1, namely (non-deterministic) free binary decision diagrams and circuits in
decomposable negation normal form.

3.1.1 Free Binary Decision Diagrams

A non-deterministic binary decision diagram (or nBDD) on a set of variables V =
{v1, . . . , vn} is a rooted DAG D with labels on edges and nodes, verifying:

(i) there are exactly two leaves (also called sinks), one being labeled by 0 (the
0-sink), the other one by 1 (the 1-sink);

(ii) internal nodes are labeled either by ∨ or by a variable of V ;
(iii) each internal node that is labeled by a variable has two outgoing edges, labeled

0 and 1.

The size |D| of D is its number of edges. Let ν be a valuation of V , and let π be
a path in D from the root to a sink of D. We say that π is compatible with ν if for
every node n of π that is labeled by a variable x of V , the path π goes through the
outgoing edge of n labeled by ν(x). Observe that multiple paths might be compatible
with ν, because no condition is imposed on nodes of the path that are labeled by ∨;
in other words, the behaviour at ∨ nodes is non-deterministic. An nBDD D captures
a Boolean function ϕ on V defined as follows: for every valuation ν of V , if there
exists a path π from the root to the 1-sink that is compatible with ν, then ϕ(ν) = 1,
else ϕ(ν) = 0. An nBDD is unambiguous when, for every valuation ν, there exists at
most one path ϕ from the root to the 1-sink that is compatible with ν. A BDD is an
nBDD that has no ∨-nodes.

The most general form of nBDDs that we will consider in this paper are non-
deterministic free binary decision diagrams (nFBDDs): they are nBDDs such that
for every path from the root to a leaf, no two nodes of that path are labeled by the
same variable. In addition to the nFBDD class, we will also study the class uFBDD
of unambiguous nFBDDs, and the class FBDD of nFBDDs having no ∨-nodes.
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Proposition 3.1 nFBDDs are exponentially separated from uFBDDs, and uFBDDs
are exponentially separated from FBDDs.

Proof The exponential separation between nFBDDs and uFBDDs is shown in
[14]: Proposition 7 of [14] shows that there exists an nFBDD of size O(n2) for
the Sauerhoff function [46] over n2 variables, while Theorem 9 of [14], relying
on [46, Theorem 4.10], shows that any representation of this function as a d-
DNNF (a formalism that generalizes uFBDD, see our Proposition 3.4) necessarily
has size 2Ω(n).

To separate uFBDDs from FBDDs, we rely on the proof of exponential separation
of PBDDs and FBDDs in [12, Theorem 11] (see also [52, Theorem 10.4.7]). Consider
the Boolean function ϕn on n2 variables that tests whether, in an n×n Boolean matrix,
either the number of 1’s is odd and there is a row full of 1’s, or the number of 1’s
is even and there is a column full of 1’s. As shown in [12, 52], an FBDD for ϕn has
necessarily size 2Ω

(
n1/2)

. On the other hand, it is easy to construct an FBDD of size
O

(
n2

)
to test if the number of 1’s is odd and there is a row full of 1’s (enumerating

variables in row order), and to construct an FBDD of size O(n2) to test if the number
of 1’s is even and there is a column full of 1’s (enumerating variables in column
order). An uFBDD for ϕn is then obtained by simply adding an ∨-gate joining these
two FBDDs, since only one of these two functions can evaluate to 1 under a given
valuation.

3.1.2 Decomposable Negation Normal Forms

We say that a circuit C is in negation normal form (NNF) if the inputs of ¬-gates
are always variable gates. For a gate g in a Boolean circuit C, we write Vars(g)

for the set of variable gates that have a directed path to g in C. An ∧-gate g of C

is decomposable if it has at most two inputs and if, in case it has two input gates
g1 �= g2, then we have Vars(g1) ∩ Vars(g2) = ∅. We call C decomposable if each ∧-
gate is. We write DNNF for an NNF that is decomposable. Some of our proofs will
use the standard notion of a trace in an NNF:

Definition 3.2 Let C be an DNNF and g be a gate of C. A trace of C starting at g is
a set � of gates of C that is minimal by inclusion and where:

– We have g ∈ �;
– If g′ ∈ � and g′ is an ∧-gate, then all inputs of g′ are in �, i.e., W(g′) ⊆ �;
– If g′ ∈ � and g′ is an ∨-gate, then exactly one input of g′ is in �;
– If g′ ∈ � and g′ if a ¬-gate with input variable gate g′′, then g′′ is in �.

Observe that a gate g ∈ C is satisfiable (i.e., there exists a valuation ν such that
g evaluates to 1 under ν) if and only if there exists a trace of C starting at g. Indeed,
given such a trace, define the valuation ν that maps to 0 all the variables x such that
a ¬-gate with input x is in �, and to 1 all the other variables: this valuation clearly
satisfies g, noting in particular that each variable occurs at most once in � thanks
to decomposability. Conversely, when g is satisfiable, it is clear that one can obtain
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a trace starting at g whose literals (variable gates, and negations of the variables
that are an input to a ¬-gate) evaluate to 1 under the witnessing valuation ν. This
means that we can check in linear time whether a DNNF is satisfiable, i.e., if it has
an accepting valuation, by computing bottom-up the set of gates at which a trace
starts.

As we will later see, the tractability of satisfiability of DNNFs does not extend to
some other tasks (e.g., model counting or probability computation). For these tasks,
a useful additional requirement on circuits is determinism. An ∨-gate g of C is deter-
ministic if there is no pair g1 �= g2 of input gates of g and valuation ν of Cvar such
that g1 and g2 both evaluate to 1 under ν. A Boolean circuit is deterministic if each
∨-gate is. We write d-DNNF for an NNF that is both decomposable and determin-
istic. Model counting and probability computation can be done in linear time for
d-DNNFs thanks to decomposability and determinism (in fact this does not even use
the restriction of being an NNF).

Observe that, while decomposability is a syntactical restriction that can be checked
in linear time, the determinism property is semantic, and it is co-NP-complete to
check if a given ∨-gate of a circuit is deterministic: hardness comes from the fact
that an arbitrary Boolean circuit C is unsatisfiable iff ∨(C, 1) is deterministic. This
motivates the notion of decision gates, which gives us a syntactic way to impose
determinism. Formally, an ∨-gate is a decision gate if it is of the form (x ∧ C1) ∨
(¬x ∧ C2), for some variable x and (generally non-disjoint) subcircuits C1, C2. A
dec-DNNF is a DNNF where all ∨-gates are decision gates: it is in particular a d-
DNNF.

Proposition 3.3 DNNFs are exponentially separated from d-DNNFs, and d-DNNFs
are exponentially separated from dec-DNNFs.

Proof The exponential separation of DNNFs and d-DNNFs is in [14, Proposition 7
and Theorem 9], by a similar argument to the proof of our Proposition 3.1.

The exponential separation of d-DNNFs and dec-DNNFs is in [7, Corollary 3.5].

3.1.3 Connections between FBDDs and DNNFs

We have presented our unstructured classes of decision diagrams (namely FBDDs,
uFBDDs, and nFBDDs), and of decomposable NNF circuits (dec-DNNF, d-DNNF,
and DNNF). We now discuss the relationship between these various classes. We
first observe that nFBDDs (and their subtypes) can be compiled to DNNF (and their
subtypes):

Proposition 3.4 nFBDDs (resp., uFBDDs, FBDDs) can be compiled to DNNFs
(resp., d-DNNFs, dec-DNNFs) in linear time.

Proof We first describe the linear-time compilation of an nFBDD to a DNNF that
captures the same function: recursively rewrite every internal node n labeled with
variable x by a circuit (x∧D0)∨(¬x∧D1), where D0 and D1 are the (not necessarily
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disjoint) rewritings of the nodes to which n respectively had a 0-edge and a 1-edge.
We note that the new ∨-gate is a decision gate and the two ∧-gates are decomposable.
Furthermore:

– if D is unambiguous, all ∨-gates in the rewriting are deterministic, so we obtain
a d-DNNF;

– if D is an FBDD, then ∨-gates are only introduced in the rewriting, so we obtain
a dec-DNNF.

The proof above implies that nFBDDs (resp., uFBDDs, FBDDs) are the restriction
of DNNFs (resp., d-DNNFs, dec-DNNFs) to the case where ∧-gates, in addition to
being decomposable, are also all decision ∧-gates, i.e., ∧-gates appearing as children
of a decision ∨-gate.

Unlike previous compilation results, Proposition 3.4 does not come with an expo-
nential separation: we can compile in the other direction at a quasi-polynomial cost,
i.e., in time 2O((log n)α) for some fixed α > 0:

Proposition 3.5 DNNFs (resp., d-DNNFs, dec-DNNFs) can be compiled to nFBDDs
(resp., uFBDDs, FBDDs) in quasi-polynomial time.

Proof Quasi-polynomial compilation has been first shown for dec-DNNFs and
FBDDs in in [6, Corollary 3.2]. This result was extended in [8, Section 5] to the com-
pilation of DNNFs to nFBDDs. Finally, in [11, Proposition 1], it is shown that the
same compilation yields a uFBDD when applied to a d-DNNF.

We will see in Proposition 3.10 that these quasi-polynomial time compilations can-
not be made polynomial-time, which will conclude the separation of all classes in the
background of Fig. 1. We now move to structured classes, that are in the foreground
of Fig. 1.

3.2 Structured Classes

The classes introduced so far are unstructured: there is no particular order or struc-
ture in the way variables appear within an nFBDD, or within a DNNF circuit. In
this section, we introduce structured variants of these classes, which impose addi-
tional constraints on how variables are used. Such additional restrictions often help
with the tractability of some operations: for example, given two FBDDs F1, F2 cap-
turing Boolean functions ϕ1, ϕ2, it is NP-hard to decide if ϕ1 ∧ ϕ2 if satisfiable
[37, Lemma 8.14]. By contrast, with the ordered binary decision diagrams [17]
(OBDDs) that we now define, we can perform this task tractably: given two OBDDs
O1 and O2 that are ordered in the same way, we can compute in polynomial time an
OBDD representing O1 ∧ O2, for which we can then decide satisfiability. We first
present OBDDs, and we then present SDNNFs which are the structured analogues of
DNNF.
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3.2.1 Ordered Binary Decision Diagrams

A non-deterministic ordered binary decision diagram (nOBDD) is an nFBDD O with
a total order v = vi1 , . . . , vin on the variables which structures O, i.e., for every path
π from the root of O to a leaf, the sequence of variables which labels the internal
nodes of π (ignoring ∨-nodes) is a subsequence of v. We say that the nOBDD is
structured by v. We also define uOBDDs as the unambiguous nOBDDs, and OBDDs
as the nOBDDs without any ∨-node.

Like in the unstructured case (Proposition 3.1), these classes are exponentially
separated:

Proposition 3.6 nOBDDs are exponentially separated from uOBDDs, and uOBDDs
are exponentially separated from OBDDs.

Proof The exponential separation between nOBDDs and uOBDDs will follow from
our lower bounds on uOBDDs. Indeed, Corollary 7.5 shows a lower bound on the
size of uOBDDs representing bounded-degree and bounded-arity monotone DNFs of
high pathwidth. But there exists a family of DNFs (ϕn)n∈N of bounded degree and
arity whose treewidth (hence pathwidth) is linear in their size: for instance, DNFs
built from expander graphs (see [32, Theorem 5 and Proposition 1]). Hence, for such
a family (ϕn)n∈N we have that any uOBDD for ϕn is of size 2Ω(|ϕn|). By contrast, it
is easy to see that any DNF ϕ can be represented as an nOBDD in linear time. To
do so, fix an arbitrary variable order v of the variables of ϕ. Any clause K of ϕ can
clearly be represented as a small OBDD with order v. Taking the disjunction of all
these OBDDs then yields an nOBDD equivalent to ϕ of linear size.

For the separation between uOBDDs and OBDDs, consider the Hidden Weighted
Bit function HWBn on variables V = {x1, . . . , xn}, defined for a valuation ν of V by:

HWBn(ν) :=
{

0 if
∑n

i=1 ν(xi) = 0;
ν(xk) if

∑n
i=1 ν(xi) = k �= 0.

Bryant [17] showed that OBDDs for HWBn have size 2Ω(n). By contrast, it is not too
difficult to construct uOBDDs of polynomial size for HWBn. This was observed in
[52, Theorem 10.2.1] for nOBDDs, with a note [52, Proof of Corollary 10.2.2] that
the constructed nBDDs are unambiguous. See also [13, Theorem 3], which covers
the case of sentential decision diagrams instead of uOBDDs.

3.2.2 Structured DNNFs

For NNFs, as with BDDs, it is possible to introduce a notion of structuredness, that
goes beyond that of decomposability.

Here, the analogue of a total order of variables (that structured an OBDD) is what
is called a v-tree, which is a tree whose leaves correspond to variables. More formally,
a v-tree [40] over a set V is a rooted full binary tree T whose leaves are in bijection
with V . We always identify each leaf with the associated element of V . We will
also use the notion of an extended v-tree T [22] over a set V , which is like a v-tree,
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except that there is only an injection between V and Leaves(T ). That is, some leaves
can correspond to no element of V : we call those leaves unlabeled (and they can
intuitively stand for constant gates in the circuit).

Definition 3.7 A structured DNNF (resp., extended structured DNNF), denoted
SDNNF (resp., extended SDNNF), is a triple (D, T , ρ) consisting of:

– a DNNF D;
– a v-tree (resp., extended v-tree) T over Dvar;
– a mapping ρ labeling each ∧-gate of g with a node of T that satisfies the fol-

lowing: for every ∧-gate g of D with 1 � m � 2 inputs g1, gm, the node
ρ(g) structures g, i.e., there exist m distinct children n1, nm of ρ(g) such that
Vars(gi) ⊆ Leaves(Tni

) for all 1 � i � m.

We also define d-SDNNF and dec-SDNNF as structured d-DNNF and dec-DNNF,
and define extended d-SDNNF and extended dec-SDNNF in the expected way.

As in the case of FBDDs and DNNFs, observe that an OBDD (resp., uOBDD,
nOBDD) is a special type of dec-SDNNF (resp., d-SDNNF, SDNNF). Namely, the
transformation described above Proposition 3.4, when applied to an OBDD (resp.,
uOBDD, nOBDD), yields a dec-SDNNF (resp., d-SDNNF, SDNNF) that is struc-
tured by a v-tree that is right-linear (recall the definition from Section 2). Hence, we
have:

Proposition 3.8 nOBDDs (resp., uOBDDs, OBDDs) can be compiled to SDNNFs
(resp., d-SDNNFs, dec-SDNNFs) in linear time.

Proof Given the variable order v = v1 . . . vn of an nOBDD, we construct our right-
linear v-tree T as having a root r1, internal nodes ri with ri being the left child of ri−1
for 2 � i � n − 1, leaf nodes v1 . . . vn−1 with vi being the right child of ri , and leaf
node vn being the right child of rn−1. We then apply as-is the translation described in
the proof of Proposition 3.4.

As in the unstructured case (Proposition 3.4), there is no exponential separation
result: indeed, analogously to Proposition 3.5 in the unstructured case, there exist
quasi-polynomial compilations in the other direction:

Proposition 3.9 SDNNFs (resp., d-SDNNFs, dec-SDNNFs) can be compiled to
nOBDDs (resp., uOBDDs, OBDDs) in quasi-polynomial time.

Proof Quasi-polynomial time compilation of a SDNNF into an nOBDD is proved
in [11, Theorem 2], by adapting the compilation of [8] from DNNFs to nFBDDs.
Furthermore, [11, Proposition 2] shows that the resulting nOBDD is unambiguous
if the SDNNF is deterministic. But it is easy to see that the same compilation [11,
Simulation 2] yields an OBDD if the input is a dec-SDNNF: indeed, in a dec-SDNNF
there are no ∨-gates that are not decision gates, so no ∨-gates are produced in the
output.
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3.3 Comparing Structured and Unstructured Classes

To obtain all remaining separations in Fig. 1, and justify that no arrows are miss-
ing, we need two last results in which we will compare structured and unstructured
classes.

The first result describes the power of decomposable ∧-gates as opposed to deci-
sion gates: it shows that the least powerful class that has arbitrary decomposable
∧-gates (dec-SDNNF) cannot be compiled to the most powerful class with decision
∧-gates (nFBDD) without a super-polynomial size increase.

Proposition 3.10 There exists a family of functions (ϕn) that has O(n2) dec-SDNNF
but no nFBDD of size smaller than nΩ(log(n)).

Proof In [44], Razgon constructs for every k a family of 2CNF (ϕk
n)n∈N such that ϕk

n

has n variables and treewidth k. He proves ([44, Theorem 1]) a nΩ(k) lower bound
on the size of any nFBDD computing ϕk

n (Razgon refers to nFBDD as NROBP in
his paper). It is known from [25, Section 3] that one can compile any CNF with n

variables and with treewidth k into a dec-SDNNF of size 2Ω(k)n. Thus, ϕk
n can be

computed by a dec-SDNNF of size 2Ω(k)n.
Taking k := �log(n)� gives the desired separation: ϕk

n can be computed by a
dec-SDNNF of size O(n2) but by no nFBDD of size smaller than nΩ(log(n)).

Proposition 3.10 implies that no DNNF class in the upper level of Fig. 1 can be
polynomially compiled into any BDD class in the lower level of Fig. 1.

The second result describes the power of unstructured formalisms as opposed to
structured ones: it shows that the least powerful unstructured class (FBDD) can-
not be compiled to the most powerful structured class (SDNNF) in size less than
exponential.

Proposition 3.11 FBDDs are exponentially separated from SDNNFs: there exists a
family of functions (ϕn) that has FBDDs of size O(n) but no SDNNF of size smaller
than 2Ω(n).

Proof This separation was proved independently by Pipatsrisawat and Capelli in their
PhD theses (see [42, Appendix D.2], and [20, Section 6.3]).

In his work, Pipatsrisawat considers the Boolean function circular bit shift
CBS(S, X, Y ): it is defined on a tuple (S, X, Y ) of variables with N = s1 . . . sk ,
X = x1 . . . x2k , Y = y1 . . . y2k for some k ∈ N, and it evaluates to 1 on valuation ν

iff shifting the bits of ν(X) by S (as written in binary) positions yields ν(Y ). Pipat-
srisawat shows that the CBS function on n variables has an FBDD of size O(n2), but
that any SDNNF for CBS has size 2Ω(n).

The proof of Capelli uses techniques close to the ones used in Section 7.

Proposition 3.11 implies that no unstructured class (in the background of Fig. 1)
can be polynomially compiled into any structured class (in the foreground of Fig. 1).

Looking back at Fig. 1, we see that, indeed, all classes are separated and no arrows
are missing. The separation is exponential except when moving (on the vertical axis
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in the figure) from BDD-like classes to NNF-like classes, in which case we know
(cf. Propositions 3.5 and 3.9) that quasi-polynomial compilations exist in the other
direction.

3.4 Completeness andWidth

Two last notions that will be useful for our results are the notions of completeness and
width for structured classes. Intuitively, completeness further restricts the structure
of how variables are tested in the circuit or BDD: in addition to the structuredness
requirement, we impose that no variables are “skipped”. We will be able to assume
completeness without loss of generality, it will be guaranteed by our construction,
and it will be useful in our lower bound proofs.

On complete classes, we will additionally be able to define a notion of width that
we will use to show finer lower bounds.

Complete OBDDs An nOBDD O on V is complete if every path from the root to a
sink tests every variable of V . For x ∈ V , the x − width of a complete nOBDD O is
the number of nodes labeled with variable x. The width of O is maxx∈V x-width of
O.

It is immediate that partially evaluating a complete nOBDD does not increase its
width:

Lemma 3.12 Let O be a complete nOBDD (resp., uOBDD) on variables V , with
order v and of width � w, and let ϕ be the Boolean function that O captures. Let
X ⊆ V , and ν be a valuation of X. Then there exists a complete nOBDD (resp.,
uOBDD) O ′, on variables V \X, of order v|V \X and width� w, that computes ν(ϕ).

Complete SDNNFs The notion of completeness and width of OBDDs extends nat-
urally to SDNNFs. Following [22], we say that a (d-)SDNNF (resp., extended
(d-)SDNNF) (D, T , ρ) is complete if ρ labels every gate of D (not just ∧-gates) with
a node of T and the following conditions are satisfied:

1. The output gate of D is an ∨-gate;
2. For every variable gate g of D, we have ρ(g) = g;
3. For every ¬-gate g of D, letting g′ be the variable gate that feeds g, we have

ρ(g) = g′;
4. For every ∨-gate g of D, for any input g′ of g, the gate g′ is not an ∨-gate, and

moreover we have ρ(g′) = ρ(g);
5. For every ∧-gate g of D, for any input g′ of g, the gate g′ is an ∨-gate, and we

have that ρ(g′) is a child of ρ(g);
6. For every ∧-gate g of D and any two inputs g′ �= g′′ of g, we have ρ(g′) �=

ρ(g′′);
7. For every ∧-gate g of D such that ρ(g) is an internal node of T , g has exactly

two inputs.
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For a node n of T , the n − width of a complete (d-)SDNNF (resp., extended
complete) (D, T , ρ) is the number of ∨-gates that are structured by n. The width of
(D, T , ρ) is the maximal n-width for a node of T .

One of the advantages of complete (d-)SDNNFs of bounded width is that we can
work with extended v-trees, and then compress their size in linear time, so that the
v-tree becomes non-extended and the size of the circuit is linear in the number of
variables. When doing so, the extended v-tree is modified in a way that we call a
reduction:

Definition 3.13 Let T , T ′ be two extended v-trees over variables V . We say that T ′
is a reduction of T if, for every internal node n of T , there exists an internal node n′
of T ′ such that Leaves(T ′) ∩ Leaves(T \ Tn) ⊆ Leaves(T ′ \ T ′

n′) and Leaves(T ′) ∩
Leaves(Tn) ⊆ Leaves(T ′

n′).

We can now show how to compress extended complete (d-)SDNNFs:

Lemma 3.14 ([22]) Let (D, T , ρ) be an extended complete (d-)SDNNF of width w

on n variables. We can compute in linear time a complete (d-)SDNNF (D′, T ′, ρ′) of
width w such that T ′ is a reduction of T and such that |D′| is in O(n × w2).

Proof We present a complete proof, inspired by the proof in [22, Lemma 4]. As a first
prerequisite, we preprocess D in linear time so that the number of ∧-gates structured
by a same node n of T is in O(w2). This can be done, as in [22, Observation 3], by
noticing that there can be at most w2 inequivalent ∧-gates that are structured by a
node n. Indeed, this is clear if n is a leaf, as such an ∧-gate cannot have an input (so
there is at most one inequivalent ∧-gate). If n is an internal node with children n1
and n2, then, by item (7) of the definition of being an extended complete SDNNF,
every ∧-gate structured by n has one input among the � w ∨-gates structured by
n1, and one input among the � w ∨-gates structured by n2. Hence there are w2

possible inequivalent ∧-gates. We can then merge all the ∧-gates that are equivalent,
and obtain a complete (d-)SDNNF where for each node n of the v-tree, at most w2

∧-gates are structured by n.
The second prerequisite is to eliminate the gates that are not connected to the

output of D, and then to propagate the constants in the circuit (i.e., to evaluate it
partially). In other words, eliminate all gates (and their wires) that are not connected
to the output of D, and then repeat the following until convergence:

– For every constant 1-gate g (i.e., an ∧-gate with no input) and wire g → g′,
if g′ is an ∧-gate then simply remove the wire g → g′, and if g′ is an ∨-gate,
then replace g by a constant 1-gate; then remove g and all the wires connected to
it.

– For every constant 0-gate g (i.e., an ∨-gate with no input) and wire g → g′, if
g′ is an ∨-gate then simply remove the wire g → g′, and if g′ is an ∧-gate, then
replace g by a constant 0-gate; then remove g and all the wires connected to it.

This again can be done in linear time (by a DFS traversal of the circuit, for instance),
and it does not change the properties of the circuit or the captured function. Further, it
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ensures that ∨- and ∧-gates of the resulting circuit always have at least one input, or
that we get to one single constant gate (if the circuit captures a constant Boolean func-
tion): as this second case of constant functions is uninteresting, we assume that we
are in the first case. We call the resulting circuit C. It is clear that C is still structured
by T (by taking the restriction of ρ to the gates that have not been removed).

Having enforced these prerequisites on C, the idea is to eliminate unlabeled leaves
l in he v-tree one by one by merging the parent and the sibling of l. Formally, when-
ever we can find in T an unlabeled leaf l with parent n and sibling n′, we perform
these two steps:

1. Remove from T the leaf l (and its parent edge) noticing that no gate of C was
structured by l because we propagated the constants in the circuit in our second
preprocessing step; then replace the parent n in T by its remaining child n′ so
that it is again binary and full.

2. We now need to modify C so that C is an extended complete (d-)SDNNF struc-
tured by the new v-tree. There is nothing to do in the case that n′ was an unlabeled
leaf, because then no gate of C was structured by n′, or even by n (since we prop-
agated constants). In the case where n′ was a variable leaf or an internal node,
then, for every ∨-gate g that was structured by n, we compute the set Ig of gates
g′ that were structured by n′, that are not an ∨-gate, and such that there is a path
from g′ to g in C. Thanks to our first preprocessing step, the set Ig can be com-
puted in time O(w2) as this bounds the number of ∧-gates structured by n and
by n′. Observe that gates in Ig can be either ∧-gates that were structured by n′
(in case n′ was an internal node), or ¬-gates or variable gates (in case n′ was a
variable leaf). Now, remove from C all the ∨-gates that were structured by n′,
all the ∧-gates that were structured by n, and all the edges connected to them.
For each ∨-gate g that was structured by n, set its new inputs to be all the gates
in Ig . One can check that the resulting circuit captures the same function (this
uses the fact that we propagated constants), and that determinism cannot be bro-
ken in case the original circuit was a d-SDNNF. Moreover, C is now an extended
complete (d-)SDNNF structured by the new v-tree T .

By iterating this process, we will end up with a v-tree T ′ that is not extended, and the
resulting circuit will be an equivalent complete (d-)SDNNF of width � w and size
O(n × w2). The total time is linear since we spend O(w2) time to eliminate each
single unlabeled leaf. Moreover it is clear that the final v-tree obtained is a reduction
of the original v-tree, as the property is preserved by each elimination.

Like for OBDDs (Lemma 3.12), we will use the fact that partially evaluating a
complete (d-)SDNNF cannot increase the width:

Lemma 3.15 Let (D, T , ρ) be a complete (d-)SDNNF of width � w over variables
V , and let ϕ be the Boolean function that D captures. Let X ⊆ V , and ν be a
valuation of X. Then there exists a complete (d-)SDNNF (D′, T ′, ρ′) of width � w

on variables V \ X computing ν(ϕ) such that T ′ is a reduction of T .
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Proof We replace every leaf l of T that corresponds to a variable x ∈ X by an
unlabeled leaf, replace every variable gate x in D by a constant ν(x)-gate, replace
every ¬-gate with input variable x by a constant (1 − ν(x))-gate, and then propa-
gate constants as in the second prerequisite in the proof of Lemma 3.14. This yields
an extended complete (d-)SDNNF computing ν(ϕ). We then conclude by applying
Lemma 3.14.

Making nOBDDs and SDNNFs Complete Imposing completeness on nOBDDs or
SDNNFs is in fact not too restrictive, as we can assume that OBDDs and SDNNFs
are complete up to multiplying the size by the number of variables:

Lemma 3.16 For any nOBDD (resp., SDNNF) D on variables V , there exists an
equivalent complete nOBDD (resp., SDNNF) of size at most (|V | + 1) × |D|.
Proof The result will follow from a more general completion result on unstructured
classes given later in the paper (Lemma 8.4); it is straightforward to observe that
applying the constructions of that lemma yield structured outputs when the input
representations are themselves structured.

4 Upper Bound

In this section we study how to compile Boolean circuits to d-SDNNFs (resp., uOB-
DDs), parameterized by the treewidth (resp., pathwidth) of the input circuits. We
first present our results in Section 4.1, then show some examples of applications in
Section 4.2, before providing full proofs in Section 5.

4.1 Results

To present our upper bounds, we first review the independent result that was
recently shown by Bova and Szeider [16] on compiling bounded-treewidth circuits to
d-SDNNFs:

Theorem 4.1 ([16, Theorem 3 and Equation (22)]) Given a Boolean circuit C of
treewidth � k, there exists an equivalent d-SDNNF of size O(f (k) × |Cvar|), where
f is doubly exponential.

Their result has two drawbacks: (i) it has a doubly exponential dependency on
the width; and (ii) it is nonconstructive, because [16] gives no time bound on the
computation, leaving open the question of effectively compiling bounded-treewidth
circuits to d-SDNNFs. The nonconstructive aspect can easily be tackled by encoding
in linear time the input circuit C into a relational instance of same treewidth, and then
use [4, Theorem 6.11] to construct in linear time a d-SDNNF representation of the
provenance on I of a fixed MSO formula describing how to evaluate Boolean circuits
(see the conference version of this paper [5] for more details). This “naı̈ve” approach
computes a d-SDNNF in time O(|C| × f (k)), but where f is a superexponential
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function that does not address the first drawback. We show that we can get f to be
singly exponential.

Treewidth Bound Our main upper bound result addresses both drawbacks and shows
that we can compile in time linear in the circuit and singly exponential in the
treewidth. Our proof is independent from [16]. Formally, we show:

Theorem 4.2 There exists a function f (k) that is in O
(
2(4+ε)k

)
for any ε ≥ 0 such

that the following holds. Given as input a Boolean circuit C and tree decomposition
T of width � k of C, we can compute a complete extended d-SDNNF equivalent to
C of width � 22(k+1) in time O (|T | × f (k)).

This result assumes that the tree decomposition is provided as input; but we can
instead use Theorem 2.1 to obtain it. We can also apply Lemma 3.14 to the resulting
circuit to get a proper (non-extended) d-SDNNF and reduce its size so that it only
depends on the number of variables of the input circuit C (i.e., |Cvar| rather than
|C|), which allows us to truly generalize Theorem 4.1. Putting all of this together, we
get:

Corollary 4.3 There exists a constant c ∈ N such that the following holds. Given as
input a Boolean circuit C of treewidth � k, we can compute in time O

(|C| × 2ck
)
a

complete d-SDNNF equivalent to C of width O
(
2ck

)
and size O

(|Cvar| × 2ck
)
.

However, Corollary 4.3 is mainly of theoretical interest, since the constant hidden
in Theorem 2.1 is huge. In practice, one would first use a heuristic to compute a tree
decomposition, and then use our construction of Theorem 4.2 on that decomposition.
We will prove Theorem 4.2 in Section 5.

Pathwidth Bound A by-product of our construction is that, in the special case where
we start with a path decomposition, it turns out that the d-SDNNF computed is in
fact an uOBDD. The compilation of bounded-pathwidth Boolean circuits to OBDDs
had already been studied in [4, 34]: Corollary 2.13 of [34] shows that a circuit of
pathwidth � k has an equivalent OBDD of width � 2(k+2)2k+2

, and [4, Lemma
6.9] justifies that the transformation can be made in polynomial time. Our second
upper bound result is that, by using uOBDDs instead of OBDDs, we can get a singly
exponential dependency:

Theorem 4.4 There exists a function f (k) that is in O(2(2+ε)k) for any ε ≥ 0 such
that the following holds. Given as input a Boolean circuit C and path decomposition
P of width � k of C, we can compute a complete uOBDD equivalent to C of width
� 22(k+1) in time O (|P | × f (k)).

While we do not know if the doubly exponential dependence on k in [34] is tight
for OBDDs, we will show in Section 7 that the singly exponential dependence for
uOBDDs is indeed tight.
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4.2 Applications

Theorem 4.2 implies several consequences for bounded-treewidth circuits. The first
one deals with probability computation: we are given a probability valuation π map-
ping each variable g ∈ Cvar to a probability that g is true (independently from other
variables), and we wish to compute the probability π(C) that C evaluates to true
under π , assuming that arithmetic operations (sum and product) take unit time. More
formally, we define the probability π(ν) of a valuation ν : Cvar → {0, 1} as

π(ν) :=
⎛

⎝
∏

g∈Cvar,ν(g)=1

π(g)

⎞

⎠

⎛

⎝
∏

g∈Cvar,ν(g)=0

(1 − π(g))

⎞

⎠ .

The probability π(C) of Boolean circuit C with probability assignment π is then the
total probability of the valuations that satisfy ϕ. Formally:

π(C) :=
∑

ν satisfies ϕ

π(ν).

When π(x) = 1/2 for every variable, the probability computation problem simpli-
fies to the model counting problem, i.e., counting the number of satisfying valuations,
noted #C. Indeed, in this case we have #C = 2|Cvar| × π(C). Hence, the proba-
bility computation problem is #P-hard for arbitrary circuits. However, it is tractable
for deterministic decomposable circuits [26]. Thus, our result implies the following,
where |π | denotes the size of writing the probability valuation π :

Corollary 4.5 Let f (k) be the function from Theorem 4.2. Given a Boolean circuit
C, a tree decomposition T of width � k of C, and a probability valuation π of Cvar,
we can compute π(C) in O (|π | + |T | × f (k)).

Proof Use Theorem 4.2 to compute an equivalent d-SDNNF (D, T ′, ρ); as C and
D are equivalent, it is clear that π(C) = π(D). Now, compute the probability π(D)

in linear time in D and |π | by a simple bottom-up pass, using the fact that D is a
d-DNNF [26].

This improves the bound obtained when applying message passing techniques
[36] directly on the bounded-treewidth input circuit (as presented, e.g., in [3, Theo-
rem D.2]). Indeed, message passing applies to moralized representations of the input:
for each gate, the tree decomposition must contain a bag containing all inputs of
this gate simultaneously, which is problematic for circuits of large fan-in. Indeed,
if the original circuit has a tree decomposition of width k, rewriting it to make
it moralized will result in a tree decomposition of width 3k2 (see [2, Lemmas 53
and 55]), and the bound of [3, Theorem D.2] then yields an overall complexity of
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O
(
|π | + |T | × 23k2

)
for message passing. Our Corollary 4.5 achieves a more favor-

able bound because Theorem 4.2 directly uses the associativity of ∧ and ∨. We note
that the connection between message-passing techniques and structured circuits has
also been investigated by Darwiche, but his construction [27, Theorem 6] produces
arithmetic circuits rather than d-DNNFs, and it also needs the input to be moralized.

A second consequence concerns the task of enumerating the accepting valuations
of circuits, i.e., producing them one after the other, with small delay between each
accepting valuation. The valuations are concisely represented as assignments, i.e., as
a set of variables that are set to true, omitting those that are set to false. This task
is of course NP-hard on arbitrary circuits (as it implies that we can check whether
an accepting valuation exists), but was recently shown in [1] to be feasible on d-
SDNNFs with linear-time preprocessing and delay linear in the Hamming weight of
each produced assignment. Hence, we have:

Corollary 4.6 Let f (k) be the function from Theorem 4.2. Given a Boolean circuit
C and a tree decomposition T of width � k of C, we can enumerate the satisfying
assignments of C with preprocessing in O (|T | × f (k)) and delay linear in the size
of each produced assignment.

Proof Use Theorem 4.2 to compute an equivalent d-SDNNF (D, T ′, ρ), which has
the same accepting valuations. We conclude using [1, Theorem 2.1].

This corollary refines some existing results about enumerating the satisfying val-
uations of some circuit classes with polynomial delay [29], and also relates to results
on the enumeration of monomials of arithmetic circuits [48] or of solutions to con-
straint satisfaction problems (CSP) [24], again with polynomial delay. It also relates
to recent incomparable results on constant-delay enumeration for classes of DNF
formulae [23].

A third consequence concerns the tractability of quantifying variables in bounded-
treewidth circuits. Let ϕ be a Boolean function on variables V , and let X1, . . . Xn be
disjoint subsets of V . A quantifier prefix of length n is a prefix of the form  :=
Q1X1 . . . QnXn, where each Qi is either ∃ or ∀, with Qi �= Qi+1. Let (ϕ) be the
Boolean function on variables V \ (X1 ∪· · ·∪Xn), with the obvious semantics. Then
[22] shows:

Theorem 4.7 ([22, Theorem 5]) There is an algorithm that, given a complete
SDNNF (D, T , ρ) on variables V of width k and Z ⊆ V , computes in time 2O(k)|D|
a complete d-SDNNF of width at most 2k having a designated gate computing ∃ZD

and another designated gate computing ¬∃ZD.

By iterating the construction of Theorem 4.7 and using the identity ∀X.D ≡
¬∃X¬D, one can easily get:

Corollary 4.8 Let  := Q1X1 . . . QnXn be a quantifier prefix of length n with
Qn = ∃. There is an algorithm that, given a complete d-SDNNF (D, T , ρ),
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computes in time expn(k) × |D| a complete structured d-SDNNF of width � expn(k)

representing (D), where

We can then combine Corollary 4.8 with our Theorem 4.2 to show:

Corollary 4.9 Let C be a Boolean circuit of treewidth� k, and let  be a quantifier
prefix of length n that ends with ∃. We can compute in time expn+1(k) × |C| a d-
SDNNF of width at most expn+1(k) representing (C).

This generalizes the corresponding result of [22], which applies to bounded-
treewidth CNFs instead of bounded-treewidth circuits. (However, we note that
[22, Theorem 10] also applies to CNFs of bounded incidence treewidth, which can
be smaller than the primal treewidth that we use in our article.) We refer to [22] for a
discussion of the related work on model counting of quantified formulas.

Other applications of Theorem 4.2 include counting the number of satisfying
valuations of the circuit (a special case of probability computation), MAP infer-
ence [31], or random sampling of possible worlds (which can easily be done on the
d-SDNNF).

5 Proof of the Upper Bound

We first present in Section 5.1 the construction used for Theorem 4.2, then prove in
Section 5.2 that this construction is correct and can be done within the prescribed time
bound. We then explain how to specialize the construction to the case of bounded-
pathwidth circuits and uOBBDs in Section 5.3.

5.1 Construction

Let C be the input circuit on n variables, and T the input tree decomposition of C of
width � k. We start with prerequisites.

Prerequisites Let goutput be the output gate of C. Thanks to Lemma 2.2, we can
assume that T is goutput-friendly. For every variable gate x ∈ Cvar, we choose a leaf
bag bx of T such that λ(bx) = {x}. Such a leaf bag exists because T is friendly
(specifically, thanks to bullet points 2 and 3). We say that bx is responsible for the
variable gate x. We can obviously choose such a bx for every variable gate x in linear
time in T .

To abstract away the type of gates and their values in the construction, we will talk
of strong and weak values. Intuitively, a value is strong for a gate g if any input g′ of
g which carries this value determines the value of g; and weak otherwise. Formally:

Definition 5.1 Let g be a gate and c ∈ {0, 1}:
– If g is an ∧-gate, we say that c = 0 is strong for g and c = 1 is weak for g;
– If g is an ∨-gate, we say that c = 1 is strong for g and c = 0 is weak for g;

Theory of Computing Systems (2020) 64:861–914884



– If g is a ¬-gate, c = 0 and c = 1 are both strong for g;
– For technical convenience, if g is a var-gate, c = 0 and c = 1 are both weak for g.

If we take any valuation ν : Cvar → {0, 1} of the circuit C = (G, W, goutput, μ),
and extend it to an evaluation ν : G → {0, 1}, then ν will respect the semantics of
gates. In particular, it will respect strong values: for any gate g of C, if g has an input
g′ for which ν(g′) is a strong value, then ν(g) is determined by ν(g′), specifically, it
is ν(g′) if g is an ∨- or an ∧-gate, and 1 − ν(g′) if g is a ¬-gate. In our construction,
we will need to guess how gates of the circuit are evaluated, focusing on a subset of
the gates (as given by a bag of T ); we will then call almost-evaluation an assignment
of these gates that respects strong values. Formally:

Definition 5.2 Let U be a set of gates of C. We call ν : U → {0, 1} a (C, U)-almost-
evaluation if it respects strong values, i.e., for every gate g ∈ U , if there is an input
g′ of g in U such that ν(g′) is a strong value for g, then ν(g) is determined from
ν(g′) in the sense above.

Respecting strong values is a necessary condition for such an assignment to be
extensible to a valuation of the entire circuit. However, it is not sufficient: an almost-
evaluation ν may map a gate g to a strong value even though g has no input that can
justify this value. This is hard to avoid: when we focus on the set U , we do not know
about other inputs of g. For now, let us call unjustified the gates of U that carry a
strong value that is not justified by ν:

Definition 5.3 Let U be a set of gates of a circuit C and ν a (C, U)-almost-
evaluation. We call g ∈ U unjustified if ν(g) is a strong value for g, but, for every
input g′ of g in U , the value ν(g′) is weak for g; otherwise, g is justified. The set of
unjustified gates is written Unj(ν).

Let us start to explain in a high-level manner how to construct the d-SDNNF D

equivalent to the input circuit C (we will later describe the construction formally).
We do so by traversing T bottom-up, and for each bag b of T we create gates G

ν,S
b in

D, where ν is a (C, b)-almost-evaluation and S is a subset of Unj(ν) which we call
the suspicious gates of G

ν,S
b . We will connect the gates of D created for each internal

bag b with the gates created for its children in T , in a way that we will explain later.
Intuitively, for a gate G

ν,S
b of D, the suspicious gates g in the set S are gates of b

whose strong value is not justified by ν (i.e., g ∈ Unj(ν)), and is not justified either
by any of the almost-evaluations at descendant bags of b to which G

ν,S
b is connected.

We call innocent the other gates of b; hence, they are the gates that are justified in
ν (in particular, those who carry weak values), and the gates that are unjustified in ν

but have been justified by an almost-evaluation at a descendant bag b′ of b. Crucially,
in the latter case, the gate g′ justifying the strong value in b′ may no longer appear in
b, making g unjustified for ν; this is why we remember the set S.
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We still have to explain how we connect the gates G
ν,S
b of D to the gates G

νl,Sl

bl

and G
νr,Sr

br
created for the children bl and br of b in T . The first condition is that νl

and νr must mutually agree, i.e., νl(g) = νr(g) for all g ∈ bl ∩ br , and ν must then
be the union of νl and νr , restricted to b. We impose a second condition to prohibit
suspicious gates from escaping before they have been justified, which we formalize
as connectibility of a pair (ν, S) at bag b to the parent bag of b.

Definition 5.4 Let b be a non-root bag, b′ its parent bag, and ν a (C, b)-almost-
evaluation. For any set S ⊆ Unj(ν), we say that (ν, S) is connectible to b′ if S ⊆ b′,
i.e., the suspicious gates of ν must still appear in b′.

If a gate G
ν,S
b is such that (ν, S) is not connectible to the parent bag b′, then this

gate will not be used as input to any other gate, but we do not try to preemptively
remove these useless gates in the construction (but note that this will be taken care of
at the end, when we will apply Lemma 3.14). We are now ready to give the formal
definition that will be used to explain how gates are connected:

Definition 5.5 Let b be an internal bag with children bl and br , let νl and νr be
respectively (C, bl) and (C, br)-almost-evaluations that mutually agree, and Sl ⊆
Unj(νl) and Sr ⊆ Unj(νr ) be sets of suspicious gates such that both (νl, Sl) and
(νr , Sr) are connectible to b. The result of (νl, Sl) and (νr , Sr) is then defined as the
pair (ν, S) where:

– ν is defined as the restriction of νl ∪ νr to b.
– S ⊆ Unj(ν) is the new set of suspicious gates, defined as follows. A gate g ∈ b

is innocent (i.e., g ∈ b\S) if it is justified for ν or if it is innocent for some child.
Formally, b \ S := (b \ Unj(ν)) ∪ [b ∩ [(bl \ Sl) ∪ (br \ Sr)]].

We point out that (ν, S) is not necessarily a (C, b)-almost-evaluation.

Construction We now use these definitions to present the construction formally. For
every variable gate g of C, we create a corresponding variable gate Gg,1 of D, and
we create Gg,0 := ¬(Gg,1). For every internal bag b of T , for each (C, b)-almost-
evaluation ν and set S ⊆ Unj(ν) of suspicious gates of ν, we create one ∨-gate
G

ν,S
b . For every leaf bag b of T , we create one ∨-gate G

ν,S
b for every (C, b)-almost-

evaluation ν, where we set S := Unj(ν); intuitively, in a leaf bag, an unjustified gate
is always suspicious (it cannot have been justified at a descendant bag).

Now, for each internal bag b of T with children bl, br , for each pair of gates G
νl,Sl

bl

and G
νr,Sr

br
that are both connectible to b and where νl and νr mutually agree, letting

(ν, S) be the result of (νl, Sl) and (νr , Sr), if (ν, S) is a (C, b)-almost-evaluation then

we create a gate G
νl,Sl ,νr ,Sr

b = ∧
(
G

νl,Sl

bl
, G

νr ,Sr

br

)
and make it an input of G

ν,S
b . We

now explain where the variables gates are connected. For every leaf bag b that is
responsible for a variable gate x (i.e., b is bx), for ν ∈ {{x �→ 1}, {x �→ 0}}, we set
the gate Gx,ν(x) to be the (only) input of the gate G

ν,S
b . Last, for every leaf bag b that

is not responsible for a variable gate, for every valuation ν of b, we create a constant
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1-gate (i.e., an ∧-gate with no inputs), and we make it the (only) input of G
ν,S
b . The

output gate of D is the gate G
ν,∅
broot

where broot is the root of T and ν maps goutput to 1
(remember that broot contains only goutput).

We now construct the extended v-tree T ′ together with the mapping ρ. T ′ has the
same skeleton than T (in particular, it is a full binary tree). For every node b of T , let
us denote by b′ the corresponding node of T ′. For every leaf bag b of T , b′ is either
x if b is responsible for the variable x, or unlabeled otherwise. For every bag b of
T and every gate g of the form G

ν,S
b or G

νl,Sl ,νr ,Sr

b , we take ρ(g) = b′. For every

leaf bag b of T that is not responsible for a variable, for any gate g of the form G
ν,S
b

(there can be either one (if b is empty) or two of them), letting g′ be the (only) input
of g (i.e., g′ is a constant 1-gate), we set ρ(g′) = b′. For every leaf bag b of T that is
responsible for a variable x, we set ρ(Gx,1) = ρ(Gx,0) = b′.

5.2 Proof of Correctness

We now prove that (D, T ′, ρ) is indeed an extended complete d-SDNNF equivalent
to the initial circuit C, that its width is � 22(k+1), and that it can be constructed in
time O

(|T | × 2(4+ε)k
)

for any ε > 0.

5.2.1 (D , T ′, ρ) is an Extended Complete SDNNF of the Right Width

Negations only apply to the input gates, so D is an NNF. It is easy to check that
(D, T ′, ρ) satisfies the conditions of being a complete extended SDNNF. Now, for
every leaf l of T ′, there at most two ∨-gates of D that are structured by l (remember
that leaf bags of the friendly tree decomposition T contain one or zero gates of C).
For every internal node n of T ′ corresponding to a bag b of T , the ∨-gates that are
structured by n are of the form G

ν,S
b , so they are at most 22(k+1), which shows our

claim about the width of (D, T ′, ρ).

5.2.2 D is Equivalent to C

We now show that D is equivalent to the original circuit C. Recall the definition of
a trace of a DNNF from Definition 3.2. Our first step is to prove that traces have
exactly one almost-evaluation corresponding to each descendant bag, and that these
almost-evaluations mutually agree.

Lemma 5.6 Let G
ν,S
b a gate in D and � be a trace of D starting at G

ν,S
b . Then for

any bag b′ � b (meaning that b′ is b or a descendant of b), � contains exactly one

gate of the form G
ν′,S′
b′ . Moreover, over all b′ � b, all the almost-evaluations of the

gates G
ν′,S′
b′ that are in � mutually agree.

Proof The fact that � contains exactly one gate G
ν′,S′
b′ for any bag b′ � b is obvious

by construction of D, as ∨-gates are assumed to have exactly one input in �. For the
second claim, suppose by contradiction that not all the almost-evaluations of the gates
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G
ν′,S′
b′ that are in � mutually agree. We would then have G

ν1,S1
b1

and G
ν2,S2
b2

in � and
g ∈ b1∩b2 such that ν1(g) �= ν2(g). But because T is a tree decomposition, g appears
in all the bags on the path from b1 and b2, and by construction the almost-evaluations
of the gates G

ν′,S′
b′ on this path that are in � mutually agree, a contradiction.

Therefore, Lemma 5.6 allows us to define the union of the almost-evaluations in
such a trace:

Definition 5.7 Let Gν
b a gate in D and � be a trace of D starting at Gν

b. Then
γ (�) := ⋃

G
ν′,S′
b′ ∈�

ν′ (the union of the almost-evaluations in �, which is a valuation

from
⋃

G
ν′,S′
b′ ∈�

b′ to {0, 1}) is properly defined.

We now need to prove a few lemmas about the behavior of gates that are innocent
(i.e., not suspicious).

Lemma 5.8 Let Gν,S
b a gate in D and � be a trace of D starting at Gν,S

b . Let g ∈ b

be a gate that is innocent (g /∈ S). Then the following holds:

– If ν(g) is a weak value of g, then for every input g′ of g that is in the domain of
γ (�) (i.e., g′ appears in a bag b′ � b), we have that γ (�) maps g′ to a weak
value of g;

– If ν(g) is a strong value of g, then there exists an input g′ of g that is in the
domain of γ (�) such that γ (�)(g′) is ν(g) if g is an ∧- or ∨-gate, and γ (�)(g′)
is 1 − ν(g) if g is a ¬-gate.

Proof We prove the claim by bottom-up induction on b ∈ T . One can easily check
that the claim is true when b is a leaf bag, remembering that in this case we must have
S = Unj(ν) by construction (that is, all the gates that are unjustified are suspicious).
For the induction case, let bl , br be the children of b. Suppose first that ν(g) is a
weak value of g, and suppose for a contradiction that there is an input g′ of g in
the domain of γ (�) such that γ (�)(g′) is a strong value of g. By the occurrence
and connectedness properties of tree decompositions, there exists a bag b′ � b in
which both g and g′ occur. Consider the gate G

ν′,S′
b′ that is in �: by Lemma 5.6,

this gate exists and is unique. By definition of γ (�) we have ν′(g′) = γ (�)(g′).
Because ν′ is a (C, b′)-almost-evaluation that maps g′ to a strong value of g, we
must have that ν′(g) is also a strong value of g, thus contradicting our hypothesis that
ν(g) = γ (�)(g) = ν′(g) is a weak value for g.

Suppose now that ν(g) is a strong value of g. We only treat the case when g is an
∨- or an ∧-gate, as the case of a ¬-gate is similar. We distinguish two sub-cases:

– g is justified. Then, by definition of ν being a (C, b)-almost-evaluation, there
must exist an input g′ of g that is also in b such that ν(g′) is a strong value of g,
which proves the claim.

– g is unjustified. But since g is innocent (g /∈ S), by construction (precisely, by
the second item of Definition 5.5) g must then be innocent for a child of b. The
claim then holds by induction hypothesis.
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Lemma 5.8 allows us to show that for a gate g that is not a variable gate, letting
b be the topmost bag in which g appears (hence, each input of g must occur in some
bag b′ � b), if g is innocent then for any trace � starting at a gate for bag b, γ (�)

respects the semantics of g. Formally, recalling that W(g) denotes the inputs of g:

Lemma 5.9 Let Gν,S
b a gate in D and � be a trace of D starting at Gν,S

b . Let g ∈ b

be a gate that is not a variable gate and such that b is the topmost bag in which g

appears (hence W(g) ⊆ domain(γ (�))). If g is innocent (g /∈ S) then γ (�) respects
the semantics of g, that is, γ (�)(g) = ⊙

γ (�)(W(g)) where
⊙

is the type of g.

Proof Clearly implied by Lemma 5.8.

We need one last lemma about the behavior of suspicious gates, which intuitively
tells us that if we have already seen all the input gates of a gate g and g is still
suspicious, then g can never escape:

Lemma 5.10 Let Gν,S
b a gate in D and � be a trace of D starting at Gν,S

b . Let g be a
gate such that the topmost bag b′ in which g appears is� b, and consider the unique

gate of the form G
ν′,S′
b′ that is in �. If g ∈ S′ then b′ = b (hence G

ν,S
b = G

ν′,S′
b′ by

uniqueness).

Proof Let g ∈ S′. Suppose by contradiction that b′ �= b. Let p be the parent of b′
(which exists because b′ < b). It is clear that by construction (ν′, S′) is connectible
to p (recall Definition 5.4), hence g must be in p, contradicting the fact that b′ should
have been the topmost bag in which g occurs. Hence b′ = b.

We now have all the results that we need to show that D =⇒ C, i.e. that, for
every valuation χ of the variables of C, if χ(D) = 1 then χ(C) = 1 (we see χ

both as a valuation of the variables of C, and as a valuation of the (corresponding)
variables of D). We prove a stronger result. Given a valuation χ of the variable gates
of D and a gate g of D, we say that a trace of D starting at g according to χ is a
trace of D starting at g such that χ satisfies every gate in �. We show:

Lemma 5.11 Let χ be a valuation of the variable gates, G
ν,∅
root(T ) ∈ D a gate that

evaluates to 1 under χ , and � a trace of D starting at Gν,∅
root(T ) according to χ . Then

γ (�) corresponds to the evaluation χ of C.

Proof We prove by induction on C (as its graph is a DAG) that for all g ∈ C,
γ (�)(g) = χ(g). When g is a variable gate, consider the leaf bag bg that is respon-

sible of g, and consider the gate G
ν′,S′
bg

that is in �: this gate exists and is unique
according to Lemma 5.6. This gate evaluates to 1 under χ (because it is in the trace),
which is only possible if Gg,ν′(g) evaluates to 1 under χ , hence by construction we
must have ν′(g) = χ(g) and then γ (�)(g) = χ(g). When g is a constant gate
(an ∨- or ∧-gate with no inputs), consider the topmost bag b′ in which g appears,
and consider the unique G

ν′,S′
b′ that is in �. According to Lemma 5.9, we have that

γ (�)(g) = χ(g). Now suppose that g is an internal gate of type
⊙

, and consider the
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topmost bag b′ in which g appears. Consider again the unique G
ν′,S′
b′ that is in �. By

induction hypothesis, we know that γ (�)(g′) = χ(g′) for every input g′ of g. We
now distinguish two cases:

– b′ = root(T ). Therefore by Lemma 5.9 we know that γ (�) respects the seman-
tics of g, which means that γ (�)(g) = ⊙

γ (�)(W(g)) = ⊙
χ(W(g)) = χ(g)

(where the second equality comes from the induction hypothesis and the third
equality is just the definition of the evaluation χ of C), which proves the claim.

– b′ < root(T ). But then by Lemma 5.10 we must have g /∈ S′ (because otherwise
we should have b′ = root(T ) and then S′ = ∅, a contradiction), that is g is
innocent for G

ν′,S′
b′ . Therefore, again by Lemma 5.9, it must be the case that

γ (�) respects the semantics of g, and we can again show that γ (�)(g) = χ(g),
concluding the proof.

This indeed implies that D =⇒ C: let χ be a valuation of the variable gates
and suppose χ(D) = 1. Then by definition of the output of D, it means that the gate
G

ν,∅
root(T ) such that ν(goutput) = 1 evaluates to 1 under χ . But then, considering a trace

� of D starting at G
ν,∅
root(T ) according to χ , we have that χ(goutput) = γ (�)(goutput) =

ν(goutput) = 1.
To show the converse (C =⇒ D), one can simply observe the following

phenomenon:

Lemma 5.12 Let χ be a valuation of the variable gates. Then for every bag b ∈ T ,

the gate G
χ|b,S
b evaluates to 1 under χ , where S is the set of gates g ∈ Unj(ν) such

that for every input g′ of g that appears in some bag b′ � b, then χ(g′) is a weak
value of g.

Proof Easily proved by bottom-up induction.

Now suppose χ(C) = 1. By Lemma 5.12 we have that G
χ|root(T ),∅
root(T ) evaluates to

1 under χ , and because χ(goutput) = 1 we have that χ(D) = 1. This shows that
C =⇒ D. Hence, we have proved that D is equivalent to C.

5.2.3 D is Deterministic

We now prove that D is deterministic, i.e., that every ∨-gate in D is deterministic.
Recall that the only ∨-gates in D are the gates of the form G

ν,S
b . We will in fact prove

that for every valuation χ and every ∨-gate of D, there exists at most one trace of
D starting at that gate according to χ , which clearly implies that all the ∨-gates are
deterministic.

We start by proving the following lemma:

Lemma 5.13 Let G
ν,S
b be a gate in D and � be a trace of D starting at G

ν,S
b . Let

g ∈ b. Then the following is true:
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– if g is innocent (g /∈ S) and ν(g) is a strong value of g, then there exists an input
g′ of g in the domain of γ (�) such that γ (�)(g′) is a strong value for g.

– if g ∈ S, then for every input g′ of g that is in the domain of γ (�), we have that
γ (�)(g′) is a weak value for g.

Proof We prove the two claims independently:

– Let g ∈ b such that g /∈ S and ν(g) is a strong value for g. Then the claim
directly follows from the second item of Lemma 5.8.

– We prove the second claim via a bottom-up induction on T . When b is a leaf
then it is trivially true because g has no input g′ in b because |b| � 1 because T

is friendly. For the induction case, let G
νl,Sl

bl
and G

νr,Sr

br
be the (unique) gates in

� corresponding to the children bl, br of b. By hypothesis we have g ∈ S. By
definition of a gate being suspicious, we know that ν(g) is a strong value for g. To
reach a contradiction, assume that there is an input g′ of g in the domain of γ (�)

such that γ (�)(g′) is a strong value for g. Clearly this g′ is not in b, because g

is unjustified by ν (because S ⊆ Unj(ν)). Either g′ occurs in a bag b′
l � bl , or

it occurs in a bag b′
r � br . The two cases are symmetric, so we assume that we

are in the former. As g ∈ b and g′ ∈ b′
l , by the properties of tree decompositions

and because g′ /∈ b, we must have g ∈ bl . Hence, by the contrapositive of the
induction hypothesis on bl applied to g, we deduce that g /∈ Sl . But then by the
second item of Definition 5.5, g should be innocent for G

ν,S
b , that is g /∈ S, which

is a contradiction.

We are ready to prove that traces starting at ∨-gates are unique (according to a
valuation of the variable gates). Let us first introduce some useful notations: Let
U , U ′ be sets of gates, ν, ν′ be valuations having the same domain. We write
(ν, U) = (ν′, U ′) to mean ν = ν′ and U = U ′, and for g in the domain of ν we
write (ν, U)(g) = (ν′, U ′)(g) to mean that ν(g) = ν′(g) and that we have g ∈ U iff
g ∈ U ′. We show the following:

Lemma 5.14 Let χ be a valuation of the variable gates, Gν,S
b be a gate of D. Then

there exists at most one trace of D starting at Gν,S
b according to χ .

Proof Fix the valuation χ . We will prove the claim by bottom-up induction on T .
The case when b is a leaf is trivial because gates of the form G

ν,S
b , for b a leaf of T ,

have either:

– exactly one input g′ that is a constant 1-gate;
– or, exactly one input that is a variable gate Gx,1, if b is responsible of x and

ν(g) = 1;
– or, exactly one input Gx,0 that is the ¬-gate ¬(Gx,1), if b is responsible of x and

ν(g) = 0.

In all cases, there can be at most one trace. For the inductive case, let b be an
internal bag with children bl and br . By induction hypothesis for every G

νl,Sl

bl
(resp.,

G
νr,Sr

br
), there exists at most one trace of D starting at G

νl,Sl

bl
(resp., G

νr,Sr

br
) according
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to χ . Hence, if by contradiction there are at least two traces of D starting at G
ν,S
b

according to χ , it can only be because G
ν,S
b is not deterministic, i.e., because for at

least two different inputs of G
ν,S
b , there is a trace that starts at this input according

to χ , say G
νl,Sl ,νr ,Sr

b and G
ν′
l ,S

′
l ,ν

′
r ,S

′
r

b with (νl, Sl) �= (ν′
l , S

′
l ) or (νr , Sr) �= (ν′

r , S
′
r ).

We can suppose that it is (νl, Sl) �= (ν′
l , S

′
l ), since the other case is symmetric. Hence

there exists g0 ∈ bl such that (νl, Sl)(g0) �= (ν′
l , S

′
l )(g0). Let �l be the trace of D

starting at G
νl,Sl

bl
and �′

l be the trace of D starting at G
ν′
l ,S

′
l

bl
(according to χ). We

observe the following simple fact about �l and �′
l :

(*) for any g, if γ (�l)(g) �= γ (�′
l)(g) then g /∈ b.

Indeed otherwise we should have ν(g) = νl(g) = γ (�l)(g) and ν(g) = ν′
l (g) =

γ (�′
l)(g), which is impossible.

Now we will define an operator θ that takes as input a gate g such that
(γ (�l), Sl)(g) �= (γ (�′

l ), S
′
l )(g), and outputs another gate θ(g) which is an input

of g and such that again (γ (�l), Sl)(θ(g)) �= (γ (�′
l), S

′
l )(θ(g)). This will lead to a

contradiction because for any n ∈ N, starting with g0 and applying θ n times consec-
utively we would obtain a path of n mutually distinct gates (because C is acyclic),
but C has a finite number of gates.

Let us now define θ : let g such that (γ (�l), Sl)(g) �= (γ (�′
l), S

′
l )(g). We

distinguish two cases:

• We have (γ (�l), Sl)(g) �= (γ (�′
l), S

′
l )(g) because γ (�l)(g) �= γ (�′

l)(g). Then
by (*), we know for sure that g /∈ b. Therefore the topmost bag b′ in which g

occurs is � bl . Let G
ν′,S′
b′ be the gate in �l and G

ν′′,S′′
b′ the gate in �′

l (they exist
and are unique by Lemma 5.6). We again distinguish two subcases:

– g is a variable gate. But then it is clear that, by considering the bag b′′
that is responsible for g, we have b′′ � b′, and then that γ (�l)(g) =
χ(g) = γ (�′

l)(g), a contradiction.
– g is not a variable gate. Observe that by Lemma 5.10 we must have

g /∈ S′ and g /∈ S′′, because otherwise we should have b′ = b, which is
not true. But then, by Lemma 5.9 we know that both γ (�l) and γ (�′

l)

respect the semantics of g. But we have γ (�l)(g) �= γ (�′
l)(g), so there

must exist an input g′ of g such that γ (�l)(g
′) �= γ (�′

l)(g
′). We can

thus take θ(g) to be g′.
• We have (γ (�l), Sl)(g) �= (γ (�′

l ), S
′
l )(g) because (without loss of generality)

g /∈ Sl and g ∈ S′
l . Observe that this implies that g ∈ bl , and that ν′

l (g) is a
strong value for g. We can assume that νl(g) = ν′

l (g), as otherwise we would
have γ (�l)(g) �= γ (�′

l)(g), which is a case already covered by the last item.
Hence νl(g) is also a strong value for g, but we have g /∈ Sl , so by the first item
of Lemma 5.13 we know that there exists an input g′ of g that occurs in some
bag � bl and such that γ (�l)(g

′) is a strong value for g. We show that γ (�′
l)(g

′)
must in contrast be a weak value for g, so that we can take θ(g) to be g′ and
conclude the proof. Indeed suppose by way of contradiction that γ (�′

l)(g
′) is a
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strong value for g. By the contrapositive of the second item of Lemma 5.13, we
get that g /∈ S′

l , which contradicts our assumption.

Hence we have constructed θ , which shows a contradiction, which means that in

fact we must have G
νl,Sl ,νr ,Sr

b = G
ν′
l ,S

′
l ,ν

′
r ,S

′
r

b , so that G
ν,S
b is deterministic, which

proves that there is at most one trace of D starting at G
ν,S
b according to χ , which was

our goal.

This concludes the proof that D is deterministic, and thus that D is a d-SDNNF
equivalent to C.

5.2.4 Analysis of the Running Time

We last check that the construction can be performed in time O(|T |×f (k)), for some
function f (k) that is in O

(
2(4+ε)k

)
for any ε > 0:

– From the initial tree decomposition T of C, in time O(k|T |) we computed the
goutput-friendly tree decomposition Tfriendly of size O(k|T |);

– In linear time in Tfriendly, for every variable x ∈ Cvar we selected a leaf bag bx of
T such that λ(bx) = {x};

– We can clearly compute the v-tree and the mapping in linear time in Tfriendly;
– For each bag b of Tfriendly we have 22|b| � 22k+2 different pairs of a valuation ν

of b and of a subset S of b, and checking if ν is a (C, b)-almost-evaluation and
if S is a subset of the unjustified gates of ν can be done in polynomial time in
|b| � k + 1 (we access the inputs and the type of each gate in constant time from
C), hence we pay O

(|Tfriendly| × p(k) × 22k
)

to create the gates of the form

G
ν,S
b , for some polynomial p;

– We constructed and connected in time O(|Tfriendly| × p′(k) × 24k) the gates of

the form G
νl,Sl ,νr ,Sr

b (the polynomial is for testing if the result of (νl, Sl) and of
(νr , Sr) is an almost-evaluation);

– In time O(|Tfriendly|) we connected the gates of the form G
ν,S
b for b a leaf to their

inputs.

Hence, the total time is indeed in O(|T | × f (k)), for some function f (k) that is in
O(2(4+ε)k) for any ε > 0.

5.3 uOBDDs for Bounded-Pathwidth Circuits

We now argue that our construction for Theorem 4.2 can be specialized in the case
of bounded-pathwidth circuits to compute uOBDDs, i.e., we prove Theorem 4.4. If
the input circuit captures a constant Boolean function then there is no difficulty, so
we assume that this is not the case.

Let C be the Boolean circuit with output gate goutput, and P be a path decomposi-
tion of C of width � k. It is clear that, by adapting Lemma 2.2, we can compute in
linear time from P a goutput-friendly tree decomposition T that is further right-linear.
We then use the same construction as the one we use in Theorem 4.2 with T . This
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gives us an extended complete d-SDNNF (D, T ′, ρ) of width � 22(k+1) equivalent
to C, where T ′ is an extended v-tree that is right-linear. It is easy to verify that we
can compute this d-SDNNF in time O(|T | × f (k)) for some function f that is in
O(2(2+ε)k) for any ε > 0 (as opposed to O(2(4+ε)k) in the original construction).
This is thanks to the fact that T is right-linear, and because the leaf bags of a friendly
tree decomposition can contain at most one gate of C. We then use Lemma 3.14 to
compress the extended complete d-SDNNF into a complete d-SDNNF (D′, T ′′, ρ′)
of width � 22(k+1), again equivalent to C. By inspection of the proof of this Lemma,
it is clear that T ′′ is a (non extended) v-tree that is right-linear. Again by inspection
of the proof of Lemma 3.14, we can see that we can rewrite every ∧-gate g of D′ to
be of the form g′ ∧ x or g′ ∧¬x, for some variable x and gate g′: this is thanks to the
fact that Lemma 3.14 starts by propagating constants, so that the right input of g can
only be equivalent to x or to ¬x (there is an ∨-gate in between, which we remove).

We now justify that we can transform D′ into a complete uOBDD. First, create
the 0-sink ⊥ and the 1-sink �. Then, we traverse the internal nodes n of T ′ top-
down and inductively define an uOBDD O(g) for every ∨-gate g of D′ structured
by n. The intuition is that O(g) captures the subcircuit rooted at g. Remember that
C captures a non-constant Boolean function, which implies that there are no ∧- or
∨-gates without input left in D′. We proceed as follows, letting l be the right child of
n, corresponding to variable x, and n′ being the left child of n:

– For every ∨-gate g of D′ structured by n we do the following. First, compute A0
g ,

the set of gates g′ such that there exists an ∧-gate of the form g′ ∧ ¬x that is an
input of g, and A1

g , the set of gates g′ such that there exists an ∧-gate of the form

g′ ∧x that is an input of g. Then define O0(g) to be
∨

g′∈A0
g
O(g′); and similarly

O1(g) := ∨
g′∈A1

g
O(g′). Finally define O(g) to consist of a node labeled by x,

with outgoing 0-edge to O0(g) and outgoing 1-edge to O1(g).

There is one special case in this construction: we might not have defined O(g)

when g is a variable gate (resp., a ¬-gate) that is structured by the leftmost leaf of
T . In that case, we define O(g) to consist of a node labeled by the corresponding
variable, with outgoing 1-edge to � (resp., ⊥), and outgoing 0-edge to ⊥ (resp.,
�). It is then clear that, by considering the output gate Goutput of D′, we have that
O(Goutput) is a complete uOBDD of width � 22(k+1) that captures the same function
as D′.

6 Lower Bounds for Structured Classes: SCOVn and SINTn

In this section, we start our presentation of our lower bound results. Our upper bound
in Section 4 applied to arbitrary Boolean circuits; however, our lower bounds in this
section and the next one will already apply to much weaker formalisms for Boolean
functions, namely, monotone DNFs and monotone CNFs.

We first review some existing lower bounds on the compilation of monotone
CNFs and DNFs into OBDDs and d-SDNNFs. Bova and Slivovsky have constructed
a family of CNFs of bounded degree whose OBDD representations are exponential
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[15, Theorem 19], following an earlier result of this type by Razgon [43, Corollary
1]. The result of Bova and Slivovsky is as follows:

Theorem 6.1 ([15, Theorem 19]) There is a class of monotone CNF formulas of
bounded degree and arity such that every formula ϕ in this class has OBDD size at
least 2Ω(|ϕ|).

By a similar approach, Bova, Capelli, Mengel, and Slivovsky show an exponential
lower bound on the size of d-SDNNF representing a given family of DNFs [14, Theo-
rem 14]. However, these bounds apply to well-chosen families of Boolean functions.
We adapt some of these techniques to show a more general result. First, our lower
bounds will apply to any monotone DNF or monotone CNF, not to one specific fam-
ily. Second, our lower bounds apply to more expressive classes of binary decision
diagrams than OBDDs, namely, uOBDDs and nOBDDs (recall their definitions from
Section 3). Third, we obtain finer lower bounds on SDNNFs thanks to our new notion
of width.

In essence, our result is shown by observing that the families of functions used in
[14, 15] occur “within” any bounded-degree, bounded-arity monotone CNF or DNF.
Here is the formal definition of these two families:

Definition 6.2 Let n ∈ N and consider two disjoint tuples X = (x1, . . . , xn) and
Y = (y1, . . . , yn). The set covering CNF SCOVn(X, Y ) is the monotone CNF:

SCOVn(X, Y ) =
n∧

i=1

xi ∨ yi .

Similarly, the set intersection DNF SINTn(X, Y ) is the monotone DNF:

SINTn(X, Y ) =
n∨

i=1

xi ∧ yi .

As the order chosen on X and Y does not matter, we will often abuse notation and
consider them as sets rather than tuples.

In this section, we prove lower bounds on the size of representations of the func-
tions SCOVn and SINTn. We will then show in Section 7 how to extend these bounds
to arbitrary monotone CNFs/DNFs.

Our lower bounds on the representations of SCOVn(X, Y ) and SINTn(X, Y )

will only apply to some specific variable orderings. Indeed, observe that both
SCOVn(X, Y ) and SINTn(X, Y ) can easily be represented by complete OBDDs of
size O(n) with the variable ordering v := x1y1 . . . xnyn. The idea of our bounds is
that “inconvenient” variable orderings (or “inconvenient” v-trees) can force OBDD
(or SDNNF) representations of SCOV and SINT to be of exponential size. We
formalize our notion of inconvenient variable orderings and v-trees as follows:

Definition 6.3 Let V be a set of variables, X and Y be two disjoint subsets of V . We
say that a total order v = v1, . . . , v|V | of V cuts (X, Y ) if there exists 1 � i � n such
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that X ⊆ v<i and Y ⊆ v≥i . Similarly, we say that a v-tree T over V cuts (X, Y ) if
there exists a node n of T such that X ⊆ Leaves(Tn) and Y ⊆ Leaves(T \ Tn).

In the rest of this section, we show the following two theorems. The first theorem
applies to OBDDs, and the second generalizes it to SDNNFs.

Theorem 6.4 Let v be a total order that cuts (X, Y ). Then the width of any com-
plete nOBDD (resp., complete uOBDD) structured by v that computes SCOVn(X, Y )

(resp., SINTn(X, Y )) is ≥ 2n − 1.

Theorem 6.5 Let T be a v-tree that cuts (X, Y ). Then the width of any complete
SDNNF (resp., complete d-SDNNF) structured by T that computes SCOVn(X, Y )

(resp., SINTn(X, Y )) is ≥ 2n − 1.

These results are proved in two steps, presented in the next two sections. First,
we show that Boolean functions computed by SDNNF or nOBDD (resp., d-SDNNF
or uOBDD) of width w can be decomposed as a disjunction (resp., exclusive dis-
junction) of at most w very simple Boolean functions known as rectangles. We then
appeal to known results about these functions that show that SCOVn (resp., SINTn)
cannot be decomposed as a disjunction (resp., exclusive disjunction) of less than
2n − 1 rectangles, which implies the desired lower bound.

6.1 Rectangle Covers for Compilation Targets

Towards our desired bounds on the size of compilation targets, we start by formaliz-
ing the notion of decomposing Boolean functions as a rectangle cover.

Definition 6.6 Let V be a set of variables and (X, Y ) be a partition of V . A (X, Y )-
rectangle is a Boolean function R : 2V → {0, 1} such that there exists RX : 2X →
{0, 1} and RY : 2Y → {0, 1} such that R = RX∧RY . In other words, for any valuation
ν of V , we have R(ν) = 1 iff RX(ν|X) = 1 and RY (ν|Y ) = 1.

For any Boolean function f : 2V → {0, 1}, a (X, Y )-rectangle cover of f is a set
S of (X, Y )-rectangles such that f = ∨

R∈S R. The size |S| of S is the number of
rectangles. We say that S is disjoint if for every R, R′ ∈ S, we have R ∧ R′ = ⊥.

Connections between rectangle covers and compilation target sizes have already
been successfully used to prove lower bounds, see [8, 14, 51]. We adapt these results
to relate the size of rectangle covers to the width of compilation targets in our con-
text. We give proofs for these results that are essentially self-contained: their main
difference with existing proofs is that our proofs apply to our notion of width whereas
existing results generally apply to size.

We start by relating the width of OBDDs with the size of rectangle covers:

Theorem 6.7 Let O be a complete nOBDD on variables V structured by the total
order v = v1, . . . , v|V |. Let 1 � i � n, let v<i = {vj | j < i} and let v≥i = {vj |
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j ≥ i}. There exists a (v<i, v≥i)-rectangle cover S of O whose size is at most the
vi-width of O. Moreover, if O is an uOBDD, then S is disjoint.

Proof Let v be a node of O that tests variable vi , and let Rv be the set of valuations of
2v that are accepted in O by a path going through v. We claim that Rv is a (v<i, v≥i)-
rectangle. Indeed, let Rv<i be the set of valuations of v<i compatible with some path
in O from the root to v, and let Rv≥i be the set of valuations of v≥i compatible with
some path in O from v to the 1-sink. Any valuation of Rv can clearly be written as
the union of one valuation from Rv<i and of one valuation from Rv≥i . Conversely,
given any pair νv<i and νv≥i of valuations of these two sets, we can combine any
two witnessing paths for these valuations to obtain a path in O that witnesses that
νv<i ∪ νv≥i is in Rv . Hence, it is indeed the case that Rv = Rv<i ∧ Rv≥i .

Consider now the set Oi of gates of O that test vi . Since O is complete, every
accepting path of O contains a gate of Oi . It follows that

⋃
v∈Oi

Rv is a rectangle
cover of O, and its size is at most |Oi |, i.e., the vi-width of O.

Now, if O is an uOBDD, then let ν be a satisfying valuation of O. Since O is
unambiguous, there exists a unique path π in O compatible with ν. Moreover, since
O is complete, π contains exactly one node v that is labeled by vi , so that ν is
in Rv , and not in any other Rv′ for v′ �= v. Hence,

⋃
v∈Oi

Rv is a disjoint rectangle
cover of O.

We now generalize this result from OBDDs to SDNNFs. To do so, we use the
connections of [14, Theorem 13] and [41, Theorem 3] between rectangle covers and
SDNNF size, and adapt them to our notion of width:

Theorem 6.8 ([14, Theorem 13] and [41, Theorem 3]) Let (D, T , ρ) be a complete
SDNNF on variables V . Let n ∈ T . There is a (Leaves(Tn), Leaves(T \ Tn))-
rectangle cover S of D whose size is at most the n-width of (D, T , ρ). Moreover, if
D is a d-SDNNF, then S is disjoint.

Proof Recall the notion of trace (Definition 3.2). Given an ∨-gate g of D structured
by n, we define Rg to be the set of valuations of 2V that are accepted in D by a
trace going through g. Then Rg defines a (Leaves(Tn), Leaves(T \ Tn))-rectangle.
Intuitively, any trace going through g defines a trace on the variables Leaves(Tn) that
starts at gate g, and one “partial” trace on Leaves(T \ Tn) where g is also used as a
leaf; conversely, any pair of such traces can be combined to a complete trace in D

that goes through g. The precise argument is given in [14, Theorem 1], where traces
are called certificates.

Consider now the set Dn of ∨-gates structured by n. Since D is complete, every
satisfying valuation of D has a corresponding trace containing a gate in Dn; this
uses the facts that in complete d-SDNNFs, no input of an ∧-gate is an ∧-gate, and
an ∧-gate structured by an internal node of the v-tree has exactly two children. It
follows that S = ⋃

g∈Dn
Rg is a (Leaves(Tn), Leaves(T \ Tn))-rectangle cover of D

of size |Dn| � w.
Now, if D is a d-SDNNF, it is not hard to see that every satisfying assignment has

exactly one accepting trace: otherwise, considering any topmost gate where the two

Theory of Computing Systems (2020) 64:861–914 897



traces differ, we see that this gate must be a ∨-gate where the two traces witness a
violation of determinism. Moreover, if ν is a satisfying valuation of Rg for some g ∈
Dn then its unique trace contains g and cannot contain another g′ ∈ Dn: otherwise
this would imply that one ∧-gate is not decomposable, or that there is an ∨-gate
having an ∨-gate as input which would be a violation of completeness. Thus ν is not
in Rg′ . In other words, S is disjoint.

6.2 Rectangle covers of SCOV and SINT

The second step of the proof of Theorems 6.4 and 6.5 is to observe that SCOVn(X, Y )

(resp., SINTn(X, Y )) does not have small (X, Y )-rectangle covers (resp., disjoint
covers). This is a folklore result in communication complexity: see, e.g., [47, Section
3] for the bound on SCOVn(X, Y ). For completeness, we state and prove the result
here:

Theorem 6.9 Let S be a (X, Y )-rectangle cover (resp., disjoint (X, Y )-rectangle
cover) of SCOVn(X, Y ) (resp., of SINTn(X, Y )). Then |S| ≥ 2n − 1.

Proof We first prove our claim for SCOVn(X, Y ) as in [47]. For any valuation ν of
X, we denote by ν the valuation of Y defined by ν(yi) := ¬ν(xi) for all 1 � i � n.
Consider the set F := {ν ∪ ν | ν : X → {0, 1}}: we have |F | = 2n, it is clear that
SCOVn(X, Y ) evaluates to true on each valuation of F , and we will now show that F
is a fooling set in the terminology of [47]. Specifically, consider the (X, Y )-rectangle
cover S and let us show that every rectangle contains at most one valuation of F ,
which implies the bound. Assume by contradiction that some rectangle RX ∧ RY

contains two valuations ν ∪ ν and ν′ ∪ ν′ of F for ν �= ν′, so that RX(ν) = RX(ν′) =
RY (ν) = RY (ν′) = 1. This implies that the rectangle RX ∧ RY must also contain
ν ∪ ν′ and ν′ ∪ ν. However, as ν �= ν′, there is 1 � i � n where ν(xi) �= ν′(xi).
The first case is that we have ν(xi) = 1 but ν′(xi) = 0, in which case ν(yi) = 0
and ν′(yi) = 1, but then SCOVn(X, Y ) evaluates to 0 on ν′ ∪ ν, a contradiction. The
second case is that we have ν(xi) = 0 but ν′(xi) = 1 and we conclude symmetrically
using ν ∪ ν′. Thus we have shown that any rectangle of S can contain at most one
valuation from F , so that |S| ≥ |F | ≥ 2n, in particular |S| ≥ 2n − 1.

The proof of our claim for SINTn(X, Y ) can be found in [14]. More precisely, it
is exactly Theorem 15 of [14], together with the second-last sentence in the proof of
Proposition 14 of [14].

We are now ready to prove Theorems 6.4 and 6.5:

Proof (of Theorem 6.4) Let O be a complete nOBDD (resp., complete uOBDD)
computing SCOVn(X, Y ) (resp., SINTn(X, Y )), where O is structured by v =
v1, . . . , v|V | that cuts (X, Y ). Let 1 � i � n witnessing that v cuts (X, Y ), and
let wi be the vi-width of O. By Theorem 6.7, SCOVn(X, Y ) (resp., SINTn(X, Y ))
has a (X, Y )-rectangle cover (resp., disjoint rectangle cover) of size � wi . Hence,
by Theorem 6.9, we have wi ≥ 2n − 1. But then this implies that the width of O

is also ≥ 2n − 1.
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The proof of Theorem 6.5 is similar, using Theorem 6.8 instead of Theorem 6.7.

7 Lower Bounds for Structured Classes: General Case

In this section we extend the lower bounds of the previous section from the specific
functions SCOVn and SINTn, to obtain lower bounds that apply to any family of
CNFs and DNFs. Specifically, we will show:

Theorem 7.1 Let ϕ be a monotone CNF (resp., monotone DNF) of pathwidth k,
arity a and degree d . Then the width of any complete nOBDD (resp., any complete

uOBDD) computing ϕ is ≥ 2
k

a3d2 − 1.

Theorem 7.2 Let ϕ be a monotone CNF (resp., monotone DNF) of treewidth k, arity
a and degree d . Then the width of any complete SDNNF (resp., any complete d-

SDNNF) computing ϕ is ≥ 2
k

3a3d2 − 1.

Together with our upper bounds, this implies the following when we have a
constant bound on arity and degree:

Corollary 7.3 For any monotone CNF ϕ (resp., monotone DNF ϕ) of constant arity
and degree, the width of the smallest complete nOBDD (resp., uOBDD) computing ϕ

is 2�(pw(ϕ)).

Corollary 7.4 For any monotone CNF ϕ (resp., monotone DNF ϕ) of constant arity
and degree, the width of the smallest complete SDNNF (resp., d-SDNNF) computing
ϕ is 2�(tw(ϕ)).

The completeness assumption can be lifted using the completion results (Lemma
3.16), to show a lower bound on representations that are not necessarily complete.
However, if we do this, we no longer have a definition of width, so the lower bound
is on the size of the representation (and thus is no longer tight).

Corollary 7.5 For any monotone CNF ϕ (resp., monotone DNF ϕ) of constant
arity and degree, the size of the smallest nOBDD (resp., uOBDD) computing
ϕ is 2Ω(pw(ϕ)).

Corollary 7.6 For any monotone CNF ϕ (resp., monotone DNF ϕ) of constant
arity and degree, the size of the smallest SDNNF (resp., d-SDNNF) computing
ϕ is 2Ω(tw(ϕ)).

In the case of OBDDs, it is easy to generalize width to non-complete OBDDs such
that we can lift the completeness assumption in Corollary 7.3: see Theorem 15 of [5].
However, this result in [5] is only shown for OBDDs (not nOBDDs or uOBDDs),
and it is open whether it extends to these larger classes. As for SDNNFs, we leave
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to future work the task of generalizing width to non-complete circuits and showing
comparable bounds.

To prove Theorem 7.1 and 7.2, we will explain how we can find SCOVn (resp.,
SINTn) in any monotone CNF (resp., DNF) of high pathwidth/treewidth. To this end,
we first present a general notion of a set of clauses being split by two variable subsets.
We will then show Theorem 7.1, and last show Theorem 7.2.

7.1 From Split Sets of Clauses to SCOVn and SINTn

To prove Theorem 7.1 and 7.2, we will need to find a subset of the clauses of the
formula which is split by two subsets of variables. In this subsection, we introduce
the corresponding notions. We first define the notions of split clauses, which we
introduce in terms of hypergraphs because the definition is the same for DNF and
CNF.

Definition 7.7 Let H = (V , E) be a hypergraph, and let X′, Y ′ be two disjoint
subsets of V . We say that a set E′ ⊆ E of hyperedges is split by (X′, Y ′) if every
e ∈ E′ intersects X′ and Y ′ nontrivially, i.e., e ∩ X′ �= ∅ and e ∩ Y ′ �= ∅.

If we can find a set K ′ of clauses of a monotone CNF (resp., monotone DNF) that
are split by some pair (X′, Y ′) of disjoint variable subsets, then we can use it to find
a partial valuation that yields SCOVn(X, Y ) (resp., SINTn(X, Y )) for some X ⊆ X′
and Y ⊆ Y ′, where the number n of extracted clauses depends on the number of
clauses in K ′ and on the arity and degree. Formally:

Proposition 7.8 Let ϕ be a monotone CNF (resp., monotone DNF) with variable set
V , arity a and degree d . Assume that there are two disjoint subsets X′, Y ′ and a set

K ′ of clauses of ϕ such that K ′ is split by (X′, Y ′). Let n :=
⌊ |K ′|

a2×d2

⌋
. Then we can

find X ⊆ X′ and Y ⊆ Y ′ such that |X| = |Y | = n, and a valuation ν of V \ (X ∪ Y )

such that ν(ϕ) = SCOVn(X, Y ) (resp., ν(ϕ) = SINTn(X, Y )).

We prove Proposition 7.8 in the rest of this subsection. Intuitively, the idea is to
use the clauses of K ′ to achieve SCOVn(X, Y ) or SINTn(X, Y ), and assign the other
variables to eliminate them from the clauses and eliminate the other clauses. Our
ability to do this will rely on the monotonicity of ϕ, but it will also require a careful
choice of a subset of clauses of K ′ that are “independent” in some sense: they should
be pairwise disjoint and any pair of them should never intersect a common clause.
We formalize this as an independent set in an exclusion graph constructed from the
hypergraph of ϕ:

Definition 7.9 The exclusion graph of a hypergraph H = (V , E) is the graph GH

whose vertices are the edges E of H , and where two edges e �= e′ are adjacent if (1.)
e and e′ both intersect some edge e′′ ∈ E, or if (2.) e and e′ intersect each other: note
that case (2.) is in fact covered by case (1.) by taking e′′ := e′. Equivalently, e and
e′ are adjacent in GH iff they are at distance � 4 in the so-called incidence graph of
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H . Formally, we can define GH = (E, {{e, e′} ∈ E2 | e �= e′ ∧ ∃e′′ ∈ E, (e ∩ e′′) �=
∅ ∧ (e′ ∩ e′′) �= ∅}.

Remember that an independent set of a graph G = (V , E) is a subset S of V such
that no two elements of S are adjacent in G. We will use the following easy lemma
on independent sets:

Lemma 7.10 Let G = (V , E) be a graph and let V ′ ⊆ V . Then G has an

independent set S ⊆ V ′ of size at least
⌊ |V ′|

degree(G)+1

⌋
.

Proof We construct the independent S set with the following trivial algorithm: start
with S := ∅ and, while V ′ is non-empty, pick an arbitrary vertex v in V ′, add it to S,
and remove v and all its neighbors from G and from V ′. It is clear that this algorithm
terminates and adds the prescribed number of vertices to S, so all that remains is to
show that S is an independent set at the end of the algorithm. This is initially true
for S = ∅; let us show that it is preserved throughout the algorithm. Assume by way
of contradiction that, at a stage of the algorithm, we add a vertex v to S and that it
stops being an independent set. This means that S contains a neighbor v′ of v which
must have been added earlier; but when we added v′ to S we have removed all its
neighbors from G, so we have removed v and we cannot add it later, a contradiction.
Hence, the algorithm is correct and the claim is shown.

To use this lemma, let us bound the degree of GH using the degree and arity of H :

Lemma 7.11 Let H be a hypergraph. Then we have degree(GH ) � (arity(H) ×
degree(H))2 − 1.

Proof Any edge e of H contains � arity(H) vertices, each of which occurs in �
degree(H) − 1 edges that are different from e, so any edge e of H intersects at most
n := arity(H) × (degree(H) − 1) edges different from e. Hence, the degree of GH

is at most n + n2 (counting the edges that intersect e or those at distance 2 from e).
Now, we have n + n2 = n(n + 1), and as degree(H) ≥ 1 and arity(H) ≥ 1 (because
we assume that hypergraphs contain at least one non-empty edge), the degree of GH

is < arity(H) × degree(H) × (1 + arity(H) × (degree(H) − 1)), i.e., it is indeed
< (arity(H) × degree(H))2, which concludes.

We are now ready to show Proposition 7.8.

Proof (of Proposition 7.8) Let ϕ be the monotone formula with variable set V , arity
a, and degree d , fix the sets X′ and Y ′ and the set K ′ of split clauses, and let n :=⌊ |K ′|

a2×d2

⌋
. Let Gϕ be the exclusion graph of ϕ (seen as a hypergraph of clauses).

By Lemma 7.11, the graph Gϕ has degree � a2 × d2 − 1, so by Lemma 7.10 it
has an independent set K ′′ ⊆ K ′ with

∣
∣K ′′∣∣ ≥ n. Let us pick any subset K of K ′′

that has cardinality exactly n: K is still an independent set of Gϕ , and K is still
split by (X′, Y ′).
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Let us now define X by choosing one element of X′ in each clause of K , and
define Y accordingly. We have X ⊆ X′, Y ⊆ Y ′, so that X′ and Y ′ are disjoint; and
the cardinality of X and Y is exactly n, because the clauses of K are pairwise disjoint
as none of them are adjacent in Gϕ .

Let us now define the valuation ν of V \ (X ∪Y ). We first let Z := ⋃
K be the set

of variables occurring in the clauses of K: we have X ∪ Y ⊆ Z. Let ν1 be the partial
valuation that assigns all variables of V \ Z to 1 if ϕ is a CNF and to 0 if ϕ is a DNF,
and consider the formula ν1(ϕ): it consists precisely of the clauses of ϕ that only use
variables of Z (in particular those of K), because the other clauses evaluate to true
(if ϕ is a CNF) or false (if ϕ is a DNF) and so are simplified away.

Let us now observe that in fact ν1(ϕ) precisely consists of the clauses of K . Indeed,
the clauses of K are clearly in ν1(ϕ), and for the converse let us assume by contra-
diction that ϕ contains a clause e′′ that only uses variables of Z but is not a clause of
K . We know that e′′ cannot be the empty clause because we have disallowed it, so
it contains a variable of Z, which means that it intersects a clause e of K . Now, by
hypothesis e′′ is not a clause of K , and as ϕ is minimized we know that e′′ cannot be
a subset of e, which means that it must contain some variable of Z which is not in e,
hence it must intersect some other clause e′ �= e of K . Hence, e′′ intersects both e and
e′, which is impossible as K is an independent set of Gϕ but e′′ witnesses that e and
e′ are adjacent in Gϕ . We conclude that ν1(ϕ) precisely consists of the clauses of K .

Now, let us consider the partial valuation ν2 of ν1(ϕ) that assigns all variables of
Z\(X∪Y ) to 0 (if ϕ is a DNF) or to 1 (if ϕ is a CNF). Let ν := ν1 ∪ν2. It is clear that
the clauses of ν(ϕ) are the intersection of the clauses of ν1(ϕ) with X ∪ Y , i.e., the
intersection of the clauses of K with X∪Y . Now, the definition of K ensures that each
clause contains exactly one variable of X and one variable of Y , with each variable
occurring in exactly one clause. Thus, it is the case that ν(ϕ) = SCOVn(X, Y ) or
ν(ϕ) = SINTn(X, Y ), which concludes the proof.

7.2 Proof of Theorem 7.1: Pathwidth and OBDDs

In this section, we explain how we can obtain SCOVn (resp., SINTn) by applying a
well-chosen partial valuation to any monotone CNF (resp., monotone DNF). The key
result is:

Proposition 7.12 Let ϕ be a monotone CNF (resp., monotone DNF) of pathwidth
≥ k on variables V . Then, for any variable ordering v of V , there exist disjoint
subsets X, Y of V such that v cuts (X, Y ) and a valuation ν of V \ (X ∪ Y ) such that
ν(ϕ) = SCOVl(X, Y ) (resp., SINTl(X, Y )) for some l ≥ k

a3d2 .

Thanks to this result, we can extend Theorem 6.4 to arbitrary monotone
CNFs/DNFs, which is what we need to prove Theorem 7.1:

Proof (of Theorem 7.1) Let O be a complete nOBDD (resp., complete uOBDD)
computing ϕ, and let v be its order on the variables V . By Proposition 7.12, there exist
disjoint subsets X, Y of V such that v cuts (X, Y ) and a valuation ν of V \ (X ∪ Y )

such that ν(ϕ) = SCOVl (X, Y ) (resp., SINTl(X, Y )) for l ≥ k

a3d2 . By applying
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Lemma 3.12 to O, we know that there is a complete nOBDD (resp., complete
uOBDD) O ′ on variables X ∪ Y with order v′ = v|X∪Y computing SCOVl(X, Y )

(resp., SINTl (X, Y )), whose width is no greater than that of O. Now, it is clear that
v′ still cuts (X, Y ), so that by Theorem 6.4 the width of O ′, and hence that of O, is

≥ 2
k

a3d2 − 1.

Hence, in the rest of this subsection, we prove Proposition 7.12.

Pathsplitwidth The first step of the proof of Proposition 7.12 is to rephrase the bound
on pathwidth, arity, and degree, in terms of a bound on the performance of variable
orderings. Intuitively, a good variable ordering is one which does not split too many
clauses. Formally:

Definition 7.13 Let H = (V , E) be a hypergraph, and v = v1, . . . , v|V | be an
ordering on the variables of V . For 1 � i � |V |, we let Spliti (v, H) be the
set of hyperedges e of H that contain both a variable at or before vi , and a vari-
able strictly after vi , i.e., Spliti (v, H) := {e ∈ E | ∃l ∈ {1, . . . , i} and ∃r ∈
{i + 1, . . . , |V |} such that {vl, vr } ⊆ e}. Note that Split|V |(v, H) is always empty.

The pathsplitwidth of v relative to H is the maximum size of the split, formally,
psw(v, H) := max1�i�|V | |Spliti (v, H)|. The pathsplitwidth psw(H) of H is then
the minimum of psw(v, H) over all variable orderings v of V .

In other words, psw(H) is the smallest integer n ∈ N such that, for any variable
ordering v of the nodes of H , there is a moment at which n hyperedges of H are split
by (v�i, v>i), in the sense of Definition 7.7. We note that the pathsplitwidth of H is
exactly the linear branch-width [39] of the dual hypergraph of H , but we introduced
pathsplitwidth because it fits our proofs better. This being said, the definition of path-
splitwidth is also reminiscent of pathwidth, and we can indeed connect the two (up
to a factor of the arity):

Lemma 7.14 For any hypergraph H , we have pw(H) � arity(H) × psw(H).

Proof Let H = (V , E) be a hypergraph, and let v be an enumeration of the nodes of
H witnessing that H has pathsplitwidth psw(H). We will construct a path decompo-
sition of H of width � arity(H) × psw(H). Consider the path P = b1, · · · , b|V | and
the labeling function λ where λ(bi) := {vi} ∪ ⋃

Spliti (v, H) for 1 � i � |V |. Let
us show that (P, λ) is a path decomposition of H : once this is established, it is clear
that its width will be � arity(H) × psw(H).

First, we verify the occurrence condition. Let e ∈ E. If e is a singleton {vi} then e

is included in bi . Now, if |e| ≥ 2, then let vi be the first element of e enumerated by
v. We have e ∈ Spliti (v, H), and therefore e is included in bi .

Second, we verify the connectedness condition. Let v be a vertex of H , then by
definition v ∈ bi iff v = vi or there exists e ∈ Spliti (v, H) with v ∈ e. We must show
that the set Tv of the bags that contain v forms a connected subpath in P . To show
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this, first observe that for every e ∈ E, letting Split(e) = {vi | 1 � i < |V | ∧ e ∈
Spliti (v, H)}, then Split(e) is clearly a connected segment of v. Second, note that for
every e with v ∈ e, then either v ∈ Split(e) or v and the connected subpath Split(e)
are adjacent (in the case where v is the last vertex of e in the enumeration). Now,
by definition Tv is the union of the bv′ for v′ ∈ Split(e) with v ∈ e and of bi , so
it is a union of connected subpaths which all contain bi or are adjacent to it: this
establishes that Tv is a connected subpath, which shows in turn that (T , λ) is a path
decomposition, concluding the proof.

For completeness with the preceding result, we note that the following also holds,
although we do not use it (the proof is in the extended version of [5]):

Lemma 7.15 For any hypergraph H , it is the case that psw(H) � degree(H) ×
(pw(H) + 1).

We are finally ready to prove Proposition 7.12:

Proof (of Proposition 7.12) Let ϕ be the monotone CNF (resp., monotone DNF)
on variables V having pathwidth ≥ k, a be its arity, d its degree, and let v be a
variable ordering of V . Remember that we identify ϕ with its associated hypergraph.
By Lemma 7.14, the pathsplitwidth k′ of ϕ is ≥ k

a
. By definition of pathsplitwidth,

there exists 1 � i � |V | such that Spliti (v, ϕ) ≥ k′. Let X′ := v�i and Y ′ := v>i,
and let K ′ := Spliti (v, ϕ). Then by definition, K ′ is split by (X′, Y ′). Hence by

Proposition 7.8, letting n :=
⌊

k′
a2×d2

⌋
≥

⌊
k

a3×d2

⌋
, we can find X ⊆ X′ and Y ⊆ Y ′

of size n and a valuation ν of V \ (X ∪ Y ) such that ν(ϕ) = SCOVn(X, Y ) (resp.,
ν(ϕ) = SINTn(X, Y )), which is what we wanted.

7.3 Proof of Theorem 7.2: Treewidth and SDNNFs

In this section we show our general lower bound relating the treewidth of CNFs/DNFs
to the width of equivalent (d)-SDNNFs. We proceed similarly to the previous section,
and start by showing the analogue of Proposition 7.12 for treewidth and v-trees:

Proposition 7.16 Let ϕ be a monotone CNF (resp., monotone DNF) of treewidth
≥ k on variables V . Then, for any v-tree T of V , there exist disjoint subsets X, Y

of V such that T cuts (X, Y ) and a valuation ν of V \ (X ∪ Y ) such that ν(ϕ) =
SCOVl(X, Y ) (resp., SINTl(X, Y )) for some l ≥ k

3a3d2 .

This allows us to extend Theorem 6.5 to arbitrary monotone CNFs/DNFs and to
prove Theorem 7.2:

Proof (of Theorem 7.2) Let (D, T , ρ) be a complete SDNNF (resp., complete d-
SDNNF) on V computing ϕ. By Proposition 7.16, there exist disjoint subsets X, Y

of V such that T cuts (X, Y ) and a valuation ν of V \ (X ∪ Y ) such that ν(ϕ) =
SCOVl(X, Y ) (resp., SINTl(X, Y )) for l ≥ k

3a3d2 . By Lemma 3.15, there exists a
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complete SDNNF (resp., complete d-SDNNF) (D′, T ′, ρ′) on variables X ∪ Y com-
puting SINTl(X, Y ) whose width is no greater than that of (D, T , ρ), and such that
T ′ is a reduction of T . Now, it is clear that T ′ still cuts (X, Y ) (by definition of T ′
being a reduction of T ), so that by Theorem 6.5 the width of (D′, T ′, ρ′), and hence

that of (D, T , ρ), is ≥ 2
k

3a3d2 − 1.

Hence, in the rest of this subsection, we prove Proposition 7.16.

Treesplitwidth Informally, treesplitwidth is to v-trees what pathsplitwidth is to
variable orders: it bounds the “best performance” of any v-tree.

Definition 7.17 Let H = (V , E) be a hypergraph, and T be a v-tree over V . For any
node n of T , we define Splitn(T , H) as the set of hyperedges e of H that contain both
a variable in Tn and one outside Tn (recall that Tn denotes the subtree of T rooted at
n). Formally Splitn(T , H) is defined as the following set of hyperedges:

{e ∈ E | ∃vi ∈ Leaves(Tn) and ∃vo ∈ Leaves(T \ Tn) such that {vi, vo} ⊆ e}
The treesplitwidth of T relative to H is tsw(T , H) := maxn∈T |Splitn(T , H)|.

The treesplitwidth tsw(H) of H is then the minimum of tsw(T , H) over all v-trees
T of V .

We note that the treesplitwidth of H is exactly the branch-width [45] of the dual
hypergraph of H , but treesplitwidth is more convenient for our proofs. As with path-
splitwidth and pathwidth (Lemma 7.14), we can bound the treewidth of a hypergraph
by its treesplitwidth:

Lemma 7.18 For any hypergraph H , we have tw(H) � 3 × arity(H) × tsw(H).

Proof Let H = (V , E) be a hypergraph, and T a v-tree over V witnessing that H

has treesplitwidth tsw(H). We will construct a tree decomposition T ′ of H of width
� 3 × arity(H)× tsw(H). The skeleton of T ′ is the same as that of T . Now, for each
node n ∈ T , we call bn the corresponding bag of T ′, and we define the labeling λ(bn)

of bn.
If n is an internal node of T with children nl, nr (recall that v-trees are assumed

to be binary), then we define λ(bn) := ⋃
Splitn(T , H) ∪ ⋃

Splitnl
(T , H) ∪⋃

Splitnr
(T , H), and if n is a variable v ∈ V (i.e., n is a leaf of T ) then λ(bn) := {v}.

It is clear that the width of P is � max(3 × arity(H) × tsw(H), 1) − 1 � 3 ×
arity(H) × tsw(H).

The occurrence condition is verified: let e be an edge of H . If e is a singleton edge
{v} then it is included in bv . If |e| ≥ 2 then there must exists a node n ∈ T such
that e ∈ Splitn(T , H). If n is an internal node of T then e ⊆ ⋃

Splitn(T , H) ⊆ bn,
and if n is a leaf node of T then it must have a parent p (since e is split), and e ⊆⋃

Splitn(T , H) ⊆ bp.
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Connectedness is proved in the same way as in the proof of Lemma 7.14: for a
given vertex v ∈ V , the nodes of T where each edge e containing v is split is a con-
nected subtree of T without its root node: more precisely, they are all the ancestors
of a leaf in e strictly lower than their the least common ancestor. Adding the missing
root to each such subtree and unioning them all will result in the subtree of all ances-
tors of a vertex adjacent to v (included v itself) up to their least common ancestor a.
Consequently, the set of nodes of T ′ containing v is a connected subtree of T ′, rooted
in ba .

We are now ready to prove Proposition 7.16, similarly to the way we proved
Proposition 7.12:

Proof (of Proposition 7.16) Let ϕ be the monotone CNF (resp., monotone DNF) on
variables V having treewidth ≥ k, a be its arity, d its degree, and let T be a v-tree of
V . By Lemma 7.18, the treesplitwidth k′ of ϕ is ≥ k

3a
. By definition of treesplitwidth,

there exists n ∈ T such that
∣
∣Splitn(T , ϕ)

∣
∣ ≥ k′. Let X′ be the variables in Tn, let

Y ′ be the variables outside Tn, and let K ′ := Splitn(T , ϕ). Then by definition, K ′ is

split by (X′, Y ′). Hence by Proposition 7.8, letting n :=
⌊

k′
a2×d2

⌋
≥

⌊
k

3a3×d2

⌋
, we

can find X ⊆ X′ and Y ⊆ Y ′ of size n and a valuation ν of V \ (X ∪ Y ) such that
ν(ϕ) = SCOVn(X, Y ) (resp., ν(ϕ) = SINTn(X, Y )), which is what we wanted.

8 Lower Bounds for Unstructured Classes

Theorem 7.2 gives an exponential lower bound on the size of structured DNNFs com-
puting monotone CNF formulas of treewidth k. Intuitively, the high treewidth of the
CNF makes it possible to find a large instance of SCOV for some set of variables that
are cut by the v-tree, and this implies a lower bound on the size of the SDNNF. How-
ever, this argument crucially depends on the fact that the whole circuit is structured
by the same v-tree.

It turns out that we can nevertheless extend our exponential lower bound on mono-
tone CNF of treewidth k; but this requires a completely different proof technique as
we cannot isolate a single bad partition of variables anymore. As in the rest of our
work, the same argument applies to decision diagrams with pathwidth.

As in the previous sections, our lower bounds in this section will apply to so-called
complete circuits and decision diagrams. However, the definitions of completeness
in Section 3.4 were only given for structured classes. We now give these missing
definitions:

Definition 8.1 We say that an nFBDD is complete if, for any root-to-sink path π , all
variables are tested along π , i.e., occur as the label of a node of π . For DNNFs, recall-
ing the definition of a trace (see Definition 3.2), we say that a DNNF is complete if,
for any trace � starting at the output gate, all variable gates are in �.

Observe that a complete nOBDD is indeed complete when seen as an nFBDD, and
a complete SDNNF is also complete when seen as an DNNF.
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Our main results in this section are the following analogues of Corollaries 7.5 and
7.6, where the structuredness assumption is lifted:

Theorem 8.2 For any monotone CNF ϕ of constant arity and degree, the size of the
smallest complete nFBDD computing ϕ is 2Ω(pw(ϕ)).

Theorem 8.3 For any monotone CNF ϕ of constant arity and degree, the size of the
smallest complete DNNF computing ϕ is 2Ω(tw(ϕ)).

Like in the previous section, we can in fact lift the completeness assumption
because one can make any nFBDD or any DNNF complete by only increasing its
size with a factor linear in the number of variables:

Lemma 8.4 For any nFBDD (resp. DNNF) D on variables set V , there exists an
equivalent complete nFBDD (resp. DNNF) of size at most (|V | + 1) × |D|.

The proof of Lemma 8.4 for nFBDD can be straightforwardly adapted from [52,
Lemma 6.2.2] where it is shown for FBDD. As for Lemma 8.4 for DNNF, it can be
shown similarly to the way that DNNF are made smooth in [26] (after Definition 4).

Combining Lemma 8.4 with Theorems 8.2 and 8.3 allows us to remove the com-
pleteness assumption as we did for Corollary 7.5 and 7.6 (since (|V | + 1) × |D| �
|D|2, and because

√
2Ω(k) is also 2Ω(k)):

Corollary 8.5 For any monotone CNF ϕ of constant arity and degree, the size of the
smallest nFBDD computing ϕ is 2Ω(pw(ϕ)). Likewise, the size of the smallest DNNF
computing ϕ is 2Ω(tw(ϕ)).

We note that, in contrast with our results in Sections 6 and 7, the above results only
apply to CNFs. By contrast, for DNFs, there is no hope of showing a lower bound on
DNNFs, because any DNF is in particular a DNNF. A natural analogue would be a
lower bound on d-DNNFs representations of DNFs, but this is a long-standing open
problem in knowledge compilation [14, 29].

Corollary 8.5 generalizes a lower bound of Razgon [44] where he constructs a
family (Fn)n∈N of monotone 2CNFs such that for every n, Fn has n variables and
treewidth k. He proves that every nFBDD computing Fn has size at least nΩ(k). One
can actually observe that Fn has pathwidth Ω(k log(n)), making Razgon’s lower
bound a consequence of Corollary 8.5. This observation is actually crucial in Raz-
gon’s reasoning and this is exactly this fact that makes his proof works. Our lower
bound is more general though as it works for any monotone CNF and can be lifted to
treewidth and DNNF. The proof technique is however roughly the same and rely on a
similar technical result, Lemma 8.6 here, which corresponds to [44, Theorem 4]. We
give a simpler and more generic presentation of the proof.

The proofs of Theorems 8.2 and 8.3 follow the same structure. We will first present
the proof of Theorem 8.2 and then explain how the argument adapts from nFBDDs
to DNNFs.
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Both results rely on a bound on the number of satisfying valuations that a rectangle
can cover when its underlying partition splits (remember Definition 7.7) a large num-
ber of clauses. The result can be understood as a variant of Proposition 7.8, coupled
with a generalization of the notion of fooling sets in the proof of Theorem 6.9.

Lemma 8.6 Let ϕ be a monotone CNF with variable set V , arity a and degree d . Let
X, Y be a partition of V and R be an (X, Y )-rectangle such that R ⇒ ϕ. Assume
that there exists a set K ′ of clauses of ϕ such that K ′ is split by (X, Y ). Let n :=⌊ |K ′|

a2×d2

⌋
. Then we can bound the number of satisfying valuations of R as follows:

#R � (1 + αd,a)
−n × #ϕ where αd,a = 2−a2d > 0.

Proof We start by extracting a subset K ⊆ K ′ of size n from K ′ such that K is an
independent set of Gϕ , the exclusion graph of ϕ, as in the beginning of the proof of
Proposition 7.8.

Let C be a clause of K . We denote by C ∩ X the (disjunctive) clause formed of
the variables in X that occur in C. We claim that one of the following holds:

– every satisfying valuation ν of R satisfies C ∩ X; or
– every satisfying valuation ν of R satisfies C ∩ Y .

Indeed, assume toward a contradiction that there exist two satisfying valuations
ν1, ν2 of R such that ν1 does not satisfy C∩X and ν2 does not satisfy C∩Y . Consider
now the valuation ν := ν1|X ∪ ν2|Y . As R is a rectangle, it is easy to see that ν should
satisfy R, hence ϕ. However, by definition ν does not satisfy C, hence it does not
satisfy ϕ, a contradiction. We point out here that this claim would not hold if we had
a DNF formula instead of CNF.

Thus, for every clause C ∈ K , all satisfying valuations of R satisfy either C ∩ X

or C ∩ Y . Let KX and KY be a partition of K such that all clauses in KX (resp., in
KY ) are such that all satisfying valuations of R satisfy C ∩ X (resp., C ∩ Y ): if there
is any clause such that both conditions hold, assign it to KX or to KY arbitrarily.

This definition ensures that every satisfying valuation ν of R satisfies C ∩ X for
each clause C ∈ KX and that ν satisfies C ∩ Y for each clause C ∈ KY ; what is
more, as R ⇒ ϕ, the valuation ν must also satisfy all clauses in ϕ. This means that
we have R ⇒ ψ(KX, KY ) where ψ is defined as follows (up to minimization, i.e.,
removing clauses that are supersets of other clauses):

ψ(KX, KY ) := ϕ ∪ {C ∩ X | C ∈ KX} ∪ {C ∩ Y | C ∈ KY } .

We will now show that #ψ(KX, KY ) � (1 + αd,a)
−n × #ϕ. This is enough to

conclude the proof since R ⇒ ψ(KX, KY ), that is, #R � #ψ(KX, KY ).
The proof is by induction on the size of KX ∪ KY . More precisely, we will show

that given C ∈ KX, it holds:

#ψ(KX, KY ) � (1 + αd,a)
−1 × #ψ(KX \ {C}, KY ). (*)

The same is true for C ∈ KY , but as the argument is symmetric, we only explain it
for KX. This will be enough to show that #ψ(KX, KY ) � (1 + αd,a)

−n × #ϕ, since
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iteratively applying (*) to KX and KY until KX ∪ KY is empty, and recalling that
KX ∪ KY = K , we get:

#ψ(KX, KY ) � (1 + αd,a)
−(|KX∪KY |) × #ψ(∅, ∅) = (1 + αd,a)

−n × #ϕ.

Hence, let us fix C ∈ KX and show (*). To do so, we will consider the satisfying
valuations of ψ(KX \{C}, KY ) and distinguish those that happen to satisfy C∩X and
those who do not. (Note that these valuations are not necessarily satisfying valuations
of R.) Specifically, let us call S the set of satisfying valuations of ψ(KX \ {C}, KY )

which do not satisfy C∩X. Observe that all the other satisfying valuations of ψ(KX \
{C}, KY ) also satisfy ψ(KX, KY ). Hence, we have:

#ψ(KX \ {C}, KY ) = |S| + #ψ(KX, KY ). (**)

This implies that to show (*), in combination with (**) it suffices to show:

#ψ(KX, KY ) � |S|
αd,a

. (***)

To show (***), we define a function f from the satisfying valuations of
ψ(KX, KY ) to S, and show that each valuation in S has at most 1/αd,a preimages by
f . To define f , let us map every satisfying valuation ν of ψ(KX, KY ) to ν′ = f (ν)

defined as follows:

– set ν′(x) := 0 for every x ∈ C ∩ X,
– set ν′(z) := 1 for every z ∈ V \ (C ∩ X) that appears together in a clause with a

variable of C ∩ X;
– set ν′(z′) := ν(z′) for every other z′.

We first show that f is indeed a function that maps to S, in other words:

Claim For any satisfying valuation ν of ψ(KX, KY ), letting ν′ := f (ν), we have
ν′ ∈ S.

Proof First, by definition, ν′ does not satisfy C ∩ X since ν′(x) = 0 for every x ∈
C ∩ X. Now we have to show that ν′ also satisfies ψ(KX \ {C}, KY ). First observe
that ν′ satisfies C since C has at least one variable y in Y and by definition (precisely,
by the second item), ν′(y) = 1.

Now let C′ be a clause of ϕ. Then either C′ was satisfied by ν thanks to a variable
z such that ν′(z) = ν(z) = 1. In this case, C′ is still satisfied by ν′. Otherwise, it may
be that there is an x ∈ C ∩ X such that x ∈ C′ and ν(x) = 1. In this case, it is not
guaranteed anymore that C′ is satisfied by ν′. However, since ϕ is minimized, there
must exist z ∈ C′ such that z /∈ C. By definition, z appears in the same clause C′ as
x, meaning that ν′(z) = 1 (again by the second item) and thus C′ is satisfied by ν′.

Finally let C′ ∈ (KX \ {C}) (the case C′ ∈ KY is similar). We have to check that
C′ ∩ X is satisfied by ν′ as this clause appears in ψ(KX \ {C}, KY ). Since C′ is also
in ψ(KX, KY ), ν satisfies C′, thus, there exists a variable y of C′ such that ν(y) = 1.
Now, we claim that ν′(y) = 1 too. Indeed, by definition of K = KX ∪KY , all clauses
of K form an independent set in Gϕ . Thus, C′ does not share any variable with C. In
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other words, ν′(y) = ν(y) = 1 (by the third item), that is, ν′ satisfies C′. Thus, we
have established the claim.

Now it remains to count the maximal number of preimages of a valuation ν′ ∈ S

by f . To define ν′ from ν we only changed the valuation of variables that occur in
C or in a clause with a non-empty intersection with C. There are at most a2d such
variables: at most a variables in C, and for each of these variables, we have at most
d − 1 other clauses of size a incident to it, that is, we change the value of at most
a + a(d − 1)(a − 1) � da2 variables. Thus, given a valuation ν′ of S, there are at
most 2a2d = 1/αd,a satisfying valuations of ψ(KX \ {C}, KY ) whose image by f is
ν′. In other words, we have shown (***).

Combining this inequality with (**), we get:

#ψ(KX, KY ) � (1 + αd,a)
−1 × #ψ(KX \ {C}, KY ).

This concludes the proof of Lemma 8.6.

Now that we have proved our technical lemma, we are ready to prove our main
result on nFBDDs, Theorem 8.2:

Proof (of Theorem 8.2) Let V be the variables of ϕ, let k := pw(ϕ), let a be the arity
of ϕ, and let d be the degree of ϕ. Let D be a complete nFBDD computing ϕ.

Let ν be a satisfying valuation of ϕ. By definition of D, there exists a root-to-
sink path π in D compatible with ν. As we assumed D to be complete, this path
induces a total order on V . By Lemma 7.14, since ϕ is of pathwidth k, it is also of
pathsplitwidth at least k/a. In other words, we know that there exists a set of clauses
K ′ of size at least k/a and a gate g(ν) in π such that every clause of K ′ has at least
one variable tested before g(ν) in π and one variable tested after g(ν) in π . In other
words, letting X (resp., Y ) be the variables of V tested before g(ν) (resp., after g(ν)),
we have that K ′ is split by (X, Y ).

We denote by Rg(ν) the set of satisfying valuations of ϕ having a compatible path
going through g(ν). Observe now that, similarly to how we proved Theorem 6.7,
Rg(ν) is an (X, Y )-rectangle such that Rg(ν) ⇒ ϕ: this uses in particular the fact
that, although all valuations of Rg(ν) may not test the variables in the same order, we
know that all variables of X are tested before g(ν), and all variables of Y are tested
after g(ν), thanks to the fact that each variable can be tested only once along root-to-
sink paths in an nFBDD. Now, by Lemma 8.6, the number of valuations in Rg(ν) is
� (1 + αd,a)

−n × #ϕ where n := k

a3d2 .
Now, observe that given ν |= ϕ, we can always find such a gate g(ν) inducing a

rectangle Rg(ν) such that ν |= Rg(ν) and such that the previous inequality holds, i.e.,∣
∣Rg(ν)

∣
∣ is small wrt #ϕ. Let S = {g(ν) | ν |= ϕ}. We thus have: ϕ = ∨

g∈S Rg . Thus:

#ϕ �
∑

g∈S

#Rg (1)

� |S| (1 + αd,a)
−n × #ϕ (2)

� |D| (1 + αd,a)
−n × #ϕ since S ⊆ D. (3)

Simplifying by #ϕ gives |D| ≥ (1 + αd,a)
n = 2Ω(pw(ϕ)) since d and a are

constants.
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We have shown our result on nFBDDs, Theorem 8.2. We now explain how we can
adapt the proof to DNNFs and show Theorem 8.3:

Proof (of Theorem 8.3) Let V be the variables of ϕ, let k := tw(ϕ), let a and d be
the arity and degree of ϕ, and let D be a complete DNNF computing ϕ.

For any satisfying valuation ν of ϕ, we consider a trace � of D starting at the
output gate that witnesses that ν satisfies D. As D is complete, all variables of V

occur in �. By Lemma 7.18, we know that ϕ has treesplitwidth ≥ k
3a

. Hence, we
can define a gate g(ν) of � such that every clause of K ′ has at least one variable in
a leaf which a descendant of g(ν) in � (we call X the set of such variables) and one
variable in a leaf which is not a descendant of g(ν) in � (we call Y the set of such
variables), i.e., K ′ is split by (X, Y ).

We denote again by Rg(ν) the set of satisfying valuations of ϕ having a trace where
g(ν) occurs. Similarly to how we proved Theorem 6.8, it is again the case that Rg(ν)

is an (X, Y )-rectangle such that Rg(ν) ⇒ ϕ: this again uses the fact that, even though
the different traces using g(ν) may have a very different structure, decomposability
ensures that the variables of X must occur as descendants of g(ν) in � and the vari-
ables of Y must occur as non-descendants of g(ν) in �. Now, Lemma 8.6 ensures
that the number of valuations in Rg(ν) is � (1 + αd,a)

−n × #ϕ where n := k

3a3d2 .
We conclude exactly as in Theorem 8.2 by considering the gates g(ν) for all sat-

isfying valuations ν and writing the corresponding rectangle cover. This establishes
the desired bound.

9 Conclusion

We have shown tight connections between structured circuit classes and width
measures on circuits. We constructively rewrite bounded-treewidth (resp., bounded-
pathwidth) circuits to d-SDNNFs (resp., uOBDDs) in time linear in the circuit and
singly exponential in the treewidth, and show matching lower bounds for arbitrary
monotone CNFs or DNFs under degree and arity assumptions, also for CNFs in the
unstructured case. Our upper bound results imply the tractability of several tasks
(probability computation, enumeration, quantification, etc.) on bounded-treewidth
and bounded-pathwidth circuits, whereas our lower bounds show that pathwidth
and treewidth characterize compilability to these classes. Our lower bounds also
have consequences for probabilistic query evaluation as described in the conference
version [4].

Our work also raises a number of open questions. We leave to future work a
more thorough study of the relationships between the knowledge compilation classes
that we investigated, or their relationship to other classes such as sentential decision
diagrams (SDD) [28] which we did not consider. Indeed, one interesting question
is whether our upper bound result Theorem 4.2 could be modified to construct
SDDs, or whether this is impossible and SDDs and d-SDNNFs can thus be sepa-
rated. A related question would be to characterize the bounds on the compilation of
bounded-pathwidth circuits to OBDDs (not uOBDDs): this can be done with doubly
exponential complexity in the pathwidth by the results of [34, Corollary 2.13] but
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it is unclear whether this is tight. Another intriguing question is whether we could
improve our main lower bound of Theorem 4.2 by compiling to d-DNNFs that are
not necessarily structured; could we then consider a less restrictive parameter than
the treewidth of the original circuit?

In terms of our lower bounds, the main questions would be to investigate more
general languages, e.g., where the arity or degree are not bounded, or where the func-
tions are not monotone. There is also the question of proposing convincing width
definitions for non-complete circuit formalisms, so as to remove all completeness
assumptions from our results. Last, there is of course the tantalizing question of
showing a lower bound for unstructured representations of DNF formulae, i.e., an
analogue for DNF and d-DNNF of the results of Section 8, that would match the
results shown in Section 7 for the structured case. This relates to the open problem in
probabilistic databases of whether safe queries have tractable lineages [35, 38].

Acknowledgments We acknowledge Chandra Chekuri for his helpful comments at https://cstheory.
stackexchange.com/a/38943/, as well as Stefan Mengel for pointing us to a notion of width for d-SDNNFs
and suggesting a strengthening of our complexity upper bound in Theorem 4.2.
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