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Abstract
We study the dynamic membership problem for regular languages: fix a language L, read a word w,
build in time O(|w|) a data structure indicating if w is in L, and maintain this structure efficiently
under letter substitutions on w. We consider this problem on the unit cost RAM model with
logarithmic word length, where the problem always has a solution in O(log |w| / log log |w|) per
operation.

We show that the problem is in O(log log |w|) for languages in an algebraically-defined, decidable
class QSG, and that it is in O(1) for another such class QLZG. We show that languages not
in QSG admit a reduction from the prefix problem for a cyclic group, so that they require
Ω(log |w| / log log |w|) operations in the worst case; and that QSG languages not in QLZG admit a
reduction from the prefix problem for the multiplicative monoid U1 = {0, 1}, which we conjecture
cannot be maintained in O(1). This yields a conditional trichotomy. We also investigate intermediate
cases between O(1) and O(log log |w|).

Our results are shown via the dynamic word problem for monoids and semigroups, for which we
also give a classification. We thus solve open problems of the paper of Skovbjerg Frandsen, Miltersen,
and Skyum [29] on the dynamic word problem, and additionally cover regular languages.
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1 Introduction

This paper studies how to handle letter substitution updates on a word while maintaining the
information of whether the word belongs to a regular language. Specifically, we fix a regular
language L – for instance L = a∗b∗. We are then given an input word w, e.g., w = aaaa. We
first preprocess w in linear time to build a data structure, which we can use in particular to
test if w ∈ L. Now, w is edited by letter substitutions, and we want to update w and keep
track at each step of whether w ∈ L. For instance, an update can replace the third letter
of w by a b, so that w = aaba, which is no longer in L. Then another update can replace,
e.g., the fourth letter of w by a b, so that w = aabb, and now we have w ∈ L again. Our
problem, called dynamic membership, is to devise a data structure to handle such update
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operations and determine whether w ∈ L, as efficiently as possible. We study this task from
a theoretical angle, but it can also be useful in practice to maintain a Boolean condition
(expressed as a regular language) on a user-edited word.

Dynamic membership was studied for various update operations, e.g., append operations
for streaming algorithms or the sliding window model [14, 13, 15], letter substitutions for
the dynamic word problem for monoids [29], or concatenations and splits [22]. It was also
studied in the case of pattern matching, where we check if the word contains some target
pattern [9], which is also assumed to be editable. It is also connected to the incremental
validation problem, which has been studied for strings and for XML documents [5]. The
problem was also studied from the angle of dynamic complexity, which does not restrict the
running time but the logical language used to handle updates [16]; and very recently refined
to a study of the amount of parallel work required [28].

Our focus in this work is to identify classes of fixed regular languages for which dynamic
membership can be solved extremely efficiently, e.g., in constant time or sublogarithmic time.
Our update language only allows letter substitutions to the input word, in particular the
length of the input word can never be changed by updates. We make this choice because
insertions and deletions already make it challenging to efficiently maintain the word itself (see
Section 7). We work within the computational model of the unit-cost RAM, with logarithmic
cell size.

Dynamic word problem for monoids [29]. Our problem closely relates to the work by
Skovbjerg Frandsen, Miltersen, and Skyum on the dynamic word problem for monoids [29]:
fix a finite monoid, read a word which is a sequence of monoid elements, and maintain under
substitution updates the composition of these elements according to the monoid’s internal
law. Indeed, the dynamic membership problem for a language L reduces to the dynamic word
problem for any monoid that recognizes L; but the converse is not true. Hence, studying
the dynamic word problem for monoids is coarser than studying the dynamic membership
problem for languages, although it is a natural first step and is already very challenging.

In the context of monoids, Skovbjerg Frandsen et al. [29] propose a general algorithm for
the dynamic word problem that can handle each operation in time O(log n/ log log n), for
n the length of the word. This is a refinement of the elementary O(log n) algorithm that
decomposes the word as a balanced binary tree whose nodes are annotated with the monoid
image of the corresponding infix. They show that the O(log n/ log log n) bound is tight for
some monoids, namely noncommutative groups, and a generalization of them defined via an
equation. This is obtained by a reduction from the so-called prefix-Zd problem, for which an
Ω(log n/ log log n) lower bound [12] is known in the cell probe model [17]. We will reuse this
lower bound in our work.

They also show that the problem is easier for some monoids. For instance, commutative
monoids can be maintained in O(1), simply by maintaining the number of element occurrences.
They also show a trickier O(log log n) upper bound for group-free monoids: this is based on a
so-called Krohn-Rhodes decomposition [27] and uses a predecessor data structure implemented
as a van Emde Boas tree [34]. However, there are non-commutative monoids for which the
problem is in O(1) (as we will show), and there is still a gap between group-free monoids
(with an upper bound in O(log log n)) and the monoids for which the Ω(log n/ log log n) lower
bound applies. This was claimed as open in [29] and not addressed afterwards. While there
is a more recent study by Pǎtraşcu and Tarniţǎ [23], it focuses on single-bit memory cells.
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Our contributions. In this paper, we attack these problems using algebraic monoid theory.
This unlocks new results: first on the dynamic word problem for monoids, where we extend
the results of [29], and then on the dynamic membership problem for regular languages.

We start with our results on the dynamic word problem for monoids, which are summarized
in Figure 1 along with a table of the main classes in Table 1. First, in Section 3, we show how
a more elaborate O(log log n) algorithm can cover all monoids to which the Ω(log n/ log log n)
lower bound of [29] does not apply: we dub this class SG and characterize it by the equation
xω+1yxω = xωyxω+1, for any elements x and y, where ω denotes the idempotent power. Our
algorithm shares some ideas with the O(log log n) algorithm of [29], in particular it uses van
Emde Boas trees, but it faces significant new challenges. For instance, we can no longer use
a Krohn-Rhodes decomposition, and proceed instead by a rather technical induction on the
J -classes of the monoid. Thus, we have an unconditional dichotomy between monoids in
SG, which are in O(log log n), and monoids outside of SG, which are in Θ(log n/ log log n).

Second, in Section 4, we generalize the O(1) result on commutative monoids to the monoid
class ZG [4]. This class is defined via the equation xω+1y = yxω+1, i.e., only the elements
that are part of a group are required to commute with all other elements. We show that the
dynamic word problem for these monoids is in O(1): we use an algebraic characterization to
reduce them to commutative monoids and to monoids obtained from nilpotent semigroups,
for which we design a simple but somewhat surprising algorithm. We also show a conditional
lower bound: for any monoid M not in ZG, we can reduce the prefix-U1 problem to the
dynamic word problem for M . This is the problem of maintaining a binary word under letter
substitution updates while answering queries asking if a prefix contains a 0. It can be seen
as a priority queue (slightly weakened), so we conjecture that no O(1) data structure for
this problem exists in the RAM model. If this conjecture holds, ZG is exactly the class of
monoids having a dynamic word problem in O(1).

We then extend our results in Section 5 from monoids to the dynamic word problem
for semigroups. Our results for SG extend directly: the upper bound on SG also applies
to semigroups in SG, and semigroups not in SG must contain a submonoid not in SG so
covered by the lower bound. For ZG, there are major complications, and we must study
the class LZG of semigroups where all submonoids are in ZG. Semigroups not in LZG
are covered by our conditional lower bound on prefix-U1, but it is very tricky to show the
converse, i.e., that imposing the condition on LZG suffices to ensure tractability. We do so
by showing tractability for ZG ∗ D, the semigroups generated by semidirect products of ZG
semigroups and so-called definite semigroups, and by showing in [3] that ZG ∗ D = LZG, a
locality result of possible independent interest.

Next, we extend our results in Section 6 from semigroups to languages. This is done
using the notion of stable semigroup [6, 7], denoted as the Q operator; and specifically the
class QSG of regular languages where the stable semigroup of the syntactic morphism in
is SG, and the class QLZG where all local monoids of the stable semigroup of the syntactic
morphism are in ZG. We obtain:

▶ Theorem 1.1. Let L be a regular language, and consider the dynamic membership problem
for L on the unit-cost RAM with logarithmic word length under letter substitution updates:

If L is in the class QLZG, then the problem is in O(1).
If L is not in the class QLZG but is in the class QSG, then the dynamic membership
problem is in O(log log n) with n the length of the word. Further, solving it in O(1) time
gives an O(1) implementation of a structure for the prefix-U1 problem.
If L is not in the class QSG, then the dynamic membership problem is in
Θ(log n/ log log n).

ICALP 2021
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We last present in Section 7 some extensions and questions for future work: preliminary
observations on the precise complexity of languages in QSG \ QLZG (as the O(log log n)
bound is not shown to be tight), the complexity of deciding which case of the theorem applies,
the support for insertion and deletion updates, and the support for infix queries. Because of
space constraints, the complete proofs of results are deferred to the full version [2].

2 Preliminaries and Problem Statement

Computation model. We work in the RAM model with unit cost, i.e., each cell can store
integers of value at most polynomial in O(|w|) where |w| is the length of the input, and
arithmetic operations (addition, successor, modulo, etc.) on two cells take unit time. As the
integers have at most polynomial value, the memory usage is also polynomially bounded.

We consider dynamic problems where we are given an input word, preprocess it in linear
time to build a data structure, and must then handle update operations on the word (by
reflecting them in the data structure), and query operations on the current state of the word
(using the data structure). The complexity of the problem is the worst-case complexity of
handling an update or answering a query.

Like in [29], the lower bounds that we show actually hold in the coarser cell probe
model, which only considers the number of memory cells accessed during a computation.
Furthermore, they hold even without the assumption that the preprocessing is linear.

Given two dynamic problems A and B, we say that A has a (constant-time) reduction
to B if we can implement a data structure for problem A having constant-time complexity
when using as oracle constantly many data structures for problem B (built during the
preprocessing). In other words, queries and updates on the structure for A can perform
constant-time computations using its own memory, but they can also use the data structures
for B as an oracle, i.e., perform a constant number of queries and updates on them, which are
considered to run in O(1). We similarly talk of a dynamic problem having a (constant-time)
reduction to multiple problems, meaning we can use all of them as oracle. If problem A

reduces to problems B1, . . . , Bn, then any complexity upper bound that holds on all problems
B1, . . . , Bn also holds for A, and any complexity lower bound on A extends to at least one
of the Bi.

Problem statement. Our problems require some algebraic prerequisites. We refer the
reader to the book of Pin [25] and his lecture notes [26] for more details. A semigroup is a
set S equipped with an associative composition law (written multiplicatively), and a monoid
is a semigroup M with a neutral element, i.e., an element 1 such that 1x = x1 = x for all
x ∈ M ; the neutral element is then unique. One example of a monoid is the free monoid Σ∗

defined for a finite alphabet Σ and consisting of all words with letters in Σ (including the
empty word), with concatenation as its law. Except for the free monoid, all semigroups and
monoids considered are finite.

A semigroup element x ∈ S is idempotent if xx = x. For x ∈ S, we denote by ω the
idempotent power of x, i.e., the least positive integer such that xω is idempotent. A zero
for S is an element 0 ∈ S such that 0x = x0 = 0 for all x ∈ S: if it exists, it is unique. Given
a semigroup S, we write S1 for the monoid obtained by adding a fresh neutral element to S

if it does not already have one.
A morphism from a semigroup S to a semigroup S′ is a map µ : S → S′ such that for

any x, y ∈ S, we have µ(xy) = µ(x)µ(y). A morphism from a monoid M to a monoid M ′

must additionally verify that µ(1) = 1′, for 1 and 1′ the neutral elements of M and M ′

respectively.
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The direct product of two monoids M1 and M2 is M1×M2 with componentwise composition;
it is also a monoid. A quotient of a monoid M is a monoid M ′ such that there is a surjective
morphism from M to M ′. A submonoid is a subset of a monoid which is also a monoid.
The analogous notions for semigroups are defined in the expected way. A pseudovariety of
monoids (resp., semigroups) is a class of monoids (resp., semigroups) closed under direct
product, quotient and submonoid (resp., subsemigroup). The pseudovariety of monoids
(resp., semigroups) generated by a class V of monoids (resp., of semigroups) is the least
pseudovariety closed under these operations and containing V. As we are working with finite
semigroups and monoids, we refer to pseudovarieties simply as varieties.

We consider dynamic problems where we maintain a word w on a finite alphabet Σ,
every letter being stored in a cell. We allow letter substitution updates of the form (i, a) for
1 ≤ i ≤ |w| and a ∈ Σ. The letter substitution update (i, a) replaces the i-th letter of w

by a; the size |w| of the word never changes. Given the input word w, we first preprocess
it in time O(|w|) to build a data structure. The data structure must then support update
operations for letter substitution updates, and some query operations (to be defined below).
The complexity that we measure is the worst-case complexity of an update operation or query
operation, as a function of |w|. Our definition does not limit the memory used. However, all
our upper complexity bounds actually have memory usage in O(|w|). Further, all our lower
bounds hold even when no assumption is made on the memory usage.

We focus on three related dynamic problems, allowing different query operations. The
first is the dynamic word problem for monoids: fix a monoid M , the alphabet Σ is M , and
the query returns the evaluation of the current word w, i.e., the product of the elements
of w (it is an element of M). This is the problem studied in [29]. The second is the dynamic
word problem for semigroups, which is the same but with a semigroup, and assuming that
|w| > 0. The third is the dynamic membership problem for regular languages: we fix a regular
language L on the alphabet Σ, and the query checks whether the current word belongs to L.

We study the data complexity of these problems in the rest of this paper, i.e., the
complexity expressed as a function of w, with the monoid, semigroup, or language being fixed.
Let us first observe that, for monoids and more generally for semigroups, the usual algebraic
operators of quotient, subsemigroup, and direct product, do not increase the complexity of
the problem:

▶ Proposition 2.1. Let S and T be finite semigroups. The dynamic word problem of
subsemigroups or quotients of S reduces to the same problem for S, and the dynamic word
problem of S × T reduces to the same problem for S and T .

Hard problems. All our lower bounds are obtained by reducing from the problem prefix-M ,
for M a fixed monoid. In this problem, we maintain a word of M∗ under letter substitution
updates, and handle prefix queries: given a prefix length, return the evaluation of the prefix
of that length.

In particular, for d ≥ 2, we consider the problem prefix-Zd for Zd the cyclic group of
order d, i.e., Zd = {0, . . . , d − 1} with addition modulo d, where the evaluation of prefix is
the sum of its elements modulo d. The following lower bound is known already in the cell
probe model:

▶ Theorem 2.2 ([12, 29]). For any fixed d ≥ 2, any structure for prefix-Zd on a word of
length n has complexity Ω(log n/ log log n).

We also consider the problem prefix-U1, where U1 = {0, 1} is the multiplicative monoid
whose composition is the logical AND, i.e., prefix queries check if the prefix contains an
occurrence of 0. Equivalently, we must maintain a subset S of a universe {1, . . . , n} (intuitively

ICALP 2021
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n is the length of the word) under insertions and deletions, and support threshold queries that
ask, given 0 ≤ i ≤ n, whether S contains some element which is ≤ i (i.e., if some position
before i has a 0). The prefix-U1 problem can be solved in O(log log n) [33] with a priority
queue data structure, or even in expected O(

√
log log n) if we allow randomization [18].

Note that prefix-U1 is slightly weaker than a priority queue as we can only compare the
minimal value to a value given as input. We do not know of lower bounds on prefix-U1, but
conjecture [20] that it cannot be solved in O(1):

▶ Conjecture 2.3. There is no structure for prefix-U1 with complexity O(1).

Note that the best algorithm for prefix-U1 works by sorting small sets of large integers. This
takes linear time in the cell probe model, so does not rule out the existence of an O(1)
priority queue [33]. Hence, a lower bound for prefix-U1 would need to apply to the RAM
model specifically, which would require new techniques.

Our last hard problem is prefix-U2 where U2 is the monoid {1, a, b} with composition
law xy = y for x, y ∈ {a, b}, i.e., queries check if the last non-neutral element is a or b (or
nothing). By adapting known results on the colored predecessor problem [24], we have:

▶ Theorem 2.4 (Adapted from [24]). Any structure for prefix-U2 on a word of length n must
be in Ω(log log n).

General algorithms. Of course, the “hard” prefix problems, and the three problems that
we study, can all be solved in O(|w|) by re-reading the whole word at each update. We can
improve this to O(log |w|) by maintaining a balanced binary tree on the letters of the word,
with each node of the tree carrying the evaluation in the monoid of the letters reachable
from that node. Any letter substitution update on the word can be propagated up to the
root in logarithmic time, and the annotation of the root is the evaluation of the word. This
algorithm has been implemented in practice [22]. A finer bound is given in [29] using a
folklore technique of working with (log n)-ary trees rather than binary trees, and using the
power of the RAM model. We recall it here for monoids (but it applies to all three problems):

▶ Theorem 2.5 ([29]). For any fixed monoid M , the dynamic word problem and prefix
problem for M are in O(log n/ log log n).

Our goal in this paper is to solve the dynamic word problem and dynamic membership
problem more efficiently for specific classes of monoids, semigroups, and languages. We start
our study with monoids in the next two sections, by studying the varieties SG and ZG.

3 Dynamic Word Problem for Monoids in SG

We define the class SG of monoids by the equation xω+1yxω = xωyxω+1 for all x, y. It
incidentally occurs in [10, Theorem 3.1], but to our knowledge was not otherwise studied.
The name SG means swappable groups. Intuitively, a monoid M is in SG iff, for any two
elements r, t ∈ M belonging to the same subgroup of M , we can swap them, i.e., rst = tsr

for all s ∈ M . We first recall the lower bound from [29] on the dynamic word problem for
monoids not in SG, and then show an upper bound for monoids in SG.

Lower bound. The monoids not in SG are in fact those covered by the lower bound of [29].
Namely, we have the following, implying the Ω(log n/ log log n) lower bound by Theorem 2.2:

▶ Theorem 3.1 ([29], Theorem 2.5.1). For any monoid M not in SG, there exists d ≥ 2
such that the prefix-Zd problem reduces to the dynamic word problem for M .
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Upper bound. The rest of this section presents our upper bound on monoids in SG. In
fact, we show a more general claim on the dynamic word problem for semigroups in SG, i.e.,
those satisfying the equation of SG. This covers in particular the monoids of SG:

▶ Theorem 3.2. The dynamic word problem for any semigroup in SG is in O(log log n).

This result extends the result of [29] on group-free monoids, because SG contains all
aperiodic monoids and all commutative monoids. Indeed, an aperiodic monoid satisfies
the equation xω+1 = xω, and then xω+1yxω = xωyxω = xωyxω+1. Besides, commutative
monoids clearly satisfy the equation. Of course, SG captures monoids not covered by [29],
e.g., products of a commutative monoid and an aperiodic monoid.

The result of [29] uses van Emde Boas trees [34], which we extend to store values in an
alphabet Σ. Fixing an alphabet Σ, a vEB tree (or vEB) is a data structure parametrized by
an integer n called its span, which stores a set X ⊆ {1, . . . , n} and a mapping µ : X → Σ,
and supports the following operations: inserting an integer x ∈ {1, . . . , n} \ X with a
label µ(x) := a; retrieving the label of x ∈ {1, . . . , n} if x ∈ X (or a special value if x /∈ X);
removing an integer x ∈ X and its label; finding the next integer of X that follows an input
x ∈ {1, . . . , n} (or a special value if none exists); and finding the previous integer.

We can implement vEBs so that these five operations run in O(log log n) time in the
worst case, and so that a vEB can be constructed in linear time from an ordered list.

We use vEBs in our inductive proof to represent words with “gaps”: a vEB represents the
word obtained by concatenating the labels of the elements of X in order. For a semigroup S

and span n ∈ N, the dynamic word problem on vEBs for S is to maintain a vEB T of span n

on alphabet S under insertions and deletions, and to answer queries asking the evaluation
in S of the word currently represented by T . As before, the complexity is the worst-case
complexity of an insertion, deletion, or query, measured as a function of the span n (which
never changes). The data structure for this problem must be initialized during a preprocessing
phase on the initial vEB T , which must run in O(n). Note that when T is empty then its
evaluation is not expressible in the semigroup S: we then return a special value.

It is then clear that Theorem 3.2 follows from its generalization to vEBs, as a word in
the usual sense can be converted in linear time to a vEB where X = {1, . . . , n}:

▶ Theorem 3.3. Let S be a semigroup in SG. The dynamic word problem for S on a vEB
of span n is in O(log log n).

We show this result in the rest of the section. We assume without loss of generality
that S has a zero, as otherwise we can simply add one. We first introduce some algebraic
preliminaries, and then present the proof, which is an induction on J -classes of the semigroup.

Preliminaries and proof structure. The J -order of S is the preorder ≤J on S defined by
s ≤J s′ if S1sS1 ⊆ S1s′S1, recalling that S1 is the monoid where we add a neutral element
to S if it does not already have one. The equivalence classes of the symmetric closure of this
preorder are called J -classes. We lift the J -order to J -classes C, C ′ by writing C ≤J C ′ if
u ≤J v for all u ∈ C and u′ ∈ C ′. A J -class is maximal if it is maximal for this order.

We show Theorem 3.3 by induction on the number of J -classes of the semigroup. More
precisely, at every step, we consider a maximal J -class C, and remove it by reducing to the
semigroup S \ C. Remember that the number of classes only depends on the fixed semigroup
S, so it is constant. Thus, as the constant number of operations on vEBs at each class each
take time O(log log n), the overall bound is indeed in O(log log n).

ICALP 2021
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The base case of the induction is that of a semigroup with a single J -class; from our
assumption that the semigroup has a zero, that J -class must then consist of the zero, i.e., we
have the trivial monoid {0}, and the image is always 0 (or undefined if the word is empty).

We now show the induction step of Theorem 3.3. Take a semigroup S with more than one
J -class, and fix a maximal J -class C of S: we know that S \ C is not empty. What is more:

▷ Claim 3.4. For any x, y of S with xy ∈ C, then x ∈ C and y ∈ C.

Thus, whenever a combination of elements “falls” outside of the maximal class C, then it
remains in S \ C; and we can see S \ C as a semigroup, which still has a zero, and has strictly
less J -classes. So we will study how to reduce to S \ C. We now make a case disjunction
depending on whether C is regular, i.e., whether it contains an idempotent element.

Non-regular maximal classes. This case is easy, because products of two or more elements
of C are never in C. To formalize this property, for a maximal J -class C of S, we call a
word w on S∗ pair-collapsing for C if the product of any two adjacent letters of w is in S \ C.
We show:

▶ Lemma 3.5. Let C be a maximal J -class. If C is non-regular, then any word is pair-
collapsing: for any x, y ∈ C, we have xy ∈ S \ C.

We can then show the following, which we will reuse for regular maximal classes:

▶ Lemma 3.6. Let S be a semigroup and let C be a maximal J -class of S. Consider the
dynamic word problem for S on vEBs of some span n where we assume that, at every step,
the represented word is pair-collapsing for C. Then that problem reduces to the dynamic word
problem for S \ C on vEBs of span n.

Thanks to Lemma 3.5, this allows us to settle the case of a non-regular maximal J -class,
using the induction hypothesis to maintain the problem on S \ C.

Case of a regular maximal class. We now consider a maximal J -class C that is regular.
Consider the semigroup C0 := C ∪ {0} for a fresh zero 0, i.e., the multiplication is that of C

except that x0 = 0x = 0 for all x ∈ C0, and that xy = 0 in C0 for all x, y ∈ C for which the
product xy in S is not an element of C. Note that 0 is unrelated to the zero which S was
assumed to have; intuitively, the 0 of C0 stands for combinations of elements that are not
in C. Another way to see C0 is as the quotient of S by the ideal S \ C, i.e., we identify all
elements of S \ C to 0. By Prop. 4.35 of Chapter V of [26], we know that C0 is a so-called
0-simple semigroup. By the Rees-Sushkevich theorem (Theorem 3.33 of [26]), S is isomorphic
to some Rees matrix semigroup with 0. This is a semigroup M0(G, I, J, P ) with I and J two
non-empty sets, G a group called the structuring group, and P a matrix indexed by J × I

having values in G0. The elements of the semigroup are the elements of I × G × J and the
element 0, with x0 = 0x = 0 for any element x ∈ I × G × J , and for (i, g, j) and (i′, g′, j′)
two elements of I × G × J , their product is 0 if pj,i′ = 0, and (i, gpj,i′g′, j′) otherwise.

With this representation, the idea is to collapse together the maximal runs of consecutive
elements of C0 whose product is not 0, i.e., does not “fall” outside of C. Once this is done,
the product of two elements always falls in S \ C, so we can conclude using Lemma 3.6.

However, we cannot do this in a naive fashion. For instance, if we insert a letter in the
vEB in the middle of such a maximal run, we cannot hope to split the run and know the
exact group annotation of the two new runs – this could amount to solving a prefix-Zd

problem. Instead, we must now use the fact that S is in SG, and derive the consequences



A. Amarilli, L. Jachiet, and C. Paperman 116:9

of the equation in terms of the Rees-Sushkevich representation. Intuitively, the equation
ensures that the structuring group G is commutative, and that annotations in G can “move
around” relative to other elements in S without changing the evaluation. Formally:

▷ Claim 3.7. The structuring group G is commutative.

▷ Claim 3.8. Let r, s, t ∈ S∗ and (i, g, j), (i′, g′, j′) ∈ I×G×J . Write w = r(i, g, j)s(i′, g′, j′)t
and w′ = r(i, gg′, j)s(i′, 1, j′)t where 1 is the neutral element of G. Then eval(w) = eval(w′).

This allows us to reduce the dynamic word problem on S to the same problem where we
assume that the word is always pair-collapsing:

▷ Claim 3.9. The dynamic word problem for S on vEBs (of some span n) reduces to the
same problem on vEBs of span n where we additionally require that, at every step, the
represented word is pair-collapsing for the maximal J -class C.

Proof sketch. We maintain a mapping where all maximal runs of word elements evaluating
to C are collapsed to a single element, which we can evaluate following the Rees-Sushkevich
representation. The tricky case is whenever an update breaks a maximal run into two parts:
we cannot recover the G-component of the annotation of each part, but we use Claim 3.8 to
argue that we can simply put it on the left part without altering the evaluation in S. ◁

This claim together with Lemma 3.6 implies that the dynamic word problem for S reduces
to the same problem for S \ C, for which we use the induction hypothesis. This establishes
the induction step and concludes the proof of Theorem 3.2.

4 Dynamic Word Problem for Monoids in ZG

We pursue our study of the dynamic word problem for monoids with the class ZG, introduced
in [4] and defined by the equation xω+1y = yxω+1 for all x, y. This asserts that elements
of the form xω+1, which are the ones belonging to a subgroup of the monoid, are central,
i.e., commute with all other elements. By the equations, and recalling that xω+1 = xωxω+1,
clearly ZG ⊆ SG. In this section, we show an O(1) upper bound on the dynamic word
problem for monoids in ZG, and a conditional lower bound for any monoid not in ZG.

Upper bound. Recall the result on commutative monoids from [29]:

▶ Theorem 4.1 ([29]). The dynamic word problem for any commutative monoid is in O(1).

Our goal is to generalize it to the following result:

▶ Theorem 4.2. The dynamic word problem for any monoid in ZG is in O(1).

This generalizes Theorem 4.1 (as commutative monoids are clearly in ZG) and covers
other monoids, e.g., the monoid M = {1, a, b, ab, 0} with a2 = b2 = ba = 0, where it intuitively
suffices to track the position of a’s and b’s and compare them if there is only one of each.

We now prove Theorem 4.2. A semigroup S is nilpotent if it has a zero and there exists
k > 0 such that Sk = {0}, i.e., all products of k elements are equal to 0. Alternatively [26,
Chapter X, Section 4], S is nilpotent iff it satisfies the equation xωy = yxω = xω. We then
consider the monoids of the form S1 where S is nilpotent – an example of this is the monoid
M described above. The variety generated by such monoids is called MNil and was studied
by Straubing [30]. We can show:
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▶ Proposition 4.3. For any nilpotent S, the dynamic word problem for S1 is in O(1).

Proof sketch. We maintain a (non-sorted) doubly-linked list L of the positions of the word w

that contain a non-neutral element. As S is nilpotent, the evaluation of w is 0 unless constantly
many non-neutral letters remain, which we can then find in O(1) with L. ◀

In [3] we show that ZG is generated by such monoids S1 and by commutative monoids:

▶ Proposition 4.4 (Corollary 3.6 of [3]). The variety ZG is generated by commutative monoids
and monoids of the form S1 for S a nilpotent semigroup.

In view of Theorem 4.1 and Proposition 4.3, the dynamic word problem is in O(1) for
the semigroups that generate the variety ZG (Proposition 4.4). Theorem 4.2 then follows
from Proposition 2.1.

Lower bound. We now show a conditional lower bound on the dynamic word problem for
monoids outside of ZG. To do this, we will reduce from the prefix-U1 problem:

▶ Theorem 4.5. For any monoid M in SG \ ZG, the prefix-U1 problem reduces to the
dynamic word problem for M .

Proof sketch. We consider the variety ZE [1] of monoids whose idempotents are central,
i.e., the variety defined by the equation xωy = yxω. We show that ZG = SG ∩ ZE. We
then show that, for any monoid not in ZE, we can reduce from the prefix-U1 problem by
encoding the elements 0 and 1 of U1 using carefully chosen elements of the monoid. ◀

Using Conjecture 2.3, and together with Theorem 3.1 for the monoids not in SG, this
implies a conditional super-constant lower bound for monoids outside ZG.

5 Dynamic Word Problem for Semigroups

We have classified the complexity of the dynamic word problem for monoids: it is in
O(log log n) for monoids in SG, in O(1) for monoids in ZG, in Ω(log n/ log log n) for monoids
not in SG, and non-constant for monoids not in ZG conditionally to Conjecture 2.3. In this
section, we extend our results from monoids to semigroups.

Submonoids and local monoids. A submonoid of a semigroup S is a subset of the semigroup
which is stable under its composition law and is a monoid. We first notice via Proposition 2.1
that a semigroup that contains a hard submonoid is also hard:

▷ Claim 5.1. The dynamic word problem for any submonoid of a semigroup S reduces to
the same problem for S.

We will investigate if studying the submonoids of a semigroup suffices to understand the
complexity of its dynamic word problem. To do so, we focus on a certain kind of submonoids:
the local monoids. A submonoid N of S is a local monoid if there exists an idempotent
element e of S such that N = eSe, i.e., N is the set of elements that can be written as ese

for some s ∈ S. The point of local monoids is that they are maximal in the sense that every
submonoid T of S is a submonoid of a local monoid: indeed, taking 1 the neutral element
of T , all elements of T can be written as 1T1 ⊆ 1S1 and 1S1 is a local monoid. For V a
variety of monoids, we denote by LV the variety of semigroups such that all local monoids
are in V. As we explained, this is equivalent to imposing that all submonoids are in V (since
varieties are closed under the submonoid operation).
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Case of SG. We now revisit our results on monoids to extend them to semigroups, starting
with SG. We denote by LSG the variety of semigroups whose local monoids are in SG. We
show that a semigroup where all local monoids are in SG must itself be in SG:

▷ Claim 5.2. We have LSG = SG as varieties of semigroups.

Semigroups in SG are already covered by our upper bound (Theorem 3.2), and semigroups
not in LSG have a submonoid not in SG, so we can use Claim 5.1 and Theorem 3.1. Hence:

▶ Corollary 5.3. Let S be a semigroup. If S is in SG, then the dynamic word problem for S

is in O(log log n). Otherwise, the dynamic word problem for S is in Ω(log n/ log log n).

Case of ZG. The variety ZG is not equal to LZG. For instance, let S be the syntactic
semigroup of a∗b∗, that is the semigroup {a, b, ab, 0} defined with a2 = a, b2 = b and ba = 0.
It is not in ZG, since a and b are idempotents that do not commute. However, its local
monoids are either trivial or U1, so they are all in ZG, showing that this semigroup is in LZG.
Still, we can extend our characterization from monoids to semigroups up to studying LZG:

▶ Theorem 5.4. Let S be a semigroup. If S is in LZG, then the dynamic word problem
for S is in O(1). Otherwise, unless prefix-U1 is in O(1), the dynamic word problem for S is
not in O(1).

The second part of the claim is by Claim 5.1 and Theorem 3.1, but the first part is much
trickier. We use a characterization of LZG as a semidirect product ZG ∗ D, which follows
from a very technical locality result on ZG [3], and then design an algorithm for the dynamic
word problem for semigroups in ZG ∗ D. We prove Theorem 5.4 in the rest of this section.

Given two semigroups S and T , a semigroup action of S on T is defined by a map act : S ×
T → T such that act(s1, act(s2, t)) = act(s1s2, t) and act(s, t1t2) = act(s, t1)act(s, t2). We
then define the product ◦act on the set T × S as follows: for all s1, s2 in S and t1, t2 in T , we
have: (t1, s1) ◦act (t2, s2) := (t1act(s1, t2), s1s2). The set T × S equipped with the product
◦act is a semigroup called the semidirect product of S by T , denoted T ◦act S.

We say that a semigroup D is definite if there exists an integer k ∈ N such that for all
y, x1, . . . , xk in D, we have yx1 · · · xk = x1 · · · xk. Alternatively, a semigroup is definite iff it
satisfies the equation yxω = xω [31, Proposition 2.2] for all x, y in D. In particular, every
nilpotent semigroup is definite. We write D for the variety of definite semigroups.

Our alternative definition of LZG will be the variety of semigroups ZG ∗ D generated by
semigroups that are the semidirect product of a ZG monoid by a definite semigroup.

The variety ZG ∗ D of semigroups is not immediately related to the variety LZG defined
above. One can easily show that ZG ∗ D ⊆ LZG, but the other direction is much more
challenging to establish. We show this as a so-called locality theorem, which we defer to a
separate paper [3] because it uses different tools and is of possible independent interest:

▶ Theorem 5.5 ([3], Theorem 1.1). We have: ZG ∗ D = LZG.

To conclude the proof of Theorem 5.4, by the locality theorem above, it suffices to solve the
dynamic word problem for semigroups in ZG ∗ D. By Proposition 2.1, it suffices to consider
the semigroups that generate the variety. We do this below, establishing Theorem 5.4:

▶ Proposition 5.6. Let S be a definite semigroup, let T be a semigroup of ZG, and let act
be a semigroup action of S on T . The dynamic word problem for the semigroup T ◦act S

reduces to the same problem for T .

Proof sketch. We express the direct product of the letters of the input word as a product
involving elements of T and prefix sums of elements of S, which we can maintain in O(1). ◀
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6 Dynamic Word Problem for Languages

We now turn to the dynamic membership problem for regular languages, and show Theorem 1.1
using the three previous sections and some extra algebraic results.

Connection to the dynamic word problem. A regular language L is recognized by a finite
monoid if there exists a morphism η : Σ∗ → M such that L = η−1(η(L)). The syntactic
congruence of L is the equivalence relation on Σ∗ where u, v ∈ Σ∗ are equivalent iff, for each
r, t ∈ Σ∗, either rut ∈ L and rvt ∈ L, or rut /∈ L and rvt /∈ L. The syntactic monoid M of L

is the quotient of Σ∗ by the syntactic congruence of L, and the syntactic morphism is the
morphism mapping Σ∗ to M ; the syntactic morphism witnesses that the syntactic monoid
recognizes L.

The dynamic membership problem for a language clearly reduces to the dynamic word
problem for its syntactic monoid. However, the converse is not true: the language L :=
(aa)∗ba∗ has a syntactic monoid M that can be shown to be outside of SG, but we can solve
dynamic membership for L in O(1) by counting the b’s at even and odd positions. Intuitively,
M has a neutral element 1 so that the dynamic word problem for M has a reduction from
prefix-Z2, but 1 is not achieved by a letter of the alphabet so dynamic membership for L is
easier.

We extend our results to languages using the notion of stable semigroup [6, 7]. This
allows us to remove the neutral element (as it is a semigroup not a monoid) and ensures that
all semigroup elements can be achieved by subwords of some constant length (the stability
index).

Formally, let L be a regular language and η : Σ∗ → M its syntactic morphism. The
powerset of M is the monoid whose elements are subsets of M and for E, F ⊆ M , the product
EF is {xy | x ∈ E, y ∈ F}. The stability index of L is the idempotent power s of η(Σ) in the
powerset monoid. Intuitively, this choice of s ensures that, for any two words w1, w2 ∈ Σs,
the value η(w1w2) of their concatenation in the monoid can be achieved by another word
of Σs, i.e., η(w1w2) = η(w) for some w ∈ Σs. Then η(Σs) is a subsemigroup of M , because
(η(Σs))2 = η(Σs): we call it the stable semigroup of L. For any class of semigroups V, we
denote by QV the class of languages whose stable semigroup is in V.

Upper bounds. We first show that the dynamic membership problem for a regular language
reduces more specifically to the dynamic word problem for its stable semigroup:

▶ Proposition 6.1. Let L be a regular language. The dynamic membership problem for L

reduces to the dynamic word problem for the stable semigroup of L.

Proof sketch. We partition the word of L into chunks of size s (plus one of size ≤ s) for s

the stability index, and feed them to the data structure for the stable semigroup of L. ◀

By Corollary 5.3 and Theorem 5.4, this implies that languages in QSG (resp., in QLZG)
have a dynamic membership problem in O(log log n) (resp., in O(1)).

Lower bounds. We now show that languages whose stable semigroup is not in LV admit a
reduction from the dynamic word problem of a monoid of V.

▶ Proposition 6.2. Let V be a variety of monoids and let L be a regular language not
in QLV. There is a monoid not in V whose dynamic word problem reduces to the dynamic
membership problem for L.
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Proof sketch. If L is not in QLV, then its stable semigroup contains a submonoid M not
in V, and all elements can be achieved by a block of s letters for s the stability index. ◀

Again by Corollary 5.3 and Theorem 5.4, we deduce that languages outside of QSG have
complexity at least Ω(log n/ log log n). Further, assuming Conjecture 2.3, and languages
outside of QLZG do not have complexity O(1).

7 Extensions, Problem Variants, and Future Work

We have presented our results on the dynamic word problem for monoids and semigroups,
and on the dynamic membership problem for regular languages. We conclude the paper
by a discussion of problems for further study. We first discuss the question of intermediate
complexities between O(1) and O(log log n). We then study the complexity of deciding which
case applies as a function of the target language, semigroup, or monoid. We last explore the
issue of handling insertions and deletions on the input word, and of supporting infix queries.

Intermediate complexities. Our O(log log n) upper bound in Theorem 3.2 and its variants
may not be tight. Still, we can identify a language LU2 in QSG \ QLZG for which we show
that the dynamic membership problem is in Θ(log log n) (even allowing randomization and
allowing a probably correct answer), because the prefix-U2 problem reduces to it.

We can also identify a language of QSG \ QLZG that reduces to prefix-U1 and so can be
solved in expected O(

√
log log n). This shows that languages in QSG \ QLZG have different

complexity regimes, at least when allowing randomization.

▶ Proposition 7.1. There is a language LU2 in QSG\QLZG which is equivalent to prefix-U2
under constant-time reductions, and a language LU1 in QSG \ QLZG which is equivalent to
prefix-U1 under constant-time reductions.

Deciding which case applies. A natural question about our results is the question of
efficiently identifying, given a regular language, which of the cases of Theorem 1.1 applies, or
in particular of determining, given an input monoid or semigroup, if it is in SG, or in ZG.
This depends on how the input is represented. If we are given a monoid explicitly (as a table
of its operations), then the equations of ZG and of SG can be checked in polynomial time.
If the monoid is represented more concisely as the transition monoid of some automaton,
then the verification can be performed in PSPACE. We do not know if the problems are
PSPACE-hard, though this seems likely at least for SG because of its proximity to aperiodic
monoids [8]. We leave open the precise complexities of this task, in particular for the L and
Q operators.

Handling insertions and deletions. Another natural question is to handle insertion and
deletion updates, i.e., inserting letter a at position k transforms the word w1 · · · wk−1wk · · · wn

into w1 · · · wk−1awk · · · wn, and deleting at position k does the opposite. Any regular language
can be maintained under such updates in O(log n) using a Fenwick tree, but it makes the
problem much harder for most languages. For example, if the alphabet has two letters a

and b, just testing if the word that we maintain contains an a requires Ω(log n/ log log n)
by [21]. This is why we do not study such updates in this work. Interestingly, notice that our
algorithm in Theorem 3.3 supports insertions and deletions on words represented as vEBs,
but the semantics are different (they use explicit positions in a fixed range).
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Infix queries. A natural extension of dynamic membership for a regular language L is the
dynamic infix membership problem, where we can query any infix of the word (identified by
its endpoints) to ask whether it is in L. The O(log n/ log log n) algorithm of Theorem 2.5
supports this, and so can the O(log log n) algorithm of [29] for group-free monoids. However,
the infix problem can be harder. Consider for instance the language L2 on {a, b} of words
with an even number of a’s. Dynamic membership has complexity O(1) because L2 is
commutative, but infix queries (or even prefix queries) require Ω(log n/ log log n) as prefix-Z2
reduces to it.

We leave open the study of the complexity of the infix problem. We note, however,
that this problem for a language L can be studied as the dynamic membership problem
for a regular language defined from L. So our results cover the infix problem via this
transformation; we leave to future work a characterization of the resulting classes.

▷ Claim 7.2. For any fixed regular language L, the dynamic infix membership problem
is equivalent up to constant-time reductions to the dynamic membership problem for the
language Σ∗xLxΣ∗ where x is a fresh letter.

Other open questions. A natural question for future work would be to study the complexity
of our problems in weaker models, e.g., pointer machines [32], or machines with counters.
One could also extend our study to languages that are not regular, e.g., generalizing bounds
on maintaining the language of well-parenthesized strings ([19, Proposition 1] and [11]).
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Appendix

Table 1 Summary of the main classes of monoids and semigroups used in the paper.

Class Description Equation References

ZE Monoids/semigroups with central idempotents xωy = yxω [1]
ZG Monoids/semigroups with central groups xω+1y = yxω+1 [4]
SG Monoids/semigroups with swappable groups xω+1yxω = xωyxω+1 [10, 29]
A Aperiodic semigroups/monoids xω+1 = xω [26]
Com Commutative semigroups/monoids xy = yx [26]
Nil Nilpotent semigroups xωy = yxω [26]
MNil Monoids dividing a nilpotent semigroup [30]
D Definite semigroups yxω = xω [31]

https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1016/0022-0000(79)90042-4
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ab (aa)∗

ab(aa)∗a∗b

a∗b

(aa)∗b(aa)∗

(aa)∗ba∗

((abc)2)∗((acb)2)∗

(aa)∗

(aa)∗b(aa)∗

ACom

MNil Com

ZGA

ZGA

ZE

All

SG

ACom
xy = yx ∧A

Com
xy = yx

MNil
= ZG ∧A

ZG = SG ∩ ZE
= MNil ∨Com
xω+1y = yxω+1

ZE
xωy = yxω

ZG ∨A

A
xω+1 = xω

SG
xω+1yxω = xωyxω+1

All monoids

X

Y

Z

LX

LY

LZ

O(1)

O(log log n)
prefix-U1 hard

Θ(log n/ log log n)
prefix-Zd hard

Figure 1 Complexity of the dynamic word problem for common classes of monoids. Arrows denote
inclusion and are labeled with languages (with an implicit neutral letter e) whose syntactic monoids
separate the classes. The classes ZG and SG are maximal for the O(1) region and O(log log n)
region respectively.

ICALP 2021


	1 Introduction
	2 Preliminaries and Problem Statement
	3 Dynamic Word Problem for Monoids in SG
	4 Dynamic Word Problem for Monoids in ZG
	5 Dynamic Word Problem for Semigroups
	6 Dynamic Word Problem for Languages
	7 Extensions, Problem Variants, and Future Work

