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2:2 A. Amarilli et al.

1 INTRODUCTION

Information extraction from text documents is an important problem in data management.
One approach to this task has recently attracted a lot of attention: it uses document spanners, a
declarative logic-based approach first implemented by IBM in their tool SystemT [27] and whose
core semantics has then been formalized by Fagin et al. [11]. The spanner approach uses variants
of regular expressions (e.g., regex-formulas with variables), compiles them to variants of finite au-
tomata (e.g., variable-set automata (VAs)), and evaluates them on the input document to extract the
data of interest. After this extraction phase, algebraic operations like joins, unions, and projections
can be performed. The formalization of the spanner framework by Fagin et al. [11] has led to a
thorough investigation of its properties by the theoretical database community [12, 13, 15, 16, 22].

Here we consider the basic task in the spanner framework of efficiently computing the results of
the extraction, i.e., computing without duplicates all tuples of ranges of the input document (called
mappings) that satisfy the conditions described by a VA. As many algebraic operations can also be
compiled into VAs [16], this task actually solves the whole data extraction problem for so-called
regular spanners [11]. Although the extraction task is intractable for general VAs [13], it is known
to be tractable if we impose that the VA is sequential [12, 16], which requires that all accepting runs
describe a well-formed mapping; we will make this assumption throughout our work. Even then,
however, it may still be unreasonable in practice to materialize all mappings: if there arek variables
to extract, then mappings are k-tuples and there may be up to nk mappings on an input document
of size n, which is unrealistic if n is large. For this reason, recent works [12, 16, 22] have studied
the extraction task in the setting of enumeration algorithms: instead of materializing all mappings,
we enumerate them one by one while ensuring that the delay between two results is always small.
Specifically, Freydenberger et al. [16, Theorem 3.3] have shown how to enumerate the mappings
with delay linear in the input document and quadratic in the VA, i.e., given a document d and a
functional VA A (a subclass of sequential VAs), the delay is O ( |A|2 × |d |).

Although this result ensures tractability in both the size of the input document and the automa-
ton, the delay may still be long as |d | is generally very large. By contrast, enumeration algorithms
for database tasks often enforce stronger tractability guarantees in data complexity [29, 32], par-
ticularly linear preprocessing and constant delay (when measuring complexity in the RAM model
with uniform cost measure [1]). Such algorithms consist of two phases: a preprocessing phase that
precomputes an index data structure in linear data complexity, and an enumeration phase that
produces all results so that the delay between any two consecutive results is always constant,
i.e., independent from the input data. It was recently shown by Florenzano et al. [12] that this
strong guarantee could be achieved when enumerating the mappings of VAs if we only focus on
data complexity, i.e., for any fixed VA, we can enumerate its mappings with linear preprocessing
and constant delay in the input document. However, the preprocessing and delay in the work of
Florenzano et al. [12] are exponential in the VA because they first determinize it [12, Proposi-
tions 4.1 and 4.3]. This is problematic because the VAs constructed from regex-formulas [11] are
generally nondeterministic.

Thus, to efficiently enumerate the results of the extraction, we would ideally want to have the
best of both worlds: ensure that the combined complexity (in the sequential VA and in the docu-
ment) remains polynomial while ensuring that the data complexity (in the document) is as small
as possible, i.e., linear time for the preprocessing phase and constant time for the delay of the enu-
meration phase. However, up to now, there was no known algorithm to satisfy these requirements
while working on nondeterministic sequential VAs. Further, it was conjectured that such an al-
gorithm is unlikely to exist [12] because the related task of counting the number of mappings is
SpanL-hard for such VAs.
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Constant-Delay Enumeration for Nondeterministic Document Spanners 2:3

The question of nondeterminism is also unsolved for the related problem of enumerating the
results of monadic second-order (MSO) queries on words and trees: there are several approaches
for this task where the query is given as an automaton, but they require the automaton to be
deterministic [2, 6] or their delay is not constant in the input document [20]. Hence, also in the
context of MSO enumeration, it is not known whether we can achieve linear preprocessing and
constant delay in data complexity while remaining tractable in the (generally nondeterministic)
automaton. The result that we show in the present work implies that we can achieve this for MSO
queries on words when all free variables are first order, with the query being represented as a
generally nondeterministic sequential VA, or as a sequential regex-formula with capture variables:
note that an extension to trees is investigated in our follow-up work [5].

Contributions. In this work, we show that nondeterminism is in fact not an obstacle to enu-
merating the results of document spanners: we present an algorithm that enumerates the map-
pings of a nondeterministic sequential VA in polynomial combined complexity while ensuring
linear preprocessing and constant delay in the input document. This answers the open question of
Florenzano et al. [12] and improves on the bounds of Freydenberger et al. [16]. More precisely, we
show the following theorem.

Theorem 1.1. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Let A be a se-

quential VA with variable set V and with state set Q , and let d be an input document. We can enu-

merate the mappings of A on d with preprocessing time in O (( |Q |ω+1 + |A|) × |d |) and with delay

O ( |V | × ( |Q |2 + |A| × |V |2)), i.e., linear preprocessing and constant delay in the input document,

and polynomial preprocessing and delay in the input VA.

The existence of such an algorithm is surprising but in hindsight not entirely unexpected: re-
member that in formal language theory, when we are given a word and a nondeterministic finite
automaton, we can evaluate the automaton on the word with tractable combined complexity by
determinizing the automaton “on the fly,” i.e., computing at each position of the word the set of
states where the automaton can be. Our algorithm generalizes this intuition and extends it to the
task of enumerating mappings without duplicates: we first present it for so-called extended sequen-

tial VAs,1 a variant of sequential VAs introduced by Florenzano et al. [12], before generalizing it
to sequential VAs. Our overall approach is to construct a kind of product of the input document
with the extended VA, similarly to Florenzano et al. [12]. We then use several tricks to ensure the
constant delay bound despite nondeterminism; in particular, we precompute a jump function that
allows us to skip quickly the parts of the document where no variable can be assigned. The re-
sulting algorithm is rather simple and has no large hidden constants. Note that our enumeration
algorithm does not contradict the counting hardness results of Florenzano et al. [12, Theorem 5.2]:
although our algorithm enumerates mappings with constant delay and without duplicates, we do
not see a way to adapt it to count the mappings efficiently. This is similar to the enumeration
and counting problems for maximal cliques: one can enumerate maximal cliques with polynomial
delay [30], but counting them is #P-hard [31].

To extend our result to sequential VAs that are not extended, one possibility would be to convert
them to extended VAs, but this necessarily entails an exponential blowup [12, Proposition 4.2]. We
avoid this by adapting our algorithm to work with nonextended sequential VAs directly. Our idea
for this is to efficiently enumerate at each position the possible sets of markers that can be assigned
by the VA: we do so by enumerating paths in the VA, relying on the fact that the VA is sequential

1Note that, contrary to what the terminology suggests, VAs are not special cases of extended VAs. Further, although ex-
tended VAs can be converted in PTIME to VAs, the converse is not true, as there are extended VAs for which the smallest
equivalent VA has exponential size [12].
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2:4 A. Amarilli et al.

so these paths are acyclic. The challenge is that the same set of markers can be captured by many
different paths, but we explain how we can explore efficiently the set of distinct paths with a
technique known as flashlight search [21, 26]: the key idea is that we can efficiently determine
which partial sets of markers can be extended to the label of a path (Lemma 6.4).

Of course, our main theorem (Theorem 1.1) implies analogous results for all spanner formalisms
that can be translated to sequential VAs. In particular, spanners are not usually written as automata
by users but instead are given in a form of regular expressions called regex-formulas, see the work
of Fagin et al. [11] for exact definitions. As we can translate sequential regex-formulas to sequential
VAs in linear time [11, 16, 22], our results imply that we can also evaluate them.

Corollary 1.2. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Let φ be a se-

quential regex-formula with variable set V , and let d be an input document. We can enumerate the

mappings of φ on d with preprocessing time in O (��φ��
ω+1 × |d |) and with delay O ( |V | × (��φ��

2
+ ��φ�� ×

|V|2)), i.e., linear preprocessing and constant delay in the input document, and polynomial prepro-

cessing and delay in the input regex-formula.

Another direct application of our result is for so-called regular spanners, which are unions of
conjunctive queries (UCQs) posed on regex-formulas, i.e., the closure of regex-formulas under
union, projection, and joins. We again point the reader to other works [11, 16] for the full defini-
tions. Considering that UCQs can in fact be evaluated by VAs, our result also implies tractability
for such representations, as long as we only perform a bounded number of joins:

Corollary 1.3. For every fixed k ∈ N , let k-UCQ denote the class of document spanners repre-

sented by UCQs over functional regex-formulas with at most k applications of the join operator. Then

the mappings of a spanner in k-UCQ can be enumerated with linear preprocessing and constant de-

lay in the document size, and with polynomial preprocessing and delay in the size of the spanner

representation.

One last contribution of this work is to present a prototype implementation of the enumeration
algorithm presented here, which is available online as open source software.2 We evaluate this
software experimentally for different types of queries. The results show that our approach can be
implemented in practice and run efficiently.

Article structure. In Section 2, we formally define spanners, VAs, and the enumeration problem
that we want to solve on them. In Sections 3 through 5, we prove our main result (Theorem 1.1)
for extended VAs, where the sets of variables that can be assigned at each position are specified
explicitly. We first describe in Section 3 the main part of our preprocessing phase, which converts
the extended VA and input document to a mapping DAG (directed acyclic graph) whose paths
describe the mappings that we wish to enumerate. We then describe in Section 4 how to enumerate
these paths, up to having precomputed a so-called jump function whose computation is explained
in Section 5. Last, we adapt our scheme in Section 6 for sequential VAs that are not extended. We
present our experimental results in Section 7 and conclude in Section 8.

This article is an extended version of our earlier work [4]. Compared to that work [4], in this
work we provide complete proofs of the results and present the new experimental analysis of
Section 7.

2 PRELIMINARIES

Document spanners. We fix a finite alphabet Σ. A document d = d0 · · ·dn−1 is just a word over Σ. A
span of d is a pair [i, j〉 with 0 ≤ i ≤ j ≤ |d | that represents a substring (contiguous subsequence)

2https://github.com/PoDMR/enum-spanner-rs.
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Constant-Delay Enumeration for Nondeterministic Document Spanners 2:5

of d starting at position i and ending at position j − 1. To describe the possible results of an in-
formation extraction task, we will use a finite setV of variables and define a result as a mapping

from these variables to spans of the input document. Following other works [12, 22] but in contrast
to the work of Fagin et al. [11], we will not require mappings to assign all variables: formally, a
mapping ofV on d is a function μ from some domainV′ ⊆ V to spans of d . We define a document

spanner to be a function assigning to every input document d a set of mappings, which denotes
the set of results of the extraction task on the document d .

Variable-set automata. We will represent document spanners using VAs. The transitions of a VA
can carry letters of Σ or variable markers, which are either of the form x � for a variable x ∈ V
(denoting the start of the span assigned to x ) or �x (denoting its end). Formally, a variable-set

automaton A (or VA) is then defined to be an automaton A = (Q,q0, F ,δ ), where the transition
relation δ consists of letter transitions of the form (q,a,q′) for q,q′ ∈ Q and a ∈ Σ, and of variable

transitions of the form (q,x �,q′) or (q, �x ,q′) for q,q′ ∈ Q and x ∈ V . A configuration of a VA is
a pair (q, i ), where q ∈ Q and i is a position of the input document d . A run σ of A on d is then a
sequence of configurations

(q0, i0)
σ1−−→ (q1, i1)

σ2−−→ · · ·
σm−−→ (qm , im ),

where i0 = 0, im = |d |, and where for every 1 ≤ j ≤ m, one of the following holds:

• The label σj is a letter of Σ, we have i j = i j−1 + 1, we have di j−1 = σj , and (qj−1,σj ,qj ) is a
letter transition of A;

• The label σj is a variable marker, we have i j = i j−1, and (qj−1,σj ,qj ) is a variable transition
of A. In this case, we say that the variable marker σj is read at position i j .

As usual, we say that a run is accepting if qm ∈ F . A run is valid if it is accepting, every variable
marker is read at most once, if an open marker x � is read at a position i then the corresponding
close marker �x is read at a position i ′ with i ≤ i ′, and if x � is not read then �x is not read either.
Each valid run defines a mapping on the domain V′ of the variables for which the run has read
some markers: specifically, each variable x ∈ V′ is mapped to the span [i, i ′〉 such that x � is read
at position i and �x is read at position i ′. The document spanner of the VA A is then the function
that assigns to every document d the set of mappings defined by the valid runs of A on d : note
that the same mapping can be defined by multiple different runs, and note that the different runs
may have different domains. The task studied in this work is the following: given a VA A and a
document d , enumerate without duplicates the mappings that are assigned to d by the document
spanner of A. The enumeration must write each mapping as a set of pairs (m, i ), where m is a
variable marker and i is a position of d , each set being written as a sequence in some arbitrary
order. We will say that a set of pairs of markers and positions is valid when every marker occurs
at most once in the set, if an open marker x � occurs in the set as (x �, i ) then the set also contains
(�x , i ′) with i < i ′, and if x � does not occur in the set then neither does �x . Thus, the results of
the enumeration are always valid in this sense. Note that we will often abuse notation and identify
the function representation of mappings defined earlier with this representation as a set of pairs
that is valid.

Sequential VAs. We cannot hope to efficiently enumerate the mappings of arbitrary VAs because
it is already NP-complete to decide if, given a VA A and a document d , there are any valid runs
ofA on d [13]. For this reason, we will restrict ourselves to so-called sequential VAs [22]. A VAA
is sequential if for every document d , every accepting run of A of d is also valid: this implies that
the document spanner of A can simply be defined following the accepting runs of A. If we are
given a VA, then we can test in NL whether it is sequential [22, Proposition 5.5], and otherwise we

ACM Transactions on Database Systems, Vol. 46, No. 1, Article 2. Publication date: April 2021.



2:6 A. Amarilli et al.

can convert it to an equivalent sequential VA (i.e., that defines the same document spanner) with
an unavoidable exponential blowup in the number of variables (not in the number of states), using
existing results.

Proposition 2.1. Given a VAA on variable setV , letting k := |V | and r be the number of states

of A, we can compute an equivalent sequential VA A′ with 3kr states. Conversely, for any k ∈ N ,

there exists a VA Ak with 1 state on a variable set with k variables such that any sequential VA

equivalent to Ak has at least 3k states.

Proof. This can be shown exactly like in the work of Freydenberger (Proposition 12 [13] and
Proposition 3.9 [14]). In short, the upper bound is shown by modifying A to remember in the
automaton state which variables have been opened or closed, and by rewiring the transitions to
ensure that the run is valid: this creates 3k copies of every state because each variable can be either
unseen, opened, or closed. For the lower bound, Freydenberger [14, Proposition 3.9] gives a VA for
which any equivalent sequential VA must remember the status of all variables in this way. �

All VAs studied in this work will be sequential, and we will further assume that they are trimmed

in the sense that for every state q there is a document d and an accepting run of the VA where the
state q appears. This condition can be enforced in linear time on any sequential VA: we do a graph
traversal to identify the accessible states (the ones that are reachable from the initial state), we do
another graph traversal to identify the co-accessible states (the ones from which we can reach a
final state), and we remove all states that are not accessible or not co-accessible. We will implicitly
assume that all sequential VAs have been trimmed, which implies that they cannot contain any
cycle of variable transitions (as such a cycle would otherwise appear in a run, which would not be
valid).

Extended VAs. We will first prove our results for a variant of sequential VAs introduced by
Florenzano et al. [12], called sequential extended VAs. An extended VA on alphabet Σ and variable
set V is an automaton A = (Q,q0, F ,δ ), where the transition relation δ consists of letter transi-

tions as before, and of extended variable transitions (or ev-transitions) of the form (q,M,q′), where
M is a possibly empty set of variable markers. Intuitively, on ev-transitions, the automaton reads
multiple markers at once. Formally, a run σ ofA on d = d0 · · ·dn−1 is a sequence of configurations
(defined like before) where letter transitions and ev-transitions alternate:

(q0, 0)
M0−−→ (q′0, 0)

d0−−→ (q1, 1)
M1−−→ (q′1, 1)

d1−−→ · · · dn−1−−−→ (qn ,n)
Mn−−−→ (q′n ,n),

where (q′i ,di ,qi+1) is a letter transition of A for all 0 ≤ i < n, and (qi ,Mi ,q
′
i ) is an ev-transition

of A for all 0 ≤ i ≤ n, where Mi is the set of variable markers read at position i . Accepting and
valid runs are defined like before, and the extended VA is sequential if all accepting runs are valid,
in which case its document spanner is defined like before.

Our definition of extended VAs is slightly different from that of Florenzano et al. [12] because
we allow ev-transitions that read the empty set to change the automaton state. This allows us to
make a small additional assumption to simplify our proofs: we require that the states of extended
VAs are partitioned between ev-states, from which only ev-transitions originate (i.e., the qi above),
and letter-states, from which only letter transitions originate (i.e., the q′i above); and we impose
that the initial state is an ev-state and the final states are all letter-states. Note that transitions
reading the empty set move from an ev-state to a letter-state, like all other ev-transitions. Our
requirement can be imposed in linear time on any extended VA, by rewriting each state to one
letter-state and one ev-state, and rewiring the transitions and changing the initial/final status of
states appropriately. This rewriting preserves sequentiality and guarantees that any path in the
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Constant-Delay Enumeration for Nondeterministic Document Spanners 2:7

Fig. 1. Example sequential extended VAA0 to extract email addresses (see Example 2.2) and example map-

ping DAG on an example document (see Examples 3.3, 3.6, 3.7, and 3.10).

rewritten extended VA must alternate between letter transitions and ev-transitions. Hence, we
implicitly make this assumption on all extended VAs from now on.

Example 2.2. The top of Figure 1 represents a sequential extended VA A0 to extract email ad-
dresses. To keep the example readable, we simply define them as words (delimited by a space or
by the beginning or end of document) that contain one at-sign “@” preceded and followed by a
nonempty sequence of non-“@” characters. In the drawing of A0, the initial state q0 is at the left,
and the states q10 and q12 are final. The transitions labeled by Σ represent a set of transitions for
each letter of Σ, and the same holds for Σ′, which we define as Σ′ := Σ \ {@, ␣}.

It is easy to see that, on any input document d , there is one mapping of A0 on d per email
address contained ind , which assigns the markers x � and �x to the beginning and end of the email
address, respectively. In particular,A0 is sequential, because any accepting run is valid. Note that

ACM Transactions on Database Systems, Vol. 46, No. 1, Article 2. Publication date: April 2021.



2:8 A. Amarilli et al.

A0 happens to have the property that each mapping is produced by exactly one accepting run, but
our results in this work do not rely on this property.

Matrix multiplication. The complexity bottleneck for some of our results will be the complexity
of multiplying two Boolean matrices, which is a long-standing open problem; see, e.g., the work of
Gall [17] for a recent discussion. When stating our results, we will often denote by 2 ≤ ω ≤ 3 an
exponent for Boolean matrix multiplication: this is a constant such that the product of two r -by-r
Boolean matrices can be computed in time O (rω ). For instance, we can take ω := 3 if we use the
naive algorithm for Boolean matrix multiplication, and it is obvious that we must have ω ≥ 2. The
best known upper bound is currently ω < 2.3728639; see another work by Gall [18].

3 COMPUTING MAPPING DAGS FOR EXTENDED VAS

We start our work by studying extended VAs, which are easier to work with because the set of
markers that can be assigned at every position is explicitly written as the label of a single transition.
We accordingly show Theorem 1.1 for the case of extended VAs in Sections 3 through 5. We will
then cover the case of nonextended VAs in Section 6.

Mapping DAGs. To show Theorem 1.1 for extended VAs, we will reduce the problem of enumer-
ating the mappings captured by A to that of enumerating path labels in a special kind of DAG
called a mapping DAG. This DAG is intuitively a variant of the product of A and of the docu-
ment d , where we represent simultaneously the position in the document and the corresponding
state of A. We will no longer care in the mapping DAG about the labels of letter transitions, so
we will erase these labels and call these transitions ϵ-transitions. As for the ev-transitions, we will
extend their labels to indicate the position in the document in addition to the variable markers.
We first give the general definition of a mapping DAG.

Definition 3.1. A mapping DAG consists of a setV of vertices, an initial vertexv0 ∈ V , a final vertex

vf ∈ V , and a set of edges E where each edge (s,x , t ) has a source vertex s ∈ V , a target vertex t ∈ V ,
and a label x that may be ϵ (in which case we call the edge an ϵ-edge) or a finite (possibly empty)
set of pairs (m, i ), where m is a variable marker and i is a position. These edges are called marker

edges. We require that the graph (V ,E) is acyclic. We say that a mapping DAG is normalized if
every path in the mapping DAG alternates between marker edges and ϵ-edges, every path starting
at the initial vertex starts with a marker edge, and every path ending at the final vertex ends with
an ϵ-edge.

The premapping μ (π ) of a path π in the mapping DAG is the union of labels of the marker edges
of π : we require of any mapping DAG that, for every path π , this union is disjoint, and that for
every path π from v0 to vf , the premapping μ (π ) is valid, i.e., it corresponds to a mapping. Given
a set U of vertices of G, we writeM (U ) for the set of premappings of paths from a vertex of U to
the final vertex; note that the same premapping may be captured by multiple different paths. The
set of premappings captured by G is thenM (G ) :=M ({v0}); all of these are mappings, i.e., they
are valid.

Intuitively, the ϵ-edges will correspond to letter transitions of A (with the letter being erased,
i.e., replaced by ϵ), and marker edges will correspond to ev-transitions: their labels are a possibly
empty finite set of pairs of a variable marker and position, describing which variables have been
assigned during the transition. We now explain how we construct a DAG from A and from a
document d , which we call the product DAG ofA and d , and which we will show to be a mapping
DAG.
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Constant-Delay Enumeration for Nondeterministic Document Spanners 2:9

Definition 3.2. Let A = (Q,q0, F ,δ ) be a sequential extended VA, and let d = d0 · · ·dn−1 be an
input document. The product DAG ofA and d is the DAG whose vertex set isQ × {0, . . . ,n} ∪ {vf }
with vf := (•,n + 1) for some fresh value •. Its edges are as follows:

• For every letter-transition (q,a,q′) in δ , for every 0 ≤ i < |d | such that di = a, there is an
ϵ-edge from (q, i ) to (q′, i + 1).

• For every ev-transition (q,M,q′) in δ , for every 0 ≤ i ≤ |d |, there is a marker edge from
(q, i ) to (q′, i ) labeled with the (possibly empty) set {(m, i ) | m ∈ M }.

• For every final state q ∈ F , an ϵ-edge from (q,n) to vf .

The initial vertex of the product DAG is (q0, 0) and the final vertex is vf .

Note that, contrary to Florenzano et al. [12], we do not contract the ϵ-edges but keep them
throughout our algorithm.

Example 3.3. The product DAG of our example sequential extended VA A0 and of the example
document a�a@b�b@c is shown on Figure 1, with the document being written at the left from
top to bottom. The initial vertex of the DAG is (q0, 0) at the top left, and its final vertex is vf at the
bottom. We draw marker edges horizontally and ϵ-edges diagonally. To simplify the example, we
only draw the parts of the DAG that are reachable from the initial vertex. Edges are dashed when
they cannot be used to reach the final vertex.

It is easy to see that this construction satisfies the following definition.

Claim 3.4. The product DAG of A and d is a normalized mapping DAG.

Proof. It is immediate that the product DAG is indeed acyclic, because the second component is
always nondecreasing, and an edge where the second component does not increase (corresponding
to an ev-transition of the VA) must be followed by an edge where it does (corresponding to a letter-
transition of the VA). What is more, we claim that no path in the product DAG can include two
edges whose labels contain the same pair (m, i ) so that the unions used to define the mappings of
the mapping DAG are indeed disjoint. To see this, consider a path from an edge ((q1, i1),M1, (q

′
1, i1))

to an edge ((q2, i2),M2, (q
′
2, i2)) where M1 � ϵ and M2 � ϵ , we have i1 < i2 and M1 and M2 are

disjoint because all elements of M1 have i1 as their first component, and all elements of M2 have i2
as their first component. Further, the product DAG is also normalized because A is an extended
VA that we have preprocessed to distinguish letter-states and ev-states. �

Further, the product DAG clearly captures what we want to enumerate. Formally, we have the
following claim.

Claim 3.5. The set of mappings of A on d is exactly the set of mappingsM (G ) captured by the

product DAG G.

Proof. This is immediate as there is a clear bijection between accepting runs of A on d and
paths from the initial vertex of G to its final vertex, and this bijection ensures that the label of the
path in G is the mapping corresponding to that accepting run. �

Example 3.6. The set of mappings captured by the example product DAG on Figure 1 is

{ {(x �, 2), (�x , 5)}, {(x �, 6), (�x , 9)} },
and this is indeed the set of mappings of the example extended VAA0 on the example document.

Connection to circuits. We remark that our mapping DAG can be seen as a kind of Boolean circuit,
and our enumeration algorithm on mapping DAGs can be connected to earlier work by some of
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the present authors on enumeration for Boolean circuits [2, 5]. Specifically, a mapping DAG can
be understood as describing a kind of binary decision diagram: these are a special kind of Boolean
circuits where each conjunction always involves a literal. This class is more restricted than the
circuits obtained for tree automata in other works [2, 5], intuitively because trees feature branching
that requires the conjunction of multiple subruns. Our enumeration algorithm on mapping DAGs
in the present work could then be phrased as a generic algorithm on a class of bounded-width,
nondeterministic binary decision diagrams. However, in this work, we chose to eschew the circuit
terminology, as we believe that our definitions and algorithms are simpler to present on an ad hoc
mapping DAG data structure.

Trimming, levels, and level sets. Our task is to enumerateM (G ) without duplicates, and this is still
nonobvious: because of nondeterminism, the same mapping in the product DAG may be witnessed
by exponentially many paths, corresponding to exponentially many runs of the nondeterministic
extended VA A. We will present in the next section our algorithm to perform this task on the
product DAG G. To do this, we will need to preprocess G by trimming it and introduce the notion
of levels to reason about its structure.

First, we present how to trimG. We say thatG is trimmed if every vertexv is both accessible (there
is a path from the initial vertex to v) and co-accessible (there is a path from v to the final vertex).
Given a mapping DAG, we can clearly trim in linear time by two linear-time graph traversals.
Hence, we will always implicitly assume that the mapping DAG is trimmed. If the mapping DAG
may be empty once trimmed, then there are no mappings to enumerate, so our task is trivial.
Hence, we assume in the sequel that the mapping DAG is nonempty after trimming. Further, if
V = ∅, then the only possible mapping is the empty mapping and we can produce it at that stage,
so in the sequel we assume thatV is nonempty.

Example 3.7. For the mapping DAG of Figure 1, trimming eliminates the nonaccessible vertices
(which are not depicted) and the non-co-accessible vertices, i.e., those with incoming dashed edges.
Note that trimming the mapping DAG has an effect even though the example sequential extended
VA A0 was already trimmed.

Second, we next present an invariant on the structure of G by introducing the notion of levels.

Definition 3.8. A mapping DAGG is leveled if its verticesv = (q, i ) are pairs whose second com-
ponent i is a nonnegative integer called the level of the vertex and written level(v ), and where the
following conditions hold:

• For the initial vertex v0 (which has no incoming edges), the level is 0;
• For every ϵ-edge from u to v , we have level(v ) = level(u) + 1;
• For every marker edge from u to v , we have level(v ) = level(u), and furthermore, all pairs

(m, i ) in the label of the edge have i = level(v ).

The depth D ofG is the maximal level. The widthW ofG is the maximal number of vertices that
have the same level.

The following claim is then immediate by construction.

Claim 3.9. The product DAG of A and d is leveled, and we haveW ≤ |Q | and D = |d | + 1.

Proof. It is clear by construction that the product DAG satisfies the first three points in the
definition of a leveled mapping DAG. To see why the last point holds, observe that for every
edge of the product DAG, for every pair (m, i ) that occurs in the label of that edge, the second
component i of the pair indicates how many letters of d have been read so far, so the source vertex
must have level i .
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To see why the width and depth bounds hold, observe that each level of the product DAG cor-
responds to a copy of A, so it has at most |Q | vertices, and that the number of levels corresponds
to the number of letters of the document, plus one level for the final vertex. �

Example 3.10. The example mapping DAG on Figure 1 is leveled, and the levels are represented
as horizontal layers separated by dotted lines: the topmost level is level 0, and the bottommost
level is level 10.

In addition to levels, we will need the notion of a level set.

Definition 3.11. A level set Λ is a nonempty set of vertices in a leveled normalized mapping DAG
that all have the same level (written level(Λ)), and that are all the source of some marker edge. The
singleton {vf } of the final vertex is also considered as a level set.

In particular, lettingv0 be the initial vertex, the singleton {v0} is a level set. Further, if we consider
a level set Λ that is not the final vertex, then we can follow marker edges from all vertices of Λ
(and only such edges) to get to other vertices, and follow ϵ-edges from these vertices (and only
such edges) to get to a new level set Λ′ with level(Λ′) = level(Λ) + 1.

4 ENUMERATION FOR MAPPING DAGS

In the previous section, we reduced our enumeration problem for extended VAs on documents to
an enumeration problem on normalized leveled mapping DAGs. In this section, we describe our
main enumeration algorithm on such DAGs and show the following.

Theorem 4.1. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Given a normalized

leveled mapping DAGG of depth D and widthW , we can enumerateM (G ) (without duplicates) with

preprocessing O ( |G | + D ×W ω+1) and delay O (W 2 × (r + 1)), where r is the size of each produced

mapping.

Remember that as part of our preprocessing, we have ensured that the leveled normalized map-
ping DAGG has been trimmed. We will also preprocessG to ensure that, given any vertex, we can
access its adjacency list (i.e., the list of its outgoing edges) in some sorted order on the labels, where
we assume that ∅-edges come last. This sorting can be done in linear time on the RAM model [19,
Theorem 3.1], so the preprocessing is in O ( |G |).

Our general enumeration algorithm is then presented as Algorithm 1. We explain the missing
pieces next. The function Enum is initially called with Λ = {v0}, the level set containing only the
initial vertex, and with Mapping being the empty set.

ALGORITHM 1: Main enumeration algorithm

1: procedure enum(Λ,Mapping)
2: Λ′ := Jump(Λ)
3: if Λ′ is the singleton {vf } of the final vertex then

4: Output(Mapping)
5: else

6: for (LocMark,Λ′′) in NextLevel(Λ′) do

7: enum(Λ′′, LocMark ∪Mapping)

For simplicity, let us assume for now that the Jump function just computes the identity, i.e.,
Λ′ := Λ. As for the call NextLevel(Λ′), it returns the pairs (LocMark,Λ′′), where

• The label set LocMark is an edge label such that there is a marker edge e labeled with
LocMark that starts at some vertex of Λ′;
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• The level set Λ′′ is formed of all vertices w at level level(Λ′) + 1 that can be reached by
first following a marker edge e like in the preceding bullet point, and then following some
ϵ-edge. Formally, a vertex w is in Λ′′ if and only if there is an edge labeled LocMark from
some vertex v ∈ Λ′ to some vertex v ′, and there is an ϵ-edge from v ′ to w .

Remember that as the mapping DAG is normalized, we know that all edges starting at vertices of
the level set Λ′ are marker edges (several of which may have the same label), and for any targetv ′

of these edges, all edges that leave v ′ are ϵ-edges whose targets w are at the level level(Λ′) + 1.
It is easy to see that the NextLevel function can be computed efficiently.

ALGORITHM 2: Enumeration algorithm for Proposition 4.2

1: input: Level set Λ′ = {v1, . . . ,vn }
2: for j ∈ {1, . . . ,n} do

3: Ej ← outgoing edges of vj

4: pj ← 0

5: while there is 1 ≤ j ≤ n such that pj < |Ej | do

6: LocMark← min(j :pj < |Ej |) Ej [pj ].label
7: Λ′2 ← ∅
8: for j ∈ {1, . . . ,n} do

9: while pj < |Ej | and Ej [pj ].label = LocMark do

10: Λ′2 ← Λ′2 ∪ {Ej [pj ].target}
11: pj ← pj + 1

12: Λ′′ ← ∅
13: for v ′ ∈ Λ′2 do

14: for e outgoing edge of v ′ do

15: Λ′′ ← Λ′′ ∪ {e .target}
16: Output(LocMark,Λ′′)

Proposition 4.2. Given a leveled trimmed normalized mapping DAGG with widthW , and a level

set Λ′, we can enumerate without duplicates all of the pairs (LocMark,Λ′′) ∈ NextLevel(Λ′) with

delay O (W 2 × |LocMark|) in an order such that LocMark = ∅ comes last if it is returned.

Proof. The algorithm is outlined as Algorithm 2. Intuitively, we simultaneously go over the
sorted lists of the outgoing edges of each vertex of Λ′, of which there are at mostW , and we merge
them. Specifically, as long as we are not done traversing all lists, we consider the smallest value of
LocMark (according to the order) that occurs at the current position of one of the lists. Then, we
move forward in each list until the list is empty or the edge label at the current position is no longer
equal to LocMark, and we consider the set Λ′2 of all verticesv ′ that are the targets of the edges that
we have seen. This considers at mostW 2 edges and reaches at mostW vertices (which are at the
same level as Λ′), and the total time spent reading edge labels is in O ( |LocMark|), so the process
is in O (W 2 × |LocMark|) so far. Now, we consider the outgoing edges of all vertices v ′ ∈ Λ′2 (all
are ϵ-edges) and return the set Λ′′ of the vertices w to which they lead: this only adds O (W 2) to
the running time because we consider at mostW vertices v ′ with at mostW outgoing edges each.
Last, LocMark = ∅ comes last because of our assumption on the order of adjacency lists. �

The design of Algorithm 1 is justified by the fact that for any level set Λ′, the setM (Λ′) can be
partitioned based on the value of LocMark. Formally, we have the following claim.
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Claim 4.3. For any level set Λ of G that is not the final vertex, we have

M (Λ) =
⋃

(LocMark,Λ′′)∈NextLevel(Λ)

{LocMark ∪ α | α ∈ M (Λ′′)}. (1)

Furthermore, this union is disjoint and nonempty, and none of its terms is empty.

Proof. The definition of a level set and of a normalized mapping DAG ensures that we can
decompose any path π from Λ to vf as a marker edge e from Λ to some vertex v ′, an ϵ-edge
from v ′ to some vertex w , and a path π ′ from w to vf . Further, the set of such w is clearly a level
set. Hence, the left-hand side of Equation (1) is included in the right-hand side. Conversely, given
such v , v ′,w , and π ′, we can combine them into a path π , so the right-hand side is included in the
left-hand side. This proves Equation (1).

We show that the union is disjoint. Recall that the definition of a leveled mapping DAG (Def-
inition 3.8) implies that LocMark is a set of pairs whose second component is level(Λ), and that
each mapping inM (Λ′′) is a set of pairs whose second components are values strictly greater than
level(Λ). Thus, each mapping inM (Λ) can only be obtained for the value of LocMark that is equal
to the subset of the pairs of the mapping whose second component is level(Λ).

We show that the union is nonempty. This is because Λ is nonempty and its vertices must be
co-accessible so they must have some outgoing marker edge, which implies that NextLevel(Λ) is
nonempty.

We last show that none of the terms of the union is empty. This is because, for each
(LocMark,Λ′′) ∈ NextLevel(Λ), we know that Λ′′ is nonempty because the mapping DAG is
trimmed so all vertices are co-accessible. �

Thanks to this claim, we could easily prove by induction that Algorithm 1 correctly enumerates
M (G ) when Jump is the identity function. However, this algorithm would not achieve the desired
delay bounds: indeed, it may be the case that NextLevel(Λ′) only contains LocMark = ∅, and then
the recursive call to Enum would not make progress in constructing the mapping, so the delay
would not generally be linear in the size of the mapping. To avoid this issue, we use the Jump
function to directly “jump” to a place in the mapping DAG where we can read a label different
from ∅. Let us first give the relevant definitions.

Definition 4.4. Given a level set Λ in a leveled mapping DAG G, the jump level JL(Λ) of Λ is the
first level j ≥ level(Λ) containing a vertex v ′ such that some v ∈ Λ has a path to v ′ and such that
v ′ is either the final vertex or has an outgoing edge with a label that is � ϵ and � ∅. In particular,
we have JL(Λ) = level(Λ) if some vertex in Λ already has an outgoing edge with such a label, or if
Λ is the singleton set containing only the final vertex.

The jump set of Λ is then Jump(Λ) := Λ if JL(Λ) = level(Λ), and otherwise Jump(Λ) is formed of
all vertices at level JL(Λ) to which some v ∈ Λ have a directed path whose last edge is labeled ϵ .
This ensures that Jump(Λ) is always a level set.

Example 4.5. In the mapping DAG in Figure 1, we have JL({(q2, 3), (q5, 3)}) = 5, as the reachable
node (q9, 5) has an outgoing edge labeled {(�x , 5)}. The set Jump({(q2, 3), q5, 3)}) is {(q2, 5), (q9, 5)},
as (q2, 5) is reachable from (q2, 3) and (q9, 5) is reachable from (q5, 3).

The definition of Jump ensures that we can jump from Λ to Jump(Λ) when enumerating map-
pings, and it will not change the result because we only jump over ϵ-edges and ∅-edges.

Claim 4.6. For any level set Λ of G, we haveM (Λ) =M (Jump(Λ)).

Proof. As Jump(Λ) contains all vertices from level JL(Λ) that can be reached from Λ, any path
π from a vertex u ∈ Λ to the final vertex can be decomposed into a path πuw from u to a vertex
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w ∈ Jump(Λ) and a path πwv fromw tov . By definition of Jump(Λ), we know that all edges in πuw

are labeled with ϵ or ∅, so μ (π ) = μ (πwv ). Hence, we haveM (Λ) ⊆ M (Jump(Λ)).
Conversely, given a path πwv from a vertex w ∈ Jump(Λ) to the final vertex, the definition

of Jump(Λ) ensures that there is a vertex u ∈ Λ and a path πuw from u to w , which again con-
sists only of ϵ-edges or ∅-edges. Hence, letting π be the concatenation of πuw and πwv , we have
μ (πwv ) = μ (π ) and π is a path from Λ to the final vertex. Thus, we haveM (Jump(Λ)) ⊆ M (Λ),
concluding the proof. �

Claims 4.3 and 4.6 imply that Algorithm 1 is correct with this implementation of Jump.

Proposition 4.7. Enum({v0}, ∅) correctly enumeratesM (G ) (without duplicates).

Proof. We show the stronger claim that for every level set Λ, and for every set of labels
Mapping, we have that Enum(Λ,Mapping) enumerates (without duplicates) the set Mapping �
M (Λ) := {Mapping ∪ α | α ∈ M (Λ)}. The base case is when Λ is the final vertex, and then
M (Λ) = {{}} and the algorithm correctly returns {Mapping}.

For the induction case, let us consider a level set Λ that is not the final vertex, and some set of la-
bels Mapping. We let Λ′ := Jump(Λ), and by Claim 4.6 we have thatM (Λ′) =M (Λ). Now we know
by Claim 4.3 thatM (Λ′) can be written as in Equation (1) and that the union is disjoint; the algo-
rithm evaluates this union. So it suffices to show that, for each (LocMark,Λ′′) ∈ NextLevel(Λ′),
the corresponding iteration of the for loop enumerates (without duplicates) the set (Mapping ∪
LocMark) �M (Λ′′). By the induction hypothesis, the call Enum(Jump(Λ′),Mapping ∪ LocMark)
enumerates (without duplicates) the set (Mapping ∪ LocMark) �M (Jump(Λ′′)). So this estab-
lishes that the algorithm is correct. �

What is more, Algorithm 1 now achieves the desired delay bounds, as we will show. Of course,
this relies on the fact that the Jump function can be efficiently precomputed and evaluated. We
only state this fact for now, and prove it in the next section.

Proposition 4.8. Given a leveled mapping DAG G with widthW and depth D, we can preprocess

G in time O (D ×W ω+1) such that, given any level set Λ of G, we can compute the jump set Jump(Λ)
of Λ in time O (W 2).

We can now conclude the proof of Theorem 4.1 by showing that the preprocessing and delay
bounds are as claimed. For the preprocessing, this is clear: we do the preprocessing in O ( |G |)
presented at the beginning of the section (i.e., trimming, and computing the sorted adjacency
lists), followed by that of Proposition 4.8. For the delay, we claim the following.

Claim 4.9. Algorithm 1 has delay O (W 2 × (r + 1)), where r is the size of the mapping of each

produced path. In particular, the delay is independent of the size of G.

Proof. Let us first bound the delay to produce the first solution. When we enter the Enum
function, we call the Jump function to produce Λ′ in time O (W 2) by Proposition 4.8, and either
Λ′ is the final vertex or some vertex in Λ′ must have an outgoing edge with a label different
from ∅. Then we enumerate NextLevel(Λ′) with delay O (W 2 × |LocMark|) for each LocMark

using Proposition 4.2. Remember that Proposition 4.2 ensures that the label ∅ comes last; so by
definition of Jump, the first value of LocMark that we consider is different from ∅. At each round
of the for loop, we recurse in constant time: in particular, we do not copy Mapping when writing
LocMark ∪Mapping, as we can represent the set simply as a linked list. Eventually, after r + 1
calls, by definition of a leveled mapping DAG, Λ must be the final vertex, and then we output a
mapping of size r in time O (r ): the delay is indeed in O (W 2 × (r + 1)) because the sizes of the
values of LocMark seen along the path sum up to r , and the unions of LocMark and Mapping are
always disjoint by definition of a mapping DAG.
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Let us now bound the delay to produce the next solution. To do so, we will first observe that
when enumerating a mapping of cardinality r , then the size of the recursion stack is always ≤ r + 1.
This is because Proposition 4.2 ensures that the value LocMark = ∅ is always considered last in
the for loop on NextLevel(Λ′). Thanks to this, every call to Enum where LocMark = ∅ is actually
a tail recursion, and we can avoid putting another call frame on the call stack using tail recursion
elimination. This ensures that each call frame on the stack (except possibly the last one) contributes
to the size of the currently produced mapping so that indeed when we reach the final vertex of G
the call stack is no greater than the size of the mapping that we produce.

Now, let us use this fact to bound the delay between consecutive solutions. When we move from
one solution to another, it means that some for loop has moved to the next iteration somewhere
in the call stack. To identify this, we must unwind the stack: when we produce a mapping of size r ,
we unwind the stack until we find the next for loop that can move forward. By our observation
on the size of the stack, the unwinding takes time O (r ) with r is the size of the previously pro-
duced mapping; so we simply account for this unwinding time as part of the computation of the
previous mapping. Now, to move to the next iteration of the for loop and do the computations
inside the loop, we spend a delayO (W 2 × |LocMark|) by Proposition 4.2. Let r ′ be the current size
of Mapping, including the current LocMark. The for loop iteration finishes with a recursive call to
Enum, and we can reapply our argument about the preceding first solution to argue that this call
identifies a mapping of some size r ′′ in delay O (W 2 × (r ′′ + 1)). However, because the argument
Mapping to the recursive call had size r ′, the mapping that is enumerated actually has size r ′ + r ′′

and it is produced in delay O (W 2 × (r ′′ + 1) + r ′). This means that the overall delay to produce
the next solution is indeed inO (W 2 × (r + 1)),where r is the size of the mapping that is produced,
which concludes the proof. �

Memory usage. We briefly discuss the memory usage of the enumeration phase, i.e., the maximal
amount of working memory that we need to keep throughout the enumeration phase, not counting
the precomputation phase. Indeed, in enumeration algorithms, the memory usage can generally
grow to be very large even if one adds only a constant amount of information at every step. We
will show that this does not happen here, and that the memory usage throughout the enumeration
remains polynomial in A and constant in the input document size.

All of our memory usage during enumeration is in the call stack, and thanks to tail recursion
elimination (see the proof of Claim 4.9), we know that the stack depth is at most r + 1, where r
is the size of the produced mapping as in the statement of Theorem 4.1. The local space in each
stack frame must store Λ′ and Λ′′, which have size O (W ), and the status of the enumeration of
NextLevel in Proposition 4.2, i.e., for every vertexv ∈ Λ′, the current position in its adjacency list:
this also has total size O (W ), so the total memory usage of these structures over the whole stack
is in O ((r + 1) ×W ). Last, we must also store the variables Mapping and LocMark, but their total
size of the variables LocMark across the stack is clearly r , and the same holds of Mapping because
each occurrence is stored as a linked list (with a pointer to the previous stack frame). Hence, the
total memory usage is O ((r + 1) ×W ), i.e., O (( |V | + 1) × |Q |) in terms of the extended VA.

5 JUMP FUNCTION

The only missing piece in the enumeration scheme of Section 4 is the proof of Proposition 4.8. We
first explain the preprocessing for the Jump function and then the computation scheme.

Preprocessing scheme. Recall the definition of the jump level JL(Λ) and jump set Jump(Λ) of a
level set Λ (Definition 4.4). We assume that we have precomputed in O ( |G |) the mapping level

associating each vertex v to its level level(v ), as well as, for each level i , the list of the vertices v
such that level(v ) = i .
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The first part of the preprocessing is then to compute, for every individual vertex v , the jump
level JL(v ) := JL({v}), i.e., the minimal level containing a vertexv ′ such thatv ′ is reachable fromv
and v ′ is either the final vertex or has an outgoing edge that is neither an ϵ-edge nor an ∅-edge.
We claim the following.

Claim 5.1. We can precompute in O (D ×W 2) the jump level JL(v ) of all vertices v of G.

Proof. This construction can be performed iteratively from the final vertex vf to the initial
vertex v0: we have JL(vf ) := level(vf ) for the final vertex vf , we have JL(v ) := level(v ) if v has an
outgoing edge that is not an ϵ-edge or an ∅-edge, and otherwise we have JL(v ) := minv→w JL(w ).

This computation can be performed along a reverse topological order, which by Cormen
et al. [10, Section 22.4] takes linear time in G. However, note that G has at most D ×W vertices,
and we only traverse ϵ-edges and ∅-edges: we just check the existence of edges with other labels
but do not traverse them. Now, as each vertex has at most W outgoing edges labeled ∅ and at
most W outgoing edges labeled ϵ , the number of edges in the DAG that we actually traverse is
only O (D ×W 2), which shows our complexity bound and concludes the proof. �

The second part of the preprocessing is to compute, for each level i of G, the reachable levels

Rlevel(i ) := {JL(v ) | level(v ) = i}, which we can clearly do in linear time in the number of vertices
of G, i.e., in O (D ×W ). Note that the definition clearly ensures that we have |Rlevel(i ) | ≤W .

Example 5.2. In Figure 1, the jumping level for nodes (q1, 3) and (q2, 3) is 6 and the jumping level
for nodes (q5, 3) and (q6, 3) is 5. Hence, the set of reachable levels Rlevel(3) for level 3 is {5, 6}.

Last, the third step of the preprocessing is to compute a reachability matrix from each level to
its reachable levels. Specifically, for any two levels i < j ofG, let Reach(i, j ) be the Boolean matrix
of size at most W ×W that describes, for each (u,v ) with level(u) = i and level(v ) = j, whether
there is a path from u to v whose last edge is labeled ϵ . We cannot afford to compute all of these
matrices, but we claim that we can efficiently compute a subset of them, which will be enough for
our purposes.

Claim 5.3. We can precompute in timeO (D ×W ω+1) the matrices Reach(i, j ) for all pairs of levels

i < j such that j ∈ Rlevel(i ).

Proof. We compute the matrices in decreasing order on i , then for each fixed i in arbitrary
order on j:

• If j = i , then Reach(i, j ) is the identity matrix;
• If j = i + 1, then Reach(i, j ) can be computed from the edge relation ofG in timeO (W ×W ),

because it suffices to consider the edges labeled ∅ and ϵ between levels i and j;
• If j > i + 1, then Reach(i, j ) is the product of Reach(i, i + 1) and Reach(i + 1, j ), which can

be computed in time O (W ω ).

In the last case, the crucial point is that Reach(i + 1, j ) has already been precomputed, because
we are computing Reach in decreasing order on i , and because we must have j ∈ Rlevel(i + 1).
Indeed, if j ∈ Rlevel(i ), then there is a vertex v with level(v ) = i such that JL(v ) = j, and the in-
ductive definition of JL implies that v has an edge to a vertex w such that level(w ) = i + 1 and
JL(v ) = JL(w ) = j, which witnesses that j ∈ Rlevel(i + 1).

The total running time of this scheme is in O (D ×W ω+1): indeed, we consider each of the D
levels of G, we compute at mostW matrices for each level of G because we have |Rlevel(i ) | ≤W
for any i , and each matrix is computed in time at most O (W ω ). �

Evaluation scheme. We can now describe our evaluation scheme for the jump function. Given a
level set Λ, we wish to compute Jump(Λ). Let i be the level of Λ, and let j be JL(Λ) that we compute
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as minv ∈Λ JL(v ) inO (W ) time. If j = i , then Jump(Λ) = Λ and there is nothing to do. Otherwise, by
definition, there must be v ∈ Λ such that JL(v ) = j, so v witnesses that j ∈ Rlevel(i ), and we know
that we have precomputed the matrix Reach(i, j ). Now Jump(Λ) are the vertices at level j to which
the vertices of Λ (at level i) have a directed path whose last edge is labeled ϵ , which we can simply
compute in time O (W 2) by unioning the lines that correspond to the vertices of Λ in the matrix
Reach(i, j ).

This concludes the proof of Proposition 4.8 and completes the presentation of our scheme to
enumerate the set captured by mapping DAGs (Theorem 4.1). Together with Section 3, this proves
Theorem 1.1 in the case of extended sequential VAs.

6 FROM EXTENDED SEQUENTIAL VAS TO GENERAL SEQUENTIAL VAS

In this section, we adapt our main result (Theorem 1.1) to work with sequential nonextended VAs
rather than sequential extended VAs. Remember that we cannot tractably convert nonextended
VAs into extended VAs [12, Proposition 4.2], so we must modify our construction in Sections 3
throug 5 to work with sequential nonextended VAs directly. Our general approach will be the
same: compute the mapping DAG and trim it like in Section 3, then precompute the jump level
and jump set information as in Section 5, and apply the enumeration scheme of Section 4. The
difficulty is that nonextended VAs may assign multiple markers at the same word position by
taking multiple variable transitions instead of one single ev-transition. Hence, when enumerating
all possible values for LocMark in Algorithm 1, we need to consider all possible sequences of
variable transitions. The challenge is that there may be many different transition sequences that
assign the same set of markers, which could lead to duplicates in the enumeration. Thus, our goal
will be to design a replacement to Proposition 4.2 for nonextended VAs, i.e., enumerate possible
values for LocMark at each level without duplicates.

We start as in Section 3 by computing the product DAG G of A and of the input document
d = d0 · · ·dn−1 with vertex set Q × {0, . . . ,n} ∪ {vf } with vf := (•,n + 1) for some fresh value •,
and with the following edge set:

• For every letter-transition (q,a,q′) of A, for every 0 ≤ i < |d | such that di = a, there is an
ϵ-edge from (q, i ) to (q′, i + 1);

• For every variable-transition (q,m,q′) of A (where m is a marker), for every 0 ≤ i ≤ |d |,
there is an edge from (q, i ) to (q′, i ) labeled with {(m, i )}.

• For every final state q ∈ F , an ϵ-edge from (q,n) to vf .

The initial vertex of G is (q0, 0), and the final vertex is vf . Note that the edge labels are now
always singleton sets or ϵ ; in particular, there are no longer any ∅-edges.

We can then adapt most of Claim 3.4: the product DAG is acyclic because all letter-transitions
make the second component increase, and because we know that there cannot be a cycle of vari-
able transitions in the input sequential VA A (remember that we assume VAs to be trimmed). We
can also trim the mapping DAG in linear time as before, and Claim 3.5 also adapts to show that
the resulting mapping DAG correctly captures the mappings that we wish to enumerate. Last, as
in Claim 3.9, the resulting mapping DAG is still leveled, the depth D (number of levels) is still
|d | + 1, and the width W (maximal size of a level) is still ≤ |Q |; we will also define the com-

plete widthWc of G in this section as the maximum, over all levels i , of the sum of the number
of vertices in level i , and of the number of edges with a source vertex in level i . Formally, writing
G = (V ,v0,vf ,E), and writing D the depth ofG, we haveWc := max1≤i≤D |{v ∈ V | level(v ) = i}| +
|{(s,x , t ) ∈ E | level(s ) = i}|. Notice that we haveWc ≤ |A|. The main change in Section 3 is that
the mapping DAG is no longer normalized, i.e., we may follow several marker edges in succession
(staying at the same level) or follow several ϵ-edges in succession (moving to the next level each
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time). Because of this, we change Definition 3.11 and redefine level sets to mean any nonempty set
of vertices that are at the same level.

We then reuse the enumeration approach of Sections 4 and 5. Even though the mapping DAG is
no longer normalized, it is not hard to see that with our new definition of level sets we can reuse the
jump function from Section 5 as-is, and we can also reuse the general approach of Algorithm 1.
However, to accommodate for the different structure of the mapping DAG, we will need a new
definition for NextLevel: instead of following exactly one marker edge before an ϵ-edge, we want
to be able to follow any (possibly empty) path of marker edges before an ϵ-edge. We formalize this
notion as an S+-path.

Definition 6.1. For S+ a set of labels, an S+-path in the mapping DAG G is a path of ��S+�� edges
that includes no ϵ-edges and where the labels of the path are exactly the elements of S+ in some
arbitrary order. Recall that the definition of a mapping DAG (Definition 3.1) ensures that there can
be no duplicate labels on the path, and that the start and end vertices of an S+-path must have the
same level because no ϵ-edge is traversed in the path.

For Λ a level set, NextLevel(Λ) is the set of all pairs (S+,Λ′′), where

• S+ is a set of labels such that there is an S+-path that goes from some vertex v of Λ to some
vertex v ′ that has an outgoing ϵ-edge;

• Λ′′ is the level set containing exactly the vertices w that are targets of these ϵ-edges, i.e.,
there is an S+-path from some vertexv ∈ Λ to some vertexv ′, and there is an ϵ-edge fromv ′

to w .

Note that these definitions are exactly equivalent to what we would obtain if we converted A
to an extended VA and then used our original construction. This directly implies that the modified
enumeration algorithm is correct (i.e., Proposition 4.7 extends). In particular, the modified algo-
rithm still uses the jump pointers as computed in Section 5 to jump over positions where the only
possibility is S+ = ∅, i.e., positions where the sequential VA make no variable transitions. The only
thing that remains is to establish the delay bounds, for which we need to enumerate NextLevel
efficiently without duplicates (and replace Proposition 4.2). To present our method for this, we will
introduce the alphabet size B as the maximal number, over all levels j of the mapping DAG G, of
the different labels that can occur in marker edges between vertices at level j; in our construction,
this value is bounded by the number of different markers, i.e., B ≤ 2 |V |. We can now state the
claim that we will prove later in the section.

Theorem 6.2. Given a leveled trimmed mapping DAGG with complete widthWc and alphabet size

B, and a level set Λ′, we can enumerate without duplicates all of the pairs (S+,Λ′′) ∈ NextLevel(Λ′)
with delay O (Wc × B2) in an order such that S+ = ∅ comes last if it is returned.

With this runtime, the delay of Theorem 4.1 becomesO ((r + 1) × (W 2 +Wc × B2)), and we know
thatWc ≤ |A|, thatW ≤ |Q |, that r ≤ |V|, and that B ≤ 2 |V |; so this leads to the overall delay of
O ( |V | × ( |Q |2 + |A| × |V|2)) in Theorem 1.1.

The idea to prove Theorem 6.2 is to use a general approach called flashlight search [21, 26]: we
will use a search tree on the possible sets of labels onV to iteratively construct the set S+ that can
be assigned at the current position, and we will avoid useless parts of the search tree by using a
lemma to efficiently check if a partial set of labels can be extended to a solution. To formalize the
notion of extending a partial set, we will need the notion of S+/S−-paths.

Definition 6.3. For S− and S+ two disjoint sets of labels, an S+/S−-path in the mapping DAG G
is a path of edges that includes no ϵ-edges, that includes no edges with a label in S−, and where
every label of S+ is seen exactly once along the path.
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Note that when S+ ∪ S− contains all labels used in G, the notions of S+/S−-path and S+-path
coincide, but if G contains some labels not in S+ ∪ S−, then an S+/S−-path is free to use them or
not, whereas an S+-path cannot use them. The key to prove Theorem 6.2 is to efficiently determine
if S+/S−-paths exist: we formalize this as a lemma that we will apply to the mapping DAG G
restricted to the current level (in particular removing ϵ-edges).

Lemma 6.4. LetG be a mapping DAG with no ϵ-edges, and letV be its vertex set. Given a nonempty

set Λ′ ⊆ V of vertices of G and given two disjoint sets of labels S+ and S−, we can compute in time

O ( |G | × (��S+�� + ��S−��)) the set Λ′2 ⊆ V of vertices v such that there is an S+/S−-path from one vertex

of Λ′ to v .

Proof. In a first step, we delete from G all edges with a label that is in S−. This can be done in
time O ( |G | × ��S−��) and ensures that no path that we consider contains any label from S−. Hence,
we can completely ignore S− in what follows.

In a second step, we add a fresh source vertex s0 and edges with a fresh label l0 from s0 to each
vertex in Λ′, we add l0 to S+, and we set Λ′ := {s}. This allows us to assume that the set Λ′ is a
singleton {s}.

In a third step, we traverseG in linear time from s0 with a breadth-first search to remove all ver-
tices that are not reachable from s0. Hence, we can now assume that every vertex inG is reachable
from s0; in particular, every vertex except s0 has at least one predecessor.

Now, we follow a topological order on G to give a label χ (w ) ⊆ S+ to each vertex w ∈ V with
predecessors w1, . . . ,wp and to give a label χ (wi ,w ) ⊆ S+ to each edge (wi ,w ) of G, as follows:

χ (s ) := ∅
χ (wi ,w ) := (χ (wi ) ∪ {μ (wi ,w )}) ∩ S+

χ (w ) :=
⎧⎪⎨
⎪
⎩

χ (wi ,w ) if w has a predecessor wi with χ (wi ,w ) =
⋃

1≤j≤p χ (w j ,w )

∅ otherwise.

The topological order can be computed in time O ( |G |) by Cormen et al. [10, Section 22.4], and
computing χ along this order takes time O ( |G | × ��S+��).

Intuitively, the labels assigned to a vertexw or an edge (wi ,w ) correspond to the subset of labels
from S+ that are read on a path starting at s0 and using w as the last vertex (respectively, (wi ,w )
as last edge). However, we explicitly label a vertex w with ∅ if there are two paths starting at s0

that have seen a different subset of S+ to reach w . Indeed, as we know that any label can occur at
most once on each path, such vertices and edges can never be part of a path that contains all labels
from S+. We will formalize this intuition in the following.

The key claim is that, for every vertex v , there is an S+/S−-path from s0 to v if and only if
χ (v ) = S+. We first show the forward direction of the key claim. Assume that χ (v ) = S+. We con-
struct a path P by going backward starting from v . We initialize the current vertex w to be v .
Now, as long as χ (w ) is nonempty, we pick a predecessorwi with χ (wi ,w ) = χ (w ), and we know
that either χ (wi ,w ) = χ (wi ) or χ (wi ,w ) = χ (wi ) ∪ {μ (wi ,w )} with μ (wi ,w ) ∈ S+, and then we
assign wi as our current vertex w . We repeat this process until we reach a current vertex w0 with
χ (w ) = ∅, which must eventually happen: the DAG is acyclic, and all vertices except s0 must have
a predecessor, and we know by definition that χ (s ) = ∅. As all elements of S+ were in χ (w ), they
were all witnessed on P , so we know that P is an S+/S−-path fromw0 tov . Now, we know that there
is a path P ′ from s0 tow0 thanks to our third preprocessing step, and we know that P ′ uses no ele-
ments from S− by our assumption on the DAG; so the concatenation of P ′ and P is an S+/S−-path
from s0 to v .
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We now show the converse direction of the key claim. Assume that there is an S+/S−-path
P = v1, . . . ,vr from v1 = s0 to a vertex vr = v . We show by induction that χ (vi ) is exactly the set
of the labels of S+ that have been seen so far on the path from s0 to vi . For v1 = s0, this is true by
definition. For i > 1, we claim that χ (vi ) = χ (vi−1,vi ). By way of contradiction, assume this were
not the case. This means that χ (vi−1,vi ) is not the union of the χ (v ′i−1,vi ), where v ′i−1 ranges
over the predecessors ofvi . Hence, there is a specific choice of a predecessorv ′i−1 � vi−1 such that
χ (v ′i−1,vi ) contains an x ∈ S+ that does not appear in χ (vi−1,vi ). By the induction hypothesis,
χ (vi−1) contains exactly the labels of S+ that were seen on the path from s0 to vi−1, and as x is not
in χ (vi−1,vi ), we know that x does not appear on the path v1 . . .vi .

Now, we know that x cannot appear on the path vi . . .vr either. Indeed, by the definition of χ ,
the fact that x ∈ χ (v ′i−1,vi ) must mean that there is a path from s0 tovi (viav ′i−1) where the label x
appears. Now, the definition of a mapping DAG ensures that x can occur only once on every path
ofG. Thus, it cannot also appear on the pathvi . . .vr that starts atvi . Hence, x does not appear in
the path P at all, and this contradicts the fact that P is an S+/S−-path.

Thus, we have shown by contradiction that we have indeed χ (vi ) = χ (vi−1,vi ). This means that
χ (vi ) is exactly the set of labels of S+ that have been seen so far on the path from s0 tovi , so we have
established the claim made in the inductive step. But then, since all elements of S+ appear on edges
in P and are thus added iteratively in the construction of the χ (vi ), we have S+ = χ (vr ) = χ (v ) as
desired. This establishes the converse direction of the key claim, and so the key claim is proven.

Hence, thanks to the key claim, once we have computed the labeling χ , we can compute in
time O ( |G | × ��S+��) the set Λ′2 by simply finding all vertices v with χ (v ) = S+. This concludes the
proof. �

We can now use Lemma 6.4 to prove Theorem 6.2.

Proof. Clearly if Λ′ is the singleton level set consisting only of the final vertex, then the set to
enumerate is empty and there is nothing to do. Hence, in the sequel, we assume that this is not
the case.

Let p be the level of Λ′. We callK the set of possible labels at level p, with |K | being no greater
than the alphabet size B ofG. We fix an arbitrary orderm1 < m2 < · · · < mr on the elements ofK .
Remember that we want to enumerate NextLevel(Λ′), i.e., all pairs (S+,Λ′′) of a subset S+ of K
such that there is an S+-path in G from a vertex in Λ′ to a vertex v ′ (which will be at level p) with
an outgoing ϵ-edge, and the set Λ′′ of the targets of these ϵ-edges (at level p + 1). Let us consider
the complete decision tree TK on m1, . . . ,mr : it is a complete binary tree of height r + 1, where,
for all 1 ≤ i ≤ r , every edge at height i is labeled with +mi if it is a right child edge and with −mi

otherwise. For every node n in the tree, we consider the path from the root ofTK to n, and call the
positive set Pn of n the labels m such that +m appears in the path, and the negative set Nn of n the
labelsm such that −m appears in the path: it is immediate that for every node n of TK the sets Pn

and Nn are a partition of {m1, . . . ,mj } where 0 ≤ j ≤ r is the depth of n in TK .
We say that a node n of TK is good if there is some Pn/Nn-path in G starting at a vertex of Λ′

and leading to a vertex that has an outgoing ϵ-edge. Our goal of determining NextLevel(Λ′) can
then be rephrased as finding the set of all positive sets Pn for all good leaves n of TK (and the
corresponding level set Λ′′), because there is a clear one-to-one correspondence that sends each
subset S ⊆ K to a leaf n of TK such that Pn = S .

Observe now that we can use Lemma 6.4 to determine in time O ( |Wc | × |K |), given a node n
of TK , whether it is good or bad: call the procedure on the subgraph of G that is induced by level
p (it has size ≤Wc) and with the sets S+ := Pn and S− := Nn (their union has cardinality ≤ |K |),
then check in G whether one of the vertices returned by the procedure has an outgoing ϵ-edge.
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A naive solution to find the good leaves would then be to test them one by one using Lemma 6.4;
however, a more efficient idea is to use the structure of TK and the following facts:

• The root ofTK is always good. Indeed,G is trimmed, so we know that any v ∈ Λ′ has a path
to some ϵ-edge.

• If a node is good then all of its ancestors are good. Indeed, if n′ is an ancestor of n, and there
is a Pn/Nn-path inG starting at a vertex of Λ′, then this path is also a Pn′/Nn′ path, because
Pn′ ⊆ Pn and Nn′ ⊆ Nn .

• If a node n′ is good, then it must have at least one good descendant leaf n. Indeed, taking any
Pn′/Nn′-path that witnesses that n′ is good, we can take the leaf n to be such that Pn ⊇ Pn′

is exactly the set of labels that occur on the path so that the same path witnesses that n is
indeed good.

Our flashlight search algorithm will rely on these facts. We exploreTK depth-first, constructing it
on-the-fly as we visit it, and we use Lemma 6.4 to guide our search: at a node n ofTK (inductively
assumed to be good), we call Lemma 6.4 on its two children to determine which of them are good
(from the preceding facts, at least one of them must be), and we explore recursively the first good
child, and then the second good child if there is one. When the two children are good, we first
explore the child labeled +m before exploring the child labeled −m: this ensures that if the empty
set is produced as a label set in NextLevel(Λ′), then we always enumerate it last, as we should.
Once we reach a leaf n (inductively assumed to be good), we then output its positive set of labels
Pn .

It is clear that the algorithm only enumerates label sets that occur in NextLevel(Λ′). What
is more, as the set of good nodes is upward-closed in TK , the depth-first exploration visits all
good nodes of TK , so it visits all good leaves and produces all label sets that should occur in
NextLevel(Λ′). Now, the delay is bounded by O ( |Wc | × |K |2): indeed, whenever we are explor-
ing at any node n, we know that the next good leaf will be reached in at most 2 |K | calls to the
procedure of Lemma 6.4, and we know that the subgraph ofG induced by level p has size bounded
by the complete widthWc ofG so each call takes timeO ( |Wc | × |K |), including the time needed to
verify if any of the reachable vertices v ′ has an outgoing ϵ-edge: this establishes the delay bound
of O ( |Wc | × B2) that we claimed. Last, while doing this verification, we can produce the set Λ′′

of the targets of these edges in the same time bound. This set Λ′′ is correct because any such
vertex v ′ has an outgoing ϵ-edge and there is a Pn/Nn-path from some vertex v ∈ Λ′ to v ′. Now,
as Pn ∪ Nn = K and the path cannot traverse an ϵ-edge, these paths are actually Pn-paths (i.e.,
they exactly use the labels in Pn ), so Λ′′ is indeed the set that we wanted to produce according to
Definition 6.1. This concludes the proof. �

Memory usage. The recursion depth of Algorithm 1 on general sequential VAs is unchanged, and
we can still eliminate tail recursion for the case LocMark = ∅ as we did in Section 4.

The local space must now include the local space used by the enumeration scheme of
NextLevel, of which there is an instance running at every level on the stack. We need to re-
member our current position in the binary search tree: assuming that the order of labels is fixed,
it suffices to remember the current positive set Pn plus the last label in the order on K that we
use, with all other labels being implicitly in Nn . This means that we store one label per level (the
last label), plus the positive labels, so their total number in the stack is at most the total number
of markers, i.e., O ( |V |). Hence, the structure of Theorem 6.2 has no effect on the memory usage.

The space usage must also include the space used for one call to the construction of Lemma 6.4,
only one instance of which is running at every given time. This space usage is clearly in O ( |Q | ×
|V |), so this additive term has again no impact on the memory usage. Hence, the memory usage of
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our enumeration algorithm is the same as in Section 4, i.e., O ((r + 1) ×W ), or O (( |V | + 1) × |Q |)
in terms of the VA.

7 EXPERIMENTAL VALIDATION

Having concluded the proof of our main result, we move on in this section to an experimental study
of a prototype implementation of our method. A first direct implementation of our algorithm was
developed by Rémi Dupré during his master thesis, which we further optimized to achieve better
results, particularly to improve the handling of the reachability matrices and the space usage.
In this section, we present this optimized implementation and show how it performs on several
benchmarks. Our software is written in Rust and is freely available online3 under the BSD 3-clause
license.

Overall design. Our implementation enumerates the solutions of the evaluation of a nondeter-
ministic sequential VA over a word. The nondeterministic sequential VA is given in the input as
a regex-formula. This regex-formula is translated into a nondeterministic sequential VA using a
variant of Glushkov’s algorithm. Note that our implementation uses VAs so the underlying algo-
rithm could work with any regular spanner, and not only with hierarchical regular spanners [11,
Theorem 4.6]. As for the input document, it is provided as a text file.

Our implementation follows the different parts of the algorithm presented in the article. The
preprocessing phase comprises (i) the construction of the mapping DAG as described in Section 3
and modified for nonextended VAs in Section 6, and (ii) the construction of the jump function
described in Section 5 and all necessary matrices. The enumeration phase explores the DAG as
described in Section 4 and modified for nonextended VAs in Section 6. In particular, we use the
flashlight search approach described in Section 6.

7.1 Optimizations

Our optimizations focus on three main problems: efficiently managing the mapping DAG dur-
ing the preprocessing phase, managing the reachability matrices that we build at the end of the
preprocessing phase, and optimizing the enumeration phase.

Efficient representation of the mapping DAG and efficient exploration. The first stage of the pre-
processing phase is to compute the mapping DAG. This DAG is efficiently represented as a bitmap4

in which we store which states are reachable at each position of the input document. To save space,
the implementation does not actually store any edges of the DAG, as the edges can be reconstructed
on-the-fly from the automaton and input string.

The second stage is to make this DAG trimmed by exploring it to remove the vertices that are
not co-accessible, i.e., those that have no path to the final vertex.

Implementation of the matrices. The third stage of the preprocessing is to compute the reachabil-
ity matrices that are necessary for the jump function, which requires many Boolean matrix multi-
plications. We considered using optimized implementations of matrix multiplication, but these are
generally designed for floating-point numbers rather than Boolean values, so using them would
significantly increase the memory usage. As memory space tends to be an important bottleneck
in our implementation, we instead implemented our own matrix multiplication code: it uses the
naive matrix multiplication algorithm with three nested loops, but we optimized it for Boolean
matrices as follows. We store matrices as bitvectors and pad their width to 8, 16, 32, or a multiple

3https://github.com/PoDMR/enum-spanner-rs.
4The bitmap contains a single bit for each pair (q, i ) ∈ Q × {0, . . . , |d | } that says whether the node is part of the trimmed
mapping DAG or not. Padding is applied to ensure that each level starts at a machine word boundary.
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of 64, which reduces their memory usage. Further, we use fast bitwise operations in the inner loop
of the matrix multiplication algorithm, which speeds up the multiplication of large matrices by
a factor of up to 64. With this vectorized implementation, the multiplication time grows roughly
like n2 for matrices with width up to 64.

Enumeration phase. After these optimizations to the three stages of the preprocessing phase, our
implementation performs the enumeration phase by traversing the mapping DAG in reverse, i.e.,
we explore it backward from the final vertex to the initial vertices. Following this reverse order,
we then enumerate the mappings seen along the traversed paths as we previously described in the
article. One advantage of doing enumeration backward is that it allows us to skip the trimming
step (second stage of the preprocessing phase): if some vertices of the mapping DAG are not co-
accessible, the enumeration phase will never reach them and the delay bounds are not affected.
However, as we will later show, in practice the time spent on trimming (second preprocessing
stage) is often recouped during the third preprocessing stage (because it runs faster when the
mapping DAG is smaller).

A more distant benefit of processing the DAG backward is to later extend our implementation
to support updates, i.e., modifications to the underlying document. A common case of updates is
appending characters at the end, which we believe would be easier to handle when enumeration
starts at the end. Nevertheless, the question of extending the algorithm and implementation to
handle updates is left for future work (see also the discussion in Section 8).

7.2 Experiments

Experimental setup and delay measurement. The tests were run in a virtual machine that had ex-
clusive access to two Xeon E5-2630 CPU cores. The algorithm is single threaded, but the additional
core was added to minimize the effects of background activity of the operating system.

Measuring the delays of the algorithm is challenging, because the timescale for the delays is so
tiny that unavoidable hardware interrupts can make a big difference. To eliminate outliers resulting
from such interrupts, we exploited the fact that our enumeration algorithm is fully deterministic.
We ran the algorithm 10 times and recorded all delays. Afterward, for each produced result, we took
the median of the 10 delays we collected. All measurements related to delays use this approach,
e.g., if we compute the maximum delay for a query, it is actually the maximum over these medians.

We benchmarked our implementation on two datasets: one based on genetic data and another
one based on blog posts using the corpus from Schler et al. [28] and comparing against that of
Morciano [23]. We first describe the experiments on DNA data and then the experiments on blog
posts.

DNA data. For our experiments on DNA data, the input document is the first chromosome of
the human genome reference sequence GRCh38. It contains roughly 250 million base pairs,5 where
each base pair is encoded as a single character. We also use prefixes of this data in the experiments,
when we need to benchmark against input documents of various sizes.

In most queries, there are no named capture variables, but there is an implicit capture variable
that captures each possible match of the regex as a subword of the input document. Formally,
when we write a query in the sequel as a regular expression e without capture variables, the
corresponding spanner is the one described by the regex-formula Σ∗x {e}Σ∗, where Σ is the alphabet
and x is the implicit capture variable.

5https://www.ncbi.nlm.nih.gov/genome/guide/human/.
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Fig. 2. Enumerating the query TTAC.{0,1000}CACC on inputs of different lengths.

Fig. 3. Enumerating the query TTAC.{0,k}CACC on an input document of 10 MB.

Close-fragments queries. Our experiments on DNA data use so-called close-fragment queries,
where we search for two DNA fragmentsw1 andw2 that occur close to each other. Specifically, we
used the query TTAC.{0,k}CACC, with various values of k , for several different tests that we list
in the following and then present in more detail:

(1) We first verified that the delay is independent from the document length, whereas the
preprocessing time and memory usage depends linearly on the document length. This is
presented in Figure 2.

(2) We then tested how the preprocessing time, the index structure size, and the delay depends
on the automaton size. This is depicted in Figure 3, where we used a 10-MB prefix of the
DNA string and used values of k between 10 and 10,000.
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Fig. 4. Comparing the total enumeration time with a simple algorithm.

(3) Last, we compared the total enumeration time with the naive approach that starts one run
of the NFA at every position of the document.6 We also investigated the effect of skipping
the second stage of the preprocessing. The results are depicted in Figure 4.

For (1), we fixed k = 1,000 and used prefixes of different length of the DNA string. The results are
depicted in Figure 2, where in Figure 2(a), we depicted the maximal and average delay encountered
during enumeration, whereas in Figure 2(b), we depicted the preprocessing time and size of the
index structure divided by the input length. One can see that the average delay is constant (around
5 μs allowing to enumerate 200,000 results per second), whereas the maximum delay is roughly
four times larger. The preprocessing speed is roughly 300 to 350 kB per second and the index
structure twice as large as the input document.

Toward (2), we fixed the length of the input to 10 MB and made k vary between 10 and 10,000.
The results are shown in Figure 3(a) and (b). The most interesting outcome is that the preprocessing
is much faster than the worst case bound ofO (k4). Analyzing the numbers from Figure 3(a) shows
that the preprocessing time grows roughly like Θ(k2). A closer look into the index structure used in
the algorithm suggests an explanation: the width of the mapping DAG seems to grow sublinearly
as a function of k for this query.

As for the delay in Figure 3(b), remember that our experiment is about changing the query,
so the delay bound is not supposed to be constant with respect k . The theoretical bounds suggest
that the delay should be O (k2), which matches what we obtain experimentally for the maximum
delay. The average delay is much lower.

We also measured the size of our index structure for the queries TTAC.{0,k}CACC after com-
pleting the preprocessing and depicted the results in Figure 3(c). The index structure consists of
three parts, with the total size being the sum of these three parts:

• DAG: The bitmap storing the states that exist in the (trimmed) DAG. We remove the levels
to which the algorithm will never jump.

• Jump function: The jump function, as explained in Section 5.
• Matrices: All necessary reachability matrices, as explained in the same section.

For small automata, the size is dominated by the administrative overhead of the vectors used to
store the jump functions and matrices, whereas the DAG is represented in a very compact way as
a bitmap. For larger automata, one can see that the DAG representation uses more space, but the

6Note that this naive approach only works for the special case where there is exactly one capture variable that surrounds
the whole expression. Our implementation has the added advantage of handling regular spanners with arbitrarily many
capture variables.
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memory footprint is still dominated by the matrices. Notice that the size of each level of the DAG
is padded to a multiple of 32, and hence the bumps of the DAG curve around the sizes 32 and 64.

A question related to the close-fragment queries TTAC.{0,k}CACC is to understand if the change
in performance across different values of k is only caused by the change in the number of results.
To experiment with this, we fixed k = 1,000 and benchmarked queries w1.{0,1 000}w2, where
w1 was a prefix of TTACGG and w2 was a prefix of CACCTG, so as to make the number of results
vary without changing the size of the automaton too much. The results are depicted in Figure 3(d).
The resulting index structure size for these queries indeed depends a lot on the number of results.
This is expected as the index structure only contains information for levels that are used as the
boundary of at least one span in the results. Specifically, the size grows slightly sublinearly. The
preprocessing speed (and thus the preprocessing time) is almost constant until the number of
results becomes sufficiently large to be comparable to the input size. This is because, before that
point, the dominating term in the preprocessing time is the processing of the input and not the
computations performed on the DAG.

For (3), we implemented a naive enumeration algorithm that works without any preprocessing,
to serve as a baseline. It evaluates the NFA starting from each position i in the input document
and outputs a pair (i, j ) for each position j where the NFA reaches an accepting state using the
standard algorithm that computes for each position the set of possible states. We do the easy
optimization of stopping the run for a starting position i if we reach an ending position j with
no more reachable states. We depicted the total time used for enumeration of our approach and
the naive algorithm in Figure 4, where we ran the query TTAC.{0,k}CACC for various sizes of k
on the 10-MB prefix of the DNA sequence (Figure 4(a)) and additionally the query TTAC.*CACC
for various prefixes of the input DNA sequence (Figure 4(b)). For small k in Figure 4(a), the naive
algorithm has a clear advantage, as it does not need to compute any index structure. In addition,
for these queries, the runtime is bounded by O (nk ), as all runs of the NFA have a length bounded
by at most k + 8 because we optimized the baseline algorithms to stop the run early. For larger k ,
the naive algorithm is much slower than our approach. For the query TTAC.*CACC in Figure 4(b),
the naive approach exhibits its Θ(n2) worst-case behavior, and is much slower than our approach,
even for small input documents.

In Figure 4(a), we also have a look on the effect of trimming the DAG (second stage of the prepro-
cessing). Indeed, although skipping this trimming stage saves a small amount of time, this is usually
overcompensated by the third preprocessing stage, where we need to compute more and larger
matrices because the unpruned DAG is larger. This can be seen for the query TTAC.{0,k}CACC
even for small values for k . Trimming saves more time for larger values of k , as more nodes of
the DAG can be pruned. For the query TTAC.*CACC in Figure 4(b), where trimming can only re-
move a few nodes from the DAG, the runtime effect of disabling trimming was negligible, i.e., the
time savings from the second stage were almost exactly compensated by the additional work in
the third stage.

Querying blog posts. We also evaluated our algorithm on roughly 800 MB of blog posts using the
corpus from Schler et al. [28]. To apply our implementation, we concatenated all blog posts to get
a single file and stripped all characters that did not have a valid UTF-8 encoding. We ran the same
queries used in the master thesis of Morciano [23, Chapter 6]. These queries try to extract reviews
for movies from blog posts. They are built over simple dictionaries that contain, e.g., synonyms
for “movie,” synonyms for “actor,” or a list of genres. These basic spanners are combined to more
complex queries using the union operator and joins of the following form: “spanner B matches at
most k characters after spannerA matches.” For instance, the queriesQ1 toQ4 are of the following
form: find a word in the dictionary d1, and then a word in the dictionary d2 matching at most k
characters after the first word.
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Table 1. Querying Blog Data

Query #States #Variables #Results Preprocess (s) Memory (MB) Time of [23] (s)

Q1 40 2 4,975 772 2.72 ≈780

Q2 211 2 6,099 1,057 3.70 ≈1,100

Q3 246 2 5,915 1,090 3.63 ≈ 1,200

Q4 52 2 2,232 771 1.22 ≈810

Q5 343 6 12,020 1,254 8.04 ≈2,780

Q ′6 661 8 19,561 1,704 16.00 ≈4,330

Q ′7 805 10 62,103 1,948 53.36 ≈5,100

Q ′8 813 10 70,509 1,956 60.02 ≈6,000

Fig. 5. Histogram for delays between two outputs.

In Table 1, we give some statistical data over these queries, and give the running time of our al-
gorithm, its memory usage, and the approximate times of the implementation of Morciano [23]. We
only report the time for the preprocessing phase of our algorithm, because the time taken by the
enumeration phase is always less than 1 second. We stress that the running times of Morciano [23]
and our running times are not comparable, because the experimental setup is very different, the
hardware in use is not the same, and the algorithm of Marciano [23] is not an enumeration algo-
rithm but simply produces all results. The point of our comparison is not to claim an improvement
in running times relative to Marciano [23], but to show that, on this existing dataset, the total
running time of our approach is comparable to that of their implementation.

Looking into our running times, we notice that the dependency of the preprocessing time on
the automaton size is again much less than the O ( |A|4) worst-case bound. Again, this is probably
because the matches are sparse, i.e., there are only very few nodes per level and therefore the
matrices are of almost constant size. Similarly to our experiments on DNA data, the preprocessing
time and index structure size show a dependency on the number of matches, as we need to compute
matrices for all levels where a variable is opened or closed for some match. Of course, as our
preprocessing is linear in the input document, this dependency can only hold when the number
of results is at most linear in the document.

Detailed analysis of delay. We did a more detailed analysis of the various delays that we obtain
while running the enumeration phase of our algorithm. We show a histogram of the delays for the
query TTAC.{0,1000}CACC on the first 10 MB of the DNA data in Figure 5(a), and for the query
Q ′8 from Marciano [23] on the blog post corpus in Figure 5(b).
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One can see that the delay varies, which is expected: our algorithm is constant delay in the sense
of enforcing a constant upper bound on the delay, but the effective delay can vary from one output
to the next. Specifically, the number of jumps that need to be performed between two outputs can
be any number between one and the maximal number of variable markers encountered in a single
match. In addition, the time needed for the flashlight search can vary within given limits.

In Figure 5(a), as the DNA query has only one implicit capture variable covering the whole match
and thus two variable markers, we have two spikes in the histogram. The first spike corresponds to
the case where the next matching is found by just changing the end marker, whereas the second
spike corresponds to the case where the two markers are changed, so that the flashlight search
and jump functions have to be executed twice. In Figure 5(b), as the query Q ′8 has 10 variables, we
notice that the maximal delay is larger and there are more spikes in the histogram.

8 CONCLUSION

We have shown that we can efficiently enumerate the mappings of sequential VAs on input docu-
ments, achieving linear-time preprocessing and constant delay in data complexity, while ensuring
that preprocessing and delay are polynomial in the input VA even if it is not deterministic. This
result was previously considered as unlikely by Florenzano et al. [12], and it improves on the al-
gorithms in the work of Freydenberger et al. [16]: with our algorithm, the delay between outputs
does not depend on the input document, whereas it had a linear dependency on the size of the
input document in the work of Freydenberger et al. [16].

In Section 7, we did a thorough practical evaluation of our approach. The most encouraging
result is that for several classes of queries, the algorithm runs much faster than the theoretical
worst-case analysis would suggest. An interesting open question raised by the experimental val-
idation is whether it is possible to adapt our algorithm to NFAs with counters. We believe that
queries that use a join condition of the form pattern A should be matched near pattern B are
important in practice. These kind of queries intrinsically depend on the use of counters. As the
efficiency of our algorithm crucially depends on the size of the underlying automata, a more effi-
cient representation of counters that does not depend on encoding the counter value in the state
of the automaton could allow for big improvements in the runtime.

We will consider different directions for future work. A first question is how to cope with
changes to the input document without recomputing our enumeration index structure from
scratch. This question has been recently studied for other enumeration algorithms, see, e.g., [3,
7–9, 20, 24, 25], but for atomic update operations: insertion, deletion, and relabelings of single
nodes. However, as spanners operate on text, we would like to use bulk update operations that
modify large parts of the text at once: cut and paste operations, splitting or joining strings, or
appending at the end of a file and removing from the beginning, e.g., in the case of log files with
rotation. It may be possible to show better bounds for these operations than the ones obtained
by modifying each individual letter [20, 25], and we believe that our implementation could be
modified to do so, at least when appending new content at the end of the document.

Another question is to generalize our result from words to trees, but this is challenging: the
run of a tree automaton is no longer linear in just one direction, so it is not easy to skip parts of
the input similarly to the jump function of Section 5, or to combine computation that occurs in
different branches. We already explored this direction of work in our follow-up work [5].
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