
Enumerating Regular Languages with Bounded
Delay
Antoine Amarilli #Ñ

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Mikaël Monet #Ñ

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Abstract
We study the task, for a given language L, of enumerating the (generally infinite) sequence of its
words, without repetitions, while bounding the delay between two consecutive words. To allow for
delay bounds that do not depend on the current word length, we assume a model where we produce
each word by editing the preceding word with a small edit script, rather than writing out the word
from scratch. In particular, this witnesses that the language is orderable, i.e., we can write its words
as an infinite sequence such that the Levenshtein edit distance between any two consecutive words
is bounded by a value that depends only on the language. For instance, pa ` bq

˚ is orderable (with
a variant of the Gray code), but a˚

` b˚ is not.
We characterize which regular languages are enumerable in this sense, and show that this can

be decided in PTIME in an input deterministic finite automaton (DFA) for the language. In fact,
we show that, given a DFA A, we can compute in PTIME automata A1, . . . , At such that LpAq is
partitioned as LpA1q \ . . . \ LpAtq and every LpAiq is orderable in this sense. Further, we show that
the value of t obtained is optimal, i.e., we cannot partition LpAq into less than t orderable languages.

In the case where LpAq is orderable (i.e., t “ 1), we show that the ordering can be produced by a
bounded-delay algorithm: specifically, the algorithm runs in a suitable pointer machine model, and
produces a sequence of bounded-length edit scripts to visit the words of LpAq without repetitions,
with bounded delay – exponential in |A| – between each script. In fact, we show that we can achieve
this while only allowing the edit operations push and pop at the beginning and end of the word,
which implies that the word can in fact be maintained in a double-ended queue.

By contrast, when fixing the distance bound d between consecutive words and the number of
classes of the partition, it is NP-hard in the input DFA A to decide if LpAq is orderable in this sense,
already for finite languages.

Last, we study the model where push-pop edits are only allowed at the end of the word,
corresponding to a case where the word is maintained on a stack. We show that these operations are
strictly weaker and that the slender languages are precisely those that can be partitioned into finitely
many languages that are orderable in this sense. For the slender languages, we can again characterize
the minimal number of languages in the partition, and achieve bounded-delay enumeration.

2012 ACM Subject Classification Theory of computation Ñ Formal languages and automata theory

Keywords and phrases Regular language, constant-delay enumeration, edit distance

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.8

Related Version Full Version: https://arxiv.org/abs/2209.14878 [5]

Funding Antoine Amarilli: Partially supported by the ANR project EQUUS ANR-19-CE48-0019
and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 431183758.

Acknowledgements We thank Florent Capelli and Charles Paperman for their insights during initial
discussions about this problem. We thank user pcpthm on the Theoretical Computer Science Stack
Exchange forum for giving the argument for Proposition 6.1 in [18]. We thank Jeffrey Shallit for
pointing us to related work. We thank Torsten Mütze and Arturo Merino for other helpful pointers.
We thank the anonymous reviewers for their valuable feedback. Finally, we are grateful to Louis
Jachiet and Lê Thành Dũng (Tito) Nguyễn for feedback on the draft.

© Antoine Amarilli and Mikaël Monet;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023).
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté;
Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a3nm@a3nm.net
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
mailto:mikael.monet@inria.fr
https://mikael-monet.net/
https://orcid.org/0000-0002-6158-4607
https://doi.org/10.4230/LIPIcs.STACS.2023.8
https://arxiv.org/abs/2209.14878
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Enumerating Regular Languages with Bounded Delay

1 Introduction

Enumeration algorithms [23, 26] are a way to study the complexity of problems beyond
decision or function problems, where we must produce a large number of outputs without
repetitions. In such algorithms, the goal is usually to minimize the worst-case delay between
any two consecutive outputs. The best possible bound is to make the delay constant, i.e.,
independent from the size of the input. This is the case, for example, when enumerating the
results of acyclic free-connex conjunctive queries [7] or of MSO queries over trees [6, 14].

Unfortunately, constant-delay is an unrealistic requirement when the objects to enumerate
can have unbounded size, simply because of the time needed to write them out. Faced by
this problem, one option is to neglect this part of the running time, e.g., following Ruskey’s
“Do not count the output principle” [21, p. 8]. In this work, we address this challenge in
a different way: we study enumeration where each new object is not written from scratch
but produced by editing the previous object, by a small sequence of edit operations called an
edit script. This further allows us to study the enumeration of infinite collections of objects,
with an algorithm that runs indefinitely and ensures that each object is produced after some
finite number of steps, and exactly once. The size of the edit scripts must be bounded, i.e., it
only depends on the collection of objects to enumerate, but not on the size of the current
object. The algorithm thus outputs an infinite series of edit scripts such that applying them
successively yields the infinite collection of all objects. In particular, the algorithm witnesses
that the collection admits a so-called ordering: it can be ordered as an infinite sequence with
a bound on the edit distance between any two consecutive objects, namely, the number of
edit operations.

In this paper, we study enumeration for regular languages in this sense, with the Lev-
enshtein edit distance and variants thereof. One first question is to determine if a given
regular language L admits an ordering, i.e., can we order its words such that the Levenshtein
distance of any two consecutive words only depends on L and not on the word lengths? For
instance, the language a˚ is easily orderable in this sense. The language a˚b˚ is orderable,
e.g., following any Hamiltonian path on the infinite N ˆ N grid. More interestingly, the
language pa ` bq˚ is orderable, for instance by considering words by increasing length and
using a Gray code [17], which enumerates all n-bit words by changing only one bit at each
step. More complex languages such as apa ` bcq˚ ` bpcbq˚ddd˚ can also be shown to be
orderable (as our results will imply). However, one can see that some languages are not
orderable, e.g., a˚ ` b˚. We can nevertheless generalize orderability by allowing multiple
“threads”: then we can partition a˚ ` b˚ as a˚ and b˚, both of which are orderable. This
leads to several questions: Can we characterize the orderable regular languages? Can every
regular language be partitioned as a finite union of orderable languages? And does this lead
to a (possibly multi-threaded) enumeration algorithm with bounded delay (i.e., depending
only on the language but not on the current word length)?

Contributions. The present paper gives an affirmative answer to these questions. Specifically,
we show that, given a DFA A, we can decide in PTIME if LpAq is orderable. If it is not, we can
compute in PTIME DFAs A1, . . . , At partitioning the language as LpAq “ LpA1q\ . . .\LpAtq

such that each LpAiq is orderable; and we show that the t given in this construction is optimal,
i.e., no smaller such partition exists. If the language is orderable (i.e., if t “ 1), we show in
fact that the same holds for a much more restricted notion of distance, the push-pop distance,
which only allows edit operations at the beginning and end of the word. The reason we are
interested in this restricted edit distance is that edit scripts featuring push and pop can be

A. Amarilli and M. Monet 8:3

easily applied in constant-time to a word represented in a double-ended queue; by contrast,
Levenshtein edit operations are more difficult to implement, because they refer to integer
word positions that change whenever characters are inserted or deleted.1

And indeed, this result on the push-pop distance then allows us to design a bounded-delay
algorithm for LpAq, which produces a sequence of bounded edit scripts of push or pop
operations that enumerates LpAq. The length of the edit scripts is polynomial in |A| and the
delay of our algorithm is exponential in |A|, but crucially it remains bounded throughout
the (generally infinite) execution of the algorithm, and does not depend on the size of the
words that are achieved. Formally, we show:

▶ Result 1. Given a DFA A, one can compute in PTIME automata A1, . . . , At for some t ď

|A| such that LpAq is the disjoint union of the LpAiq, and we can enumerate each LpAiq with
bounded delay for the push-pop distance with distance bound 48|A|2 and exponential delay in
|A|. Further, LpAq has no partition of cardinality t ´ 1 into orderable languages, even for the
Levenshtein distance.

Thus, we show that orderability and enumerability, for the push-pop or Levenshtein edit
distance, are in fact all logically equivalent on regular languages, and we characterize them
(and find the optimal partition cardinality) in PTIME. By contrast, as was pointed out
in [18], testing orderability for a fixed distance d is NP-hard in the input DFA, even for finite
languages.

Last, we study the push-pop-right distance, which only allows edits at the end of the word.
The motivation for studying this distance is that it corresponds to enumeration algorithms
in which the word is maintained on a stack. We show that, among the regular languages,
the slender languages [19] are then precisely those that can be partitioned into finitely many
orderable languages, and that these languages are themselves enumerable. Further, the
optimal cardinality of the partition can again be computed in PTIME:

▶ Result 2. Given a DFA A, then LpAq is partitionable into finitely many orderable languages
for the push-pop-right distance if and only if LpAq is slender (which we can test in PTIME
in A). Further, in this case, we can compute in PTIME the smallest partition cardinality,
and each language in the partition is enumerable with bounded delay with distance bound 2|A|

and linear delay in |A|.

In terms of proof techniques, our PTIME characterization of Result 1 relies on a notion
of interchangeability of automaton states, defined via paths between states and via states
having common loops. We then show orderability by establishing stratum-connectivity,
i.e., for any stratum of words of the language within some length interval, there are finite
sequences obeying the distance bound that connect any two words in that stratum. We
show stratum-connectivity by pumping and de-pumping loops close to the word endpoints.
We then deduce an ordering from this by adapting a standard technique [25] of visiting
a spanning tree and enumerating even and odd levels in alternation (see also [22, 13]).
The bounded-delay enumeration algorithm then proceeds by iteratively enlarging a custom
data structure called a word DAG, where the construction of the structure for a stratum is
amortized by enumerating the edit scripts to achieve the words of the previous stratum.

1 There is, in fact, an Ωplog |w|{ log log |w|q lower bound on the complexity of applying Levenshtein edit
operations and querying which letter occurs at a given position: crucially, this bound depends on the size
of the word. See https://cstheory.stackexchange.com/q/46746 for details. This is in contrast to the
application of push-pop-right edit operations, which can be performed in constant time (independent
from the word length) when the word is stored in a double-ended queue.

STACS 2023

https://cstheory.stackexchange.com/q/46746

8:4 Enumerating Regular Languages with Bounded Delay

Related work. As we explained, enumeration has been extensively studied for many struc-
tures [26]. For regular languages specifically, some authors have studied the problem of
enumerating their words in radix order [15, 1, 2, 10]. For instance, the authors of [1, 2]
provide an algorithm that enumerates all words of a regular language in that order, with
a delay of Op|w|q for w the next word to enumerate. Thus, this delay is not bounded, and
the requirement to enumerate in radix order makes it challenging to guarantee a bounded
distance between consecutive words (either in the Levenshtein or push-pop distance), which
is necessary for bounded-delay enumeration in our model. Indeed, our results show that not
all regular languages are orderable in our sense, whereas their linear-delay techniques apply
to all regular languages.

We have explained that enumeration for pa ` bq˚ relates to Gray codes, of which there
exist several variants [17]. Some variants, e.g., the so-called middle levels problem [16], aim
at enumerating binary words of a restricted form; but these languages are typically finite
(i.e., words of length n), and their generalization is typically not regular. While Gray codes
typically allow arbitrary substitutions, one work has studied a variant that only allows
restricted operations on the endpoints [9], implying the push-pop orderability of the specific
language pa ` bq˚.

Independently, some enumeration problems on automata have been studied recently in the
database theory literature, in particular for document spanners [8], which can be defined by
finite automata with capture variables. It was recently shown [11, 3] that we can enumerate
in constant delay all possible assignments of the capture variables of a fixed spanner on an
input word. In these works, the delay is constant in data complexity, which means that it
only depends on the (fixed) automaton, and does not depend on the word; this matches
what we call bounded delay in our work (where there is no input word and the automaton is
given as input). However, our results do not follow from these works, which focus on the
enumeration of results of constant size. Some works allow second-order variables and results
of non-constant size [4] but the delay would then be linear in each output, hence unbounded.

Paper structure. We give preliminaries in Section 2. In Section 3 we present our PTIME
construction of a partition of a regular language into finitely many orderable languages, and
prove that the cardinality of the obtained partition is minimal for orderability. We then
show in Section 4 that each term of the union is orderable, and then that it is enumerable in
Section 5. We present the NP-hardness result on testing orderability for a fixed distance and
our results on push-pop-right operations in Section 6. We conclude and mention some open
problems in Section 7. Due to space constraints, we mostly present the general structure
of the proofs and give the main ideas; detailed proofs of all statements can be found in the
extended version of this work [5].

2 Preliminaries

We fix a finite non-empty alphabet Σ of letters. A word is a finite sequence w “ a1 ¨ ¨ ¨ an

of letters. We write |w| “ n, and write ϵ for the empty word. We write Σ˚ the infinite
set of words over Σ. A language L is a subset of Σ˚. For k P N, we denote Lăk the
language tw P L | |w| ă ku. In particular we have Lă0 “ H.

In this paper we study regular languages. Recall that such a language can be described by
a deterministic finite automaton (DFA) A “ pQ, Σ, q0, F, δq, which consists of a finite set Q

of states, an initial state q0 P Q, a set F Ď Q of final states, and a partial transition function
δ : Q ˆ Σ Ñ Q. We write |A| the size of representing A, which is Op|Q| ˆ |Σ|q. A (directed)

A. Amarilli and M. Monet 8:5

path in A from a state q P Q to a state q1 P Q is a sequence of states q “ q0, . . . , qn “ q1 where
for each 0 ď i ă n we have qi`1 “ δpqi, aiq for some ai. For a suitable choice a0, . . . , an´1,
we call the word a0 ¨ ¨ ¨ an´1 P Σ˚ a label of the path. In particular, there is an empty path
with label ϵ from every state to itself. The language LpAq accepted by A consists of the
words w that label a path from q0 to some final state. We assume without loss of generality
that all automata are trimmed, i.e., every state of Q has a path from q0 and has a path to
some final state; this can be enforced in linear time.

Edit distances. For an alphabet Σ, we denote by δLev : Σ˚ ˆ Σ˚ Ñ N the Levenshtein
edit distance: given u, v P Σ˚, the value δLevpu, vq is the minimum number of edits needed
to transform u into v, where the edit operations are single-letter insertions, deletions or
substitutions (we omit their formal definitions).

While our lower bounds hold for the Levenshtein distance, our positive results already
hold with a restricted set of 2|Σ| ` 2 edit operations called the push-pop edit operations:
pushLpaq and pushRpaq for a P Σ, which respectively insert a at the beginning and at the end
of the word, and popLpq and popRpq, which respectively remove the first and last character
of the word (and cannot be applied if the word is empty). Thus, we define the push-pop edit
distance, denoted δpp, like δLev but allowing only these edit operations.

Orderability. Fixing a distance function δ : Σ˚ ˆ Σ˚ Ñ N over Σ˚, for a language L Ď Σ˚

and d P N, a d-sequence in L is a (generally infinite) sequence s of words w1, . . . , wn, . . .

of L without repetition, such that for every two consecutive words wi, wi`1 in s we have
δpwi, wi`1q ď d. We say that s starts at w1 and, in case s is finite and has n elements, that s

ends at wn (or that s is between w1 and wn). A d-ordering of L is a d-sequence s in L such
that every word of L occurs in s; equivalently, it is a permutation of L such that any two
consecutive words are at distance at most d. An ordering is a d-ordering for some d P N.
If these exist, we call the language L, respectively, d-orderable and orderable. We call L

pt, dq-partition-orderable if it can be partitioned into t languages that each are d-orderable:

▶ Definition 2.1. Let L be a language and t, d P N. We call L pt, dq-partition-orderable if L

has a partition L “
Ů

1ďiďt Li such that each Li is d-orderable.2

Note that, if we allowed repetitions in d-orderings, then the language of any DFA A would
be Op|A|q-orderable: indeed, any word w can be transformed into a word w1 of length Op|A|q

by iteratively removing simple loops in the run of w. By contrast, we will see in Section 3
that allowing a constant number of repetitions of each word makes no difference.

▶ Example 2.2. We consider the Levenshtein distance in this example. The language paaq˚

is p1, 2q-partition-orderable (i.e., 2-orderable) and not pk, 1q-partition-orderable for any k P N.
The language a˚ ` b˚ is p2, 1q-partition-orderable and not orderable, i.e., not d-orderable for
any d P N. Any finite language is d-orderable with d the maximal length of a word in L. The
non-regular language tan2

| n P Nu is not pt, dq-partition-orderable for any t, d P N.

Enumeration algorithms. We study enumeration algorithms, which output a (generally
infinite) sequence of edit scripts σ1, σ2, We only study enumeration algorithms where
each edit script σi is a finite sequence of push-pop edit operations. The algorithm enumerates
a language L if the sequence satisfies the following condition: letting w1 be the result of

2 We use
Ů

for disjoint unions.

STACS 2023

8:6 Enumerating Regular Languages with Bounded Delay

applying σ1 on the empty word, w2 be the result of applying σ2 to w1, and so on, then all wi

are distinct and L “ tw1, w2, . . .u. If L is infinite then the algorithm does not terminate, but
the infinite sequence ensures that every w P L is produced as the result of applying (to ϵ)
some finite prefix σ1, . . . , σn of the output.

We aim for bounded-delay algorithms, i.e., each edit script must be output in time that
only depends on the language L that is enumerated, but not on the current length of the
words. Formally, the algorithm can emit any push-pop edit operation and a delimiter Output,
it must successively emit the edit operations of σi followed by Output, and there is a bound
T ą 0 (the delay) depending only on L such that the first Output is emitted at most T

operations after the beginning of the algorithm, and for each i ą 1 the i-th Output is emitted
at most T operations after the pi ´ 1q-th Output. Note that our notion of delay also accounts
for what is usually called the preprocessing phase in the literature, i.e., the phase before the
first result is produced. Crucially the words wi obtained by applying the edit scripts σi are
not written, and T does not depend on their length.

We say that a bounded-delay algorithm d-enumerates a language L if it produces
a d-ordering of L (for the push-pop distance). Thus, if L is d-enumerable (by an algo-
rithm), then L is in particular d-orderable, and we will show that for regular languages, the
converse also holds.

▶ Example 2.3. Consider the regular language L :“ a˚b˚`b˚a˚. This language is 2-orderable
for the push-pop distance. Indeed, we can order it by increasing word length, finishing for
word length i by the word ai as follows. We start by length zero with the empty word ϵ (so
the first edit script is empty), then, assuming we have ordered all words of L of size ď i

while finishing with ai, we continue with words of L of size i ` 1 in the following manner:
we push-right the letter b to obtain aib, and then we “shift” with edit scripts of the form
ppushRpbq; popLpqq until we obtain bi`1, and then we shift again with edit scripts of the
form ppushRpaq; popLpqq until we obtain ai`1 as promised. This gives us an enumeration
algorithm for L, shown in Algorithm 1. As such, the delay of Algorithm 1 is not bounded,
because of the time needed to increment the integer variable size: this variable becomes
arbitrarily large throughout the enumeration, so it is not realistic to assume that we can
increment it in constant time. This can however be fixed by working in a suitable pointer
machine model, as explained next.

Note that our enumeration algorithms run indefinitely, and thus use unbounded memory:
this is unavoidable because their output would necessarily be ultimately periodic otherwise,
which is not suitable in general. To avoid specifying the size of memory cells or the complexity
of arithmetic computations (e.g., incrementing the integer size in Algorithm 1), we consider
a different model called pointer machines [24] which only allows arithmetic on a bounded
domain. We use this model for our enumeration algorithms (but not, e.g., our other complexity
results such as PTIME bounds).

Intuitively, a pointer machine works with records consisting of a constant number of
labeled fields holding either data values (in our case of constant size, i.e., constantly many
possible values) or pointers (whose representation is not specified). The machine has memory
consisting of a finite but unbounded collection of records, a constant number of which are
designated as registers and are always accessible. The machine can allocate records in
constant time, retrieving a pointer to the memory location of the new record. We can access
the fields of records, read or write pointers, dereference them, and test them for equality,
all in constant time, but we cannot perform any other manipulation on pointers or other
arithmetic operations. (We can, however, count in unary with a linked list, or perform
arbitrary operations on the constant-sized data values.) See the full version [5] for details.

A. Amarilli and M. Monet 8:7

Algorithm 1 Push-pop enumeration algorithm for the language a˚b˚
` b˚a˚ from

Example 2.3.

// The first edit script is empty, corresponding to the empty word.
Output;
int size “ 0;
while true do

size``;
pushRpbq ; Output;
for int j “ 0; j ă size ´ 1; j`` do

pushRpbq ; popLpq ; Output;
end
for int j “ 0; j ă size; j`` do

pushRpaq ; popLpq ; Output;
end

end

▶ Example 2.4. Continuing Example 2.3, Algorithm 1 can easily be adapted to a pointer-
machine algorithm that 2-enumerates L, maintaining the word in a double-ended queue
(deque) and keeping pointers to the first and last positions in order to know when to stop
the for loops. Deques can indeed be simulated in this machine model, e.g., with linked lists.

3 Interchangeability partition and orderability lower bound

In this section, we start the proof of our main result, Result 1. Let A be the DFA and let Q

be its set of states. The result is trivial if the language LpAq is finite, as we can always
enumerate it naively with distance Op|A|q and some arbitrary delay bound, so in the rest of
the proof we assume that LpAq is infinite.

We will first define a notion of interchangeability on DFAs by introducing the notions of
connectivity and compatibility on DFA states (this notion will be used in the next section
to characterize orderability). We then partition LpAq into languages LpA1q \ ¨ ¨ ¨ \ LpAtq

following a so-called interchangeability partition, with each Ai having this interchangeability
property. Last, we show in the section our lower bound establishing that t is optimal.

Interchangeability. To define our notion of interchangeability, we first define the loopable
states of the DFA as those that are part of a non-empty cycle (possibly a self-loop):

▶ Definition 3.1. For a state q P Q, we let Aq be the DFA obtained from A by setting q

as the only initial and final state. We call q loopable if LpAqq ‰ tϵu, and non-loopable
otherwise.

We then define the interchangeability relation on loopable states as the transitive closure
of the union of two relations, called connectivity and compatibility:

▶ Definition 3.2. We say that two loopable states q and q1 are connected if there is a directed
path from q to q1, or from q1 to q. We say that two loopable states q, q1 are compatible
if LpAqq X LpAq1 q ‰ tϵu. These two relations are symmetric and reflexive on loopable states.
We then say that two loopable states q and q1 are interchangeable if they are in the transitive
closure of the union of the connectivity and compatibility relations. In other words, q and q1

STACS 2023

8:8 Enumerating Regular Languages with Bounded Delay

0

a, b

(a) DFA A1.

0 1

a b

b

(b) DFA A2.

0 1 2

c

a

b

a b

(c) DFA A3.

0 1 2a

b

a b

(d) DFA A4.

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

(e) DFA A5.

0

1

3

2

4

a

b

b

a

b

a

a

b

(f) DFA A6.

Figure 1 Example DFAs from Example 3.4.

are interchangeable if there is a sequence q “ q0, . . . , qn “ q1 of loopable states such that for
any 0 ď i ă n, the states qi and qi`1 are either connected or compatible. Interchangeability
is then an equivalence relation over loopable states.

Note that if two loopable states q, q1 are in the same strongly connected component
(SCC) of A then they are connected, hence interchangeable. Thus, we can equivalently see
the interchangeability relation at the level of SCCs (excluding those that do not contain a
loopable state, i.e., excluding the trivial SCCs containing only one state having no self-loop).

▶ Definition 3.3. We call classes of interchangeable states, or simply classes, the equivalence
classes of the interchangeability relation. Recall that, as LpAq is infinite, there is at least one
class. We say that the DFA A is interchangeable if the partition has only one class, in other
words, if all loopable states of A are interchangeable.

▶ Example 3.4. The DFA A1 shown in Figure 1a for the language pa ` bq˚ has only one
loopable state, so A1 is interchangeable.

The DFA A2 shown in Figure 1b for the language a˚b˚ has two loopable states 0 and 1
which are connected, hence interchangeable. Thus, A2 is interchangeable.

The DFA A3 shown in Figure 1c for the language c˚pa˚ ` b˚q has three loopable states:
0, 1 and 2. The states 0 and 1 are connected, and 0 and 2 are also connected, so all loopable
states are interchangeable and A3 is interchangeable.

The DFA A4 shown in Figure 1d for the language a˚ ` b˚ has two loopable states 1 and 2
which are neither connected nor compatible. So A4 is not interchangeable.

The DFA A5 shown in Figure 1e for the language apa ` bcq˚ ` bpcbq˚ddd˚ mentioned in
the introduction has five loopable states: 1, 2, 3, 4, and 6. Then 1 and 2 are connected, 3
and 4 are connected, 3 and 6 are connected, and 1 and 4 are compatible (with the word bc).
Hence, all loopable states are interchangeable and A5 is interchangeable.

The DFA A6 shown in Figure 1f for the language a˚b˚ ` b˚a˚ from Example 2.3 has
four loopable states: 1, 2, 3, and 4. Then 1 and 2 are connected, 3 and 4 are connected,
and (for instance) 1 and 4 are compatible (with the word a). Hence all loopable states are
interchangeable and A6 is interchangeable.

A. Amarilli and M. Monet 8:9

Interchangeability partition. We now partition LpAq using interchangeable DFAs:

▶ Definition 3.5. An interchangeability partition of A is a sequence A1, . . . , At of DFAs such
that LpAq is the disjoint union of the LpAiq and every Ai is interchangeable. Its cardinality
is the number t of DFAs.

Let us show how to compute an interchangeability partition whose cardinality is the
number of classes. We will later show that this cardinality is optimal. Here is the statement:

▶ Proposition 3.6. We can compute in polynomial time in A an interchangeability partition
A1, . . . , At of A, with t ď |A| the number of classes of interchangeable states.

Intuitively, the partition is defined following the classes of A. Indeed, considering any
word w P LpAq and its accepting run ρ in A, for any loopable state q and q1 traversed in ρ,
the word w witnesses that q and q1 are connected, hence interchangeable. Thus, we would like
to partition the words of LpAq based on the common class of the loopable states traversed in
their accepting run. The only subtlety is that LpAq may also contain words whose accepting
run does not traverse any loopable state, called non-loopable words. For instance, ϵ is a
non-loopable word of LpA5q for A5 given in Figure 1e. Let us formally define the non-loopable
words, and our partition of the loopable words based on the interchangeability classes:

▶ Definition 3.7. A word w “ a1 ¨ ¨ ¨ an of LpAq is loopable if, considering its accepting run
q0, . . . , qn with q0 the initial state and qi “ δpqi´1, aiq for 1 ď i ď n, one of the qi is loopable.
Otherwise, w is non-loopable. We write NLpAq the set of the non-loopable words of LpAq.

Letting C be a class of interchangeable states, we write LpA, Cq the set of (loopable) words
of LpAq whose accepting run traverses a state of C.

We then have the following, with finiteness of NLpAq shown by the pigeonhole principle:

▷ Claim 3.8. The language LpAq can be partitioned as NLpAq and LpA, C1q, . . . , LpA, Ctq

over the classes C1, . . . , Ct of interchangeable states, and further NLpAq is finite.

We now construct an interchangeability partition of A of the right cardinality by defining
one DFA Ai for each class of interchangeable states, where we simply remove the loopable
states of the other classes. These DFAs are interchangeable by construction. We modify the
DFAs to ensure that the non-loopable words are only captured by A1. This construction
(explained in the full version [5]) is doable in PTIME, in particular the connectivity and
compatibility relations can be computed in PTIME, testing compatibility by checking the
nonemptiness of product automata. This establishes Proposition 3.6.

Lower bound. We have shown how to compute an interchangeability partition of a DFA A

with cardinality the number t of classes. Let us now show that this value of t is optimal,
in the sense that LpAq cannot be partitioned into less than t orderable (even non-regular)
languages. This lower bound holds even when allowing Levenshtein edits. Formally:

▶ Theorem 3.9. For any partition of the language LpAq as LpAq “ L1 \ ¨ ¨ ¨ \ Lt1 if for each
1 ď i ď t1 the language Li is orderable for the Levenshtein distance, then we have t1 ě t for t

the number of classes of A.

This establishes the negative part of Result 1. Incidentally, this lower bound can also be
shown even if the unions are not disjoint, indeed even if we allow repetitions, provided that
there is some constant bound on the number of repetitions of each word.

Theorem 3.9 can be shown from the following claim which establishes that sufficiently
long words from different classes are arbitrarily far away for the Levenshtein distance:

STACS 2023

8:10 Enumerating Regular Languages with Bounded Delay

▶ Proposition 3.10. Letting C1, . . . , Ct be the classes of A, for any distance d P N, there
is a threshold l P N such that for any two words u P LpA, Ciq and v P LpA, Cjq with i ‰ j

and |u| ě l and |v| ě l, we have δLevpu, vq ą d.

This proposition implies Theorem 3.9 because, if we could partition LpAq into less than t

orderable languages, then some ordering must include infinitely many words from two
different classes LpA, Ciq and LpA, Cjq, hence alternate infinitely often between the two. Fix
the distance d, and consider a point when all words of L of length ď maxpl, maxwPNLpAq |w|q

have been enumerated, for l the threshold of the proposition: then it is no longer possible for
any ordering to move from one class to another, yielding a contradiction. As for the proof of
Proposition 3.10, we give a sketch below (the complete proofs are in the full version [5]):

Proof sketch. Given a sufficiently long word u P LpA, Ciq, by the pigeonhole principle its
run must contain a large number of loops over some state q P Ci. Assume that we can
edit u into v P LpA, Cjq with d edit operations: this changes at most d of these loops. Now,
considering the accepting run of v and using the pigeonhole principle again on the sequence
of endpoints of contiguous unmodified loops, we deduce that some state q1 occurs twice; then
q1 P Cj by definition of LpA, Cjq. The label of the resulting loop on q1 is then also the label of
a loop on q, so q and q1 are compatible, hence Ci “ Cj . ◀

4 Orderability upper bound

We have shown in the previous section that we could find an interchangeability partition
of any regular language LpAq into languages LpA1q, . . . , LpAtq of interchangeable DFAs,
for t the number of classes. We know by our lower bound (Theorem 3.9) that we cannot
hope to order LpAq with less than t sequences. Thus, in this section, we focus on each
interchangeable Ai separately, and show how to order LpAiq as one sequence. Hence, we
fix for this section a DFA A that is interchangeable, write k its number of states, and show
that LpAq is orderable. We will in fact show that this is the case for the push-pop distance:

▶ Theorem 4.1. For any interchangeable DFA A, the language LpAq is 48k2-orderable for
the push-pop distance.

We show this result in the rest of this section, and strengthen it in the next section to a
bounded-delay algorithm. Before starting, we give an overview of the structure of the proof.
The proof works by first introducing d-connectivity of a language (not to be confused with
the connectivity relation on loopable automaton states). This weaker notion is necessary
for d-orderability, but for finite languages we will show a kind of converse: d-connectivity
implies 3d-orderability. We will then show that LpAq is stratum-connected, i.e., the finite
strata of words of LpAq in some length interval are each d-connected for some common d.
Last, we will show show that this implies orderability, using the result on finite languages.

Connectivity implies orderability on finite languages. We now define d-connectivity:

▶ Definition 4.2. A language L is d-connected if for every pair of words u, v P L, there
exists a d-sequence in L between u and v.

Clearly d-connectivity is a necessary condition for d-orderability: indeed if w1, w2, . . .

is a d-ordering of L, and u “ wi, v “ wj are two words of L with i ď j (without loss of
generality), then wi, wi`1, . . . , wj is indeed a d-sequence in L between u and v. What is
more, for finite languages, the converse holds, up to multiplying the distance by a constant
factor:

A. Amarilli and M. Monet 8:11

▶ Lemma 4.3. Let L be a finite language that is d-connected and s ‰ e be words of L. Then
there exists a 3d-ordering of L starting at s and ending at e.

Proof sketch. We use the fact, independently proved by Sekanina and by Karaganis [22, 13],
that the cube of every connected graph G has a Hamiltonian path between any pair of
vertices (see also [17]). One algorithmic way to see this is by traversing a spanning tree of G

and handling odd-depth and even-depth nodes in prefix and postfix fashion (see, e.g., [25]).
Applying this to the graph G whose vertices are the words of L and where two words w, w1

are connected by an edge when δpw, w1q ď d yields the result. ◀

The constant 3 in this lemma is optimal, as follows from [20]; see the full version [5] for
more details. Note that the result does not hold for infinite languages: a˚ ` b˚ is 1-connected
(via ϵ) but not d-orderable for any d.

Stratum-connectivity. To show orderability for infinite languages, we will decompose them
into strata, which simply contain the words in a certain length range. Formally:

▶ Definition 4.4. Let L be a language, let ℓ ą 0 be an integer, and let i ą 0. The i-th
stratum of width ℓ (or ℓ-stratum) of L, written stratℓpL, iq, is LăiℓzLăpi´1qℓ.

We will show that, for the language LpAq of our interchangeable DFA A, we can pick ℓ

and d such that every ℓ-stratum of LpAq is d-connected, i.e., LpAq is pℓ, dq-stratum-connected:

▶ Definition 4.5. Let L be a regular language and fix ℓ, d ą 0. We say that L is pℓ, dq-
stratum-connected if every ℓ-stratum stratℓpL, iq is d-connected.

Note that our example language a˚`b˚, while 1-connected, is not pℓ, dq-stratum-connected
for any ℓ, d, because any i-th ℓ-stratum for i ą d is not d-connected. We easily show that
stratum-connectivity implies orderability:

▶ Lemma 4.6. Let L be an infinite language recognized by a DFA with k1 states, and assume
that L is pℓ, dq-stratum-connected for some ℓ ě 2k1 and some d ě 3k1. Then L is 3d-orderable.

Proof sketch. We show by pumping that we can move across contiguous strata. Thus, we
combine orderings on each stratum obtained by Lemma 4.3 with well-chosen endpoints. ◀

We can then show using several pumping and de-pumping arguments that the language
of our interchangeable DFA A is pℓ, dq-stratum-connected for ℓ :“ 8k2 and d :“ 16k2.

▶ Proposition 4.7. The language LpAq is p8k2, 16k2q-stratum-connected.

Proof sketch. As there are only a finite number of non-loopable words, we focus on loopable
words. Consider a stratum S and two loopable words u and v of S. Their accepting runs
involve loopable states, respectively q and q1, that are interchangeable because A is. We first
show that u is d-connected (in S) to a normal form: a repeated loop on q plus a prefix and
suffix whose length is bounded, i.e., only depends on the language. We impose this in two
steps: first we move the last occurrence of q in u near the end of the word by pumping at
the left end and de-pumping at the right end, second we pump the loop on q at the right
end while de-pumping the left end. This can be done while remaining in the stratum S. We
obtain similarly a normal form consisting of a repeated loop on q1 with bounded-length prefix
and suffix that is d-connected to v in S.

Then we do an induction on the number of connectivity and compatibility relations
needed to witness that q and q1 are interchangeable. If q “ q1, we conclude using the normal
forms of u and v. If q is connected to q1, we impose the normal form on u, then we modify

STACS 2023

8:12 Enumerating Regular Languages with Bounded Delay

it to a word whose accepting run also visits q1, and we apply the previous case. If q is
compatible with q1, we conclude using the normal form with some loop label z in Aq X Aq1

(of length ď k2) that witnesses their compatibility. The induction case is then easy. ◀

From this, we deduce with Lemma 4.6 that LpAq is 48k2-orderable, so Theorem 4.1 holds.
Note that the construction ensures that the words are ordered stratum after stratum, so
“almost” by increasing length: in the ordering that we obtain, after producing some word w,
we will never produce words of length less than |w| ´ ℓ.

5 Bounded-delay enumeration

In this section, we show how the orderability result of the previous section yields a bounded-
delay algorithm. We use the pointer-machine model from Section 2, which we modify for
convenience to allow data values and the number of fields of records to be exponential in the
automaton (but fixed throughout the enumeration, and independent on the size of words):
see the full version [5] for more explanations. We show:

▶ Theorem 5.1. There is an algorithm which, given an interchangeable DFA A with k states,
enumerates the language LpAq with push-pop distance bound 48k2 and exponential delay
in |A|.

Let us accordingly fix the interchangeable DFA A with k states. Following Proposition 4.7,
we let d :“ 16k2 and ℓ :“ 8k2.

Overall amortized scheme. The algorithm will run two processes in parallel: the first
process simply enumerates a previously prepared sequence of edit scripts that gives a 3d-
ordering of some stratum, while the second process computes the sequences for subsequent
strata (and of course imposing that the endpoints of the sequences for contiguous strata are
sufficiently close). We initialize this by computing in an arbitrary way a 3d-ordering for the
first stratum.

The challenging part is to prepare efficiently the sequences for all strata, and in particular
to build a data structure that represents the strata. We will require of our algorithm that
it processes each stratum in amortized linear time in its size. Formally, letting Nj :“
|stratℓpL, jq| be the number of words of the j-th stratum for all j ě 1, there is a value C P N
that is exponential in |A| such that, after having run for C

ři
j“1 Nj steps, the algorithm is

done processing the i-th stratum. Note that this is weaker than processing each separate
stratum in linear time: the algorithm can go faster to process some strata and spend this
spared time later so that some later strata are processed arbitrarily slowly relative to their
size.

If we can achieve amortized linear time, then the overall algorithm runs with bounded
delay. To see why, notice that the prepared sequence for the i-th stratum has length at least
its size Ni, and we can show that the size Ni`1 of the next stratum is within a factor of Ni

that only depends on L (this actually holds for any infinite regular language and does not
use interchangeability):

▶ Lemma 5.2. Letting CA :“ pk ` 1q|Σ|ℓ`k`1, for all i ě 1 we have Ni{CA ď Ni`1 ď CANi.

Proof. Each word in the pi ` 1q-th stratum of L can be transformed into a word in the i-th
stratum as follows: letting k be the number of DFA states, first remove a prefix of length at
most ℓ ` k to get a word (not necessarily in L) of length iℓ ´ k ´ 1, and then add back a
prefix corresponding to some path of length ď k from the initial state to get a word in the

A. Amarilli and M. Monet 8:13

i-th stratum of L as desired. Now, for any word w of the i-th stratum, the number of words
of the pi ` 1q-th stratum that lead to w in this way is bounded by CA, by considering the
reverse of this rewriting, i.e., all possible ways to rewrite w by removing a prefix of length
at most k and then adding a prefix of length at most ℓ ` k. A simple union bound gives
Ni`1 ď CANi. Now, a similar argument in the other direction gives Ni{CA ď Ni`1. ◀

Thanks to this lemma, it suffices to argue that we can process the strata in amortized
linear time, preparing 3d-orderings for each stratum: enumerating these orderings in parallel
with the first process thus guarantees (non-amortized) bounded delay.

Preparing the enumeration sequence. We now explain in more detail the working of
the amortized linear time algorithm. The algorithm consists of two components. The
first component runs in amortized linear time over the successive strata, and prepares a
sequence Γ1, Γ2, . . . of concise graph representations of each stratum, called stratum graphs;
for each i ě 1, after C

ři
j“1 Nj computation steps, it has finished preparing the i-th stratum

graph Γi in the sequence. The second component will run as soon as some stratum graph Γi is
finished: it reads the graph Γi and computes a 3d-ordering for stratℓpL, iq in (non-amortized)
linear-time, using Lemma 4.3. Let us formalize the notion of a stratum graph:

▶ Definition 5.3. Let ∆ be the set of all push-pop edit scripts of length at most d; note
that |∆| ď p2|Σ| ` 2qd`1, and this bound depends on the alphabet and on d. For i ě 1,
the i-th stratum graph is the edge-labeled directed graph Γi “ pVi, ηiq where the nodes
Vi “ tvw | w P stratℓpL, iqu correspond to words of the i-th stratum, and the directed (labeled)
edges are given by the function ηi : Vi ˆ ∆ Ñ Vi Y tKu and describe the possible scripts: for
each vw P Vi and each s P ∆, if the script s is applicable to w and the resulting word w1 is
in stratℓpL, iq then ηpvw, sq “ vw1 , otherwise ηpvw, sq “ K.

In our machine model, each node vw of Γi is a record with |∆| pointers, i.e., we do not
store the word w. Hence, Γi has linear size in Ni.

A stratum graph sequence is an infinite sequence pΓ1, vs1 , ve1 q, pΓ2, vs2 , ve2 q, . . . consisting
of the successive stratum graphs together with couples of nodes of these graphs such that, for
all i ě 1, si and ei are distinct words of the i-th stratum, and we have δpppei, si`1q ď d.

We can now present the second component of our algorithm. Note that the algorithm
runs on the in-memory representations of the stratum graphs, in which, e.g., the subscripts
are not stored.

▶ Proposition 5.4. For i ě 1, given the stratum graph Γi and starting and ending nodes
vsi

‰ vei
of Γi, we can compute in time Op|Γi|q a sequence of edit scripts σ1, . . . , σNi´1

such that, letting si “ u1, . . . , uNi be the successive results of applying σ1, . . . , σNi´1 starting
with si, then u1, . . . , uNi

is a 3d-ordering of stratℓpL, iq starting at si and ending at ei.

Proof sketch. We apply the spanning tree enumeration technique from Lemma 4.3
(in Op|Γi|q) on Γi, starting with vsi and ending with vei , and read the scripts from the
edge labels. ◀

In the rest of the section we present the first component of our enumeration algorithm:

▶ Proposition 5.5. There is an integer C P N exponential in |A| such that we can produce a
stratum graph sequence pΓ1, vs1 , ve1 q, pΓ2, vs2 , ve2 q, . . . for L in amortized linear time, i.e., for
each i ě 1, after having run C

ři
j“1 Nj steps, the algorithm is done preparing pΓi, vsi

, vei
q.

STACS 2023

8:14 Enumerating Regular Languages with Bounded Delay

Word DAGs. The algorithm to prove Proposition 5.5 will grow a large structure in memory,
common to all strata, from which we can easily compute the pΓi, vsi

, vei
q. We call this

structure a word DAG. A word DAG is informally a representation of a collection of words,
each of which has outgoing edges corresponding to the possible left and right push operations.

▶ Definition 5.6. Let Λ :“ tpushRpaq | a P Σu Y tpushLpaq | a P Σu be the set of labels
corresponding to the possible left and right push operations. A pre-word DAG is an edge-
labeled directed acyclic graph (DAG) G “ pV, η, rootq where V is a set of anonymous vertices,
root P V is the root, and η : V ˆ Λ Ñ V Y tKu represents the labeled edges in the following
way: for each node v P V and label s P Λ, if ηpv, sq ‰ K then v has one successor ηpv, sq for
label s, and none otherwise. We impose:

The root has no incoming edges. All other nodes have exactly two incoming edges: one
labeled pushRpaq for some a P Σ, the other labeled pushLpbq for some b P Σ. Each node
stores two pointers leading to these two parents, which may be identical.
All nodes can be reached from the root via at least one directed path.
The root has one outgoing edge for each child, i.e., for all s P Λ, we have ηproot, sq ‰ K.

The word represented by a directed path from the root to a node n is defined inductively:
the word represented by the empty path is ϵ,
the word represented by a path P, pushRpaq is wa where w is the word represented by P ,
the word represented by a path P, pushLpaq is aw where w is the word represented by P .

The pre-word DAG G is called a word DAG if for each node n, all paths from root to n

represent the same word. This word is then called the word represented by n.

Example pre-word DAGs and word DAGs are shown on Figures 2 and 3 in the appendix.
In our machine model, each node is represented by a record; crucially, like for stratum graphs,
the word that the node represents is not explicitly written.

Crucially, word DAGs do not us allow not to create two different nodes that represent
the same word – these would be problematic since we have to enumerate without repetition.

▶ Fact 5.7. There are no two different nodes in a word DAG that represent the same word.

We can then show the following theorem, intuitively saying that we can discover all the
words of the language by only visiting words that are not too far from it:

▶ Proposition 5.8. We can build a word DAG G representing the words of L in amortized
linear time: specifically, for some value C that is exponential in |A|, for all i, after C ˆ
ři

j“1 Nj computation steps, for each word w of Σ˚ whose push-pop distance to a word
of

Ťi
j“1 stratℓpL, jq is no greater than d, then G contains a node that represents w. Moreover,

there is also a value D exponential in |A| such that any node that is eventually created in the
word DAG represents a word that is at push-pop distance at most D from a word of L.

Proof sketch. We progressively add nodes to a word DAG while efficiently preserving its
properties, and thus avoid creating duplicate nodes. By labeling each node with the element
of Q Y tKu achieved by the word represented by that node, and also by the distance to the
closest known word of L, we can restrict the exploration to nodes corresponding to words
that are close to the words of L, which ensures the amortized linear time bound. ◀

This is enough to prove Proposition 5.5: we run the algorithm of Proposition 5.8 and,
whenever it has built a stratum, construct the stratum graph Γi and nodes vsi , vei by
exploring the relevant nodes of the word DAG. Full proofs are deferred to the full version [5].

A. Amarilli and M. Monet 8:15

6 Extensions

Complexity of determining the optimal distance. We have shown in Result 1 that, given
a DFA A, we can compute in PTIME a minimal cardinality partition of LpAq into languages
that are each d-orderable, for d “ 48|A|2. However, we may achieve a smaller distance d

if we increase the cardinality, e.g., a˚ ` bbba˚ is p1, 3q-partition-orderable and not p1, dq-
partition-orderable for d ă 3, but is p2, 1q-partition-orderable. This tradeoff between t and d

seems difficult to characterize, and in fact it is NP-hard to determine if an input DFA is
pt, dq-partition-orderable, already for fixed t, d and for finite languages. Indeed, there is a
simple reduction pointed out in [18] from the Hamiltonian path problem on grid graphs [12]:

▶ Proposition 6.1 ([18]). For any fixed t, d ě 1, it is NP-complete, given a DFA A with
LpAq finite, to decide if LpAq is pt, dq-partition-orderable (with the push-pop or Levenshtein
distance).

Push-pop-right distance. A natural restriction of the push-pop distance would be to
only allow editions at the right endpoint of the word, called the push-pop-right distance.
A d-ordering for this distance witnesses that the words of the language can be produced
successively while being stored in a stack, each word being produced after at most d edits.

Unlike the push-pop distance, one can show that some regular languages are not even
partition-orderable for this distance, e.g., a˚b˚ is not pt, dq-partition-orderable with any t, d P

N. The enumerable regular languages for this distance in fact correspond to the well-known
notion of slender languages. Recall that a regular language L is slender [19] if there is a
bound C P N such that, for each n ě 0, we have |L X Σn| ď C. It is known [19] that we can
test in PTIME if an input DFA represents a slender language. Rephrasing Result 2 from
the introduction, we can show that a regular language is enumerable for the push-pop-right
distance if and only if it is slender; further, if it is, then we can tractably compute the optimal
number t of sequences (by counting the number of different paths to loops in the automaton),
and we can do the enumeration with bounded delay:

▶ Theorem 6.2. Given a DFA A, the language LpAq is pt, dq-partition-orderable for the
push-pop-right distance for some t, d P N if and only if LpAq is slender. Further, if LpAq is
slender, we can compute in PTIME the smallest t such that LpAq is pt, dq-partition-orderable
for some d P N for the push-pop-right distance.

In addition, there is an algorithm which, given a DFA A for which LpAq is slender and
t “ 1, enumerates the language LpAq with push-pop-right distance bound 2k and linear delay
in |A|. Further, the sequence of edit scripts produced by the algorithm is ultimately periodic.

Of course, our results for the push-pop-right distance extend to the push-pop-left distance
up to reversing the language, except for the complexity results because the reversal of the
input DFA is generally no longer deterministic.

7 Conclusion and future work

We have introduced the problem of ordering languages as sequences while bounding the
maximal distance between successive words, and of enumerating these sequences with small
edit scripts to achieve bounded delay. Our main result is a PTIME characterization of the
regular languages that can be ordered in this sense for the push-pop distance (or equivalently
the Levenshtein distance), for any specific number of sequences; and a bounded-delay
enumeration algorithm for the orderable regular languages. Our characterization uses the

STACS 2023

8:16 Enumerating Regular Languages with Bounded Delay

number of classes of interchangeable states of a DFA A for the language, which, as our results
imply, is an intrinsic parameter of LpAq, shared by all (trimmed) DFAs recognizing the same
language. We do not know if this parameter can be of independent interest.

Our work opens several questions for future research. The questions of orderability
and enumerability can be studied for more general languages (e.g., context-free languages),
other distances (in particular substitutions plus push-right operations, corresponding to the
Hamming distance on a right-infinite tape), or other enumeration models (e.g., reusing factors
of previous words). We also do not know the computational complexity, e.g., of optimizing
the distance while allowing any finite number of threads, in particular for slender languages.
Another complexity question is to understand if the bounded delay of our enumeration
algorithm could be made polynomial in the input DFA rather than exponential, or what
delay can be achieved if the input automaton is nondeterministic.

References
1 Margareta Ackerman and Erkki Mäkinen. Three new algorithms for regular language enu-

meration. In ICCC, 2009. URL: https://maya-ackerman.com/wp-content/uploads/2018/
09/ThreeNewAlgorithmsForRegularLanEnum.pdf.

2 Margareta Ackerman and Jeffrey Shallit. Efficient enumeration of words in regular lan-
guages. Theoretical Computer Science, 410(37), 2009. URL: https://maya-ackerman.com/
wp-content/uploads/2018/09/Enumeration_AckermanShallit_TCS.pdf.

3 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay
enumeration for nondeterministic document spanners. In ICDT, 2019. arXiv:1807.09320.

4 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on trees
with tractable combined complexity and efficient updates. In PODS, 2019. arXiv:1812.09519.

5 Antoine Amarilli and Mikaël Monet. Enumerating regular languages with bounded delay,
2023. Full version with proofs. arXiv:2209.14878.

6 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In CSL, 2006.

7 Guillaume Bagan, Arnaud Durand, and Étienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, 2007. URL: https://grandjean.users.greyc.fr/
Recherche/PublisGrandjean/EnumAcyclicCSL07.pdf.

8 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. J. ACM, 62(2), 2015. URL: https://pdfs.
semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf, doi:10.1145/
2699442.

9 Rainer Feldmann and Peter Mysliwietz. The shuffle exchange network has a Hamiltonian path.
Mathematical systems theory, 29(5), 1996.

10 Lukas Fleischer and Jeffrey Shallit. Recognizing lexicographically smallest words and computing
successors in regular languages. International Journal of Foundations of Computer Science,
32(06), 2021.

11 Fernando Florenzano, Cristian Riveros, Martin Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Constant delay algorithms for regular document spanners. In PODS, 2018. arXiv:
1803.05277.

12 Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982. URL: http://www.cs.technion.
ac.il/~itai/publications/Algorithms/Hamilton-paths.pdf.

13 Jerome J. Karaganis. On the cube of a graph. Canadian Mathematical Bulletin, 11(2), 1968.
14 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.

TOCL, 14(4), 2013. URL: https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/
cdlin-survey.pdf.

https://maya-ackerman.com/wp-content/uploads/2018/09/ThreeNewAlgorithmsForRegularLanEnum.pdf
https://maya-ackerman.com/wp-content/uploads/2018/09/ThreeNewAlgorithmsForRegularLanEnum.pdf
https://maya-ackerman.com/wp-content/uploads/2018/09/Enumeration_AckermanShallit_TCS.pdf
https://maya-ackerman.com/wp-content/uploads/2018/09/Enumeration_AckermanShallit_TCS.pdf
http://arxiv.org/abs/1807.09320
https://sigmod2019.org/
http://arxiv.org/abs/1812.09519
http://arxiv.org/abs/2209.14878
https://grandjean.users.greyc.fr/Recherche/PublisGrandjean/EnumAcyclicCSL07.pdf
https://grandjean.users.greyc.fr/Recherche/PublisGrandjean/EnumAcyclicCSL07.pdf
https://pdfs.semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf
https://pdfs.semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
http://arxiv.org/abs/1803.05277
http://arxiv.org/abs/1803.05277
http://www.cs.technion.ac.il/~itai/publications/Algorithms/Hamilton-paths.pdf
http://www.cs.technion.ac.il/~itai/publications/Algorithms/Hamilton-paths.pdf
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

A. Amarilli and M. Monet 8:17

15 Erkki Mäkinen. On lexicographic enumeration of regular and context-free languages. Acta Cy-
bernetica, 13(1):55–61, 1997. URL: http://cyber.bibl.u-szeged.hu/index.php/actcybern/
article/view/3479/3464.

16 Torsten Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical
Society, 112(4):677–713, 2016. arXiv:1404.4442.

17 Torsten Mütze. Combinatorial Gray codes—An updated survey, 2022. arXiv:2202.01280.
18 pcpthm (https://cstheory.stackexchange.com/users/65605/pcpthm). Enumerating finite set

of words with Hamming distance 1. Theoretical Computer Science Stack Exchange. Version:
2022-07-02. URL: https://cstheory.stackexchange.com/q/51653.

19 Jean-Éric Pin. Mathematical foundations of automata theory, 2019. URL: https://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

20 Jakub Radoszewski and Wojciech Rytter. Hamiltonian paths in the square of a tree. In ISAAC,
2011. URL: https://www.mimuw.edu.pl/~rytter/MYPAPERS/isaac2011_rytter.pdf.

21 Frank Ruskey. Combinatorial generation. Preliminary working draft, 2003. URL: https:
//page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf.

22 Milan Sekanina. On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci.
Univ. Brno, 412, 1960.

23 Yann Strozecki et al. Enumeration complexity. Bulletin of EATCS, 3(129), 2019. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/596.

24 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of computer and system sciences, 18(2):110–127, 1979.

25 Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms.
Technical report, National Institute of Informatics, 2003. URL: https://www.nii.ac.jp/
TechReports/public_html/03-004E.pdf.

26 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, 2016. arXiv:1605.05102.

root

‚ ‚

‚ ‚

‚

Rpaq

Lpaq Rpbq

Lpbq

Rpaq

Lpaq Rpbq

Lpbq

Lpbq Rpaq

root

‚ ‚

‚ ‚

Rpaq

Lpaq Rpbq

Lpbq

Rpbq

Lpaq

Rpaq

Lpbq

Figure 2 Two example pre-word DAGs which are not word DAGs. The labels pushL and pushR
are abbreviated for legibility. In the left pre-word DAG, the four paths to the top node that start to
the left of the root all represent the word baa, whereas the four paths to that same node that start
to the right of the root all represent the word bba. In the right pre-word DAG, the left topmost
node represents ab and bb and the right topmost node represents aa and ba. The criteria of word
DAGs, and our construction to enlarge them, are designed to prevent these problems.

STACS 2023

http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3479/3464
http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3479/3464
http://arxiv.org/abs/1404.4442
http://arxiv.org/abs/2202.01280
https://cstheory.stackexchange.com/q/51653
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.mimuw.edu.pl/~rytter/MYPAPERS/isaac2011_rytter.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
http://eatcs.org/beatcs/index.php/beatcs/article/view/596
https://www.nii.ac.jp/TechReports/public_html/03-004E.pdf
https://www.nii.ac.jp/TechReports/public_html/03-004E.pdf
http://arxiv.org/abs/1605.05102

8:18 Enumerating Regular Languages with Bounded Delay

root

a b

Rpaq

Lpaq Rpbq

Lpbq

aa ab ba bb

Rpaq

Lpaq
Rpbq

Lpbq

Rpbq

Lpbq

Rpaq

Lpaq

aab aba

aaba

Lpaq Rpaq
Lpaq

Rpbq

Rpaq Lpaq

Figure 3 An example word DAG. We annotate the nodes with the word that they represent, even
though in the memory representation the nodes are anonymous and the words are not represented.
The labels pushL and pushR are abbreviated for legibility.

	1 Introduction
	2 Preliminaries
	3 Interchangeability partition and orderability lower bound
	4 Orderability upper bound
	5 Bounded-delay enumeration
	6 Extensions
	7 Conclusion and future work

