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—— Abstract

To combine and query ordered data originating from multiple sources, one needs a framework

that can handle uncertainty about the possible orderings. Examples of such “order-incomplete”
data include lists of properties (such as hotels and restaurants) ranked by an unknown function
reflecting relevance or customer ratings; documents edited concurrently with uncertainty on the
order of contributions; and the result of integrating event sequences such as log entries. This
paper introduces a query language for order-incomplete data, based on the positive relational
algebra, augmented with an accumulation operator to perform order-aware aggregation. We use
partial orders as a representation system, and study possible and certain answers for queries in
this context. In their general form, possibility and certainty are shown to be NP-complete and
coNP-complete, respectively. However, we identify a large class of cases for which the problems
are tractable, based on fine-grained characterizations of the partial orders that query evaluation
may produce. Last, we introduce an operator that merges identical tuples (possibly appearing
with different orderings), in the spirit of set semantics, and revisit our results.

1 Introduction

Many applications need to combine and transform ordered data from multiple sources.
Examples include sequences of readings from multiple sensors, or log entries from different
applications or machines, that must be combined to form a complete picture of events;
rankings of restaurants and hotels published by different websites, their ranking function
being often proprietary and unknown; and concurrent edits of shared documents, where the
order of contributions made by different users needs to be merged. Even if the order of items
from each individual source is known, the order across sources is often uncertain. For instance,
even when sensor readings or log entries have timestamps, these may be ill-synchronized
across sensors or machines; different websites may follow different rules and rank different
hotels, so there are multiple ways to create a unified ranked list; concurrent document editions
may be ordered in multiple ways. We say that the resulting information is order-incomplete.

This paper studies query evaluation over order-incomplete data in a relational setting. We
focus on the running example of restaurants and hotels from travel websites, ranked according
to proprietary functions. An example query could compute the union of lists of restaurants,
each from a distinct website, and further ask for the ordered list of restaurant—hotel pairs such
that the restaurant and hotel are in the same district. As we do not know how the proprietary
order is defined, the result of transformations may become uncertain: in our example, there
may be multiple reasonable orderings of restaurants in the union result, or multiple orderings
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of restaurant—hotel pairs. Further, we may apply an order-aware accumulation function
to the result, e.g., extracting only the highest ranked such pairs, concatenating (a subset
of) their names, or assessing the attractiveness of a particular district as a function of its
high-ranked restaurants. Each possible order may yield a different accumulation result.

Main contributions. We introduce a query language with accumulation for order-incomplete
data, and then undertake what is, to our knowledge, the first general study of the complexity
of possible and certain answers for queries over such data. We show that these problems are
intractable in general, but identify multiple realistic tractable classes. Importantly, we do not
assume that a decisive choice of order can be made, unlike, e.g., rank aggregation [17]. Instead,
we evaluate queries by representing all possible results, i.e., all those that are consistent with
the individual input orders.

Our order-incomplete relations are essentially equivalent to labeled posets, or pomsets [22],
and our complexity results on possibility and certainty imply similar results on testing
whether a label sequence is achieved as a linear extension of a labeled poset (also including
accumulation in monoids). We study this problem under bounds on order-theoretic parameters
of the input (e.g., poset width [38] or a new measure of ia-width), and examine how the
bounds are preserved by our query language. To our knowledge, such complexity results on
labeled posets were not known before, and they may be of independent interest. These results
do not follow from existing results on posets, because of label ambiguity, as illustrated in
Example 12. We explain in more detail in the related work section (Section 9) how our results
relate to labeled posets (in particular to [22]), but we will present them using relational
algebra terminology, to match our intended application to ordered data integration.

We next overview the main parts of our study. Full proofs are provided in the appendix.

Model (Sections 2-4). Our data model relies on bag relations, and we equip each relation
with a partial order over its tuples: we call this a po-relation. Our use of bags means, in our
example, that we keep every occurrence of each hotel, because they may appear at different
order positions; duplicate consolidation where possible, is discussed in Section 8. Using
notions from order theory, we then define a semantics for the positive relational algebra
(PosRA), adapted to po-relations: selection and projection do not affect order, while union is
the parallel composition [8] of posets, i.e., keeps only the order constraints among tuples from
the same input relation. For product, we introduce two operators: direct product [42] (two
tuples in the product are comparable iff both components compare in the same way in the
input relations); and lexicographic product (follow the order in the first component and use
the second to break ties). The resulting language can capture other operators, e.g., series
composition (concatenation). Each linear extension of a po-relation leads to a totally ordered
possible world, and we show that po-relations form a strong representation system for PosRA:
the uncertain result of a query on a po-database can always be represented as a po-relation.

We extend PosRA to PosRA?°) which allows order-aware accumulation (generalizing
aggregation) as the last operation. On totally ordered relations, accumulation maps the
tuples to a monoid and aggregates them with the associative monoid operator The possible
accumulation results on a po-relation are those that can be obtained on its possible worlds.

We then introduce the problems of possible (POSS) and certain (CERT) answers with
respect to query results. We show that different choices of accumulation functions can
capture different notions of interest, such as the possibility and certainty of a tuple appearing
in a particular location or before another tuple.

Complexity Analysis (Sections 5-7). Our main technical contribution is the complexity
analysis of the POSS and CERT problems for PosRA and PosRA2°¢. As possibility and certainty
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of a tuple position are in PTIME, we study possibility and certainty of outputs (for PosRA)
and accumulation results (for PosRA**¢). For PosRA, P0SS is NP-complete but CERT is
PTIME. For PosRA?°, CERT becomes coNP-complete.

These hardness results lead us to study realistic problem restrictions where POSS and CERT
can be solved efficiently, without enumerating the (possibly exponential) number of possible
worlds. We start with restrictions for PosRA that ensure the tractability of POSS. These
are achieved by bounding the “level of uncertainty” in the input, and the operators allowed.
Specifically, if all input relations are totally ordered and the direct product is disallowed,
then P0OSS is in PTIME (but hardness holds if we do not disallow the direct product): this
covers the application case where the order on the sources is completely known. Similarly,
querying unordered relations (and imposing order only via the query) is tractable for all
PosRA, covering the case where order is completely unknown. These results generalize to
cases where the width of the input partial orders is bounded (i.e., “almost total” orders), and
likewise for the ia-width, a novel measure on posets that covers “almost empty” orders.

We then study tractable restrictions for PosRA?“¢, for both POSS and CERT, assuming
a PTIME accumulation operator. We first show CERT (but not P0SS) is in PTIME for
cancellative monoids, which generalize groups and cover many accumulation operators.
Extending our “uncertainty level” restrictions to PosRA?°¢, we further prove that POSS and
CERT are PTIME when width or ia-width is bounded (under technical conditions on the
accumulation operator).

Duplicate Consolidation (Section 8). We conclude by studying the consolidation of du-
plicate tuples, with a dupElim operator. As duplicate tuples may have irreconcilable order
relations with respect to other tuples, we allow dupElim to fail on some inputs (we also
consider alternative semantics that avoid failure, and illustrate their pitfalls). We show
that failure on po-relations can be detected in PTIME, that po-relations are still a strong
representation system when there is no failure, and that all complexity results go through.

2 Data Model and PosRA

We revisit basic notions from databases and order theory and use them to define our model.

Relations. We fix a countable set of values D that includes N and infinitely many values
not in N. A tuple t over D of arity a(t) is an element of D*®), denoted (v1,...,va)). The
concatenation of two tuples t1 and o is denoted (t1,t2). We consider relations that are bags
of tuples with unique identifiers and the same arity (referred to as the relation arity). Thus,
a relation R is formally a pair (ID,T') where ID is a set of identifiers and T is a mapping
from ID to tuples of the relation arity. The mapping need not be injective, so multiple copies
of a tuple may appear in the relation, with different identifiers.

Isomorphisms of relations. While we use unique tuple identifiers to distinguish copies of
the same tuple value (following our bag semantics), we do not assume that identifiers appear
as an attribute that can be accessed by queries. Consequently, we always consider relations
up to isomorphism of identifiers, where two relations R = (ID,T) and R’ = (ID',T") are
isomorphic if there is a bijection ¢ : ID + ID" such that T(id) = T'(p(id)) for all id € ID.
We fix a schema S, i.e., a set of relation names and arities, with an attribute name for
each position of each relation. A database D is a set of relations over S and D, every pair of
relations having disjoint sets of identifiers (as we can always ensure by renaming identifiers).

List relations. A first step to introduce order on tuples is to consider list relations [12, 13],
i.e., impose a total order over the identifiers of tuples in the relation: as we work with bags,
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Figure 1 Running example: Paris restaurants and hotels Figure 2 Example 3 Example 12

the order is on identifiers, and multiple copies of a tuple may appear in different positions.

However, when unioning or joining list relations, output tuples can be ordered in many ways,
so that the result can no longer be represented as a list relation:

» Example 1. The database in Figure 1 contains information about restaurants and hotels
in Paris. Tuples in each relation are totally ordered (top to bottom, following the arrows) by
customer ratings from a given travel website, each relation coming from a different site.
When attempting to union Rest and Rests, we know nothing about the relative order
between, e.g., (Tsukizi, 6) and (Gagnaire, 8). Similarly, if we join Rest and Hotel, there are
multiple plausible ways to decide a relative order between pairs of restaurants and hotels.

There are two ways to handle this. The first is to enforce a single choice of order for
the output, for instance interpreting union as concatenation and product as lexicographic
order over the joined tuples [35], or making a preference-aware choice [2]. We follow a second
approach: we represent all possible orderings through a partial order [15], as we now discuss.

Po-relations. We represent relations equipped with a partial order as po-relations:

» Definition 2. A partially ordered relation, or po-relation for short, is a triple I' = (ID, T, <),
where R = (ID,T) is the underlying relation of T' and < is a partial order over ID. The
possible worlds of T' are the list relations pw(T') = {(R, <1), (R, <2),...,(R,<n)} where
<1, ..., < are the linear extensions! of <. Note that, as I' may contain multiple tuples with
the same values, it may be the case that two different linear extensions <; and <; (which
are defined on identifiers) are such that (R, <;) and (R, <;) are isomorphic list relations.

If < is empty (i.e., imposes no order constraints), we call I" unordered. If < is total, we
call T totally ordered and we can see it as a list relation (t1,...,t,). A po-database D is a set
of po-relations with distinct relation names and disjoint identifiers: its possible worlds pw(D)
are obtained by choosing a possible world (i.e., a list relation) for each po-relation in D.

Po-relations are thus a way to model uncertainty over the order of tuples. They can
equivalently be thought of as labeled partial orders or pomsets [36, 22], where the labels are
tuples. Note that there is no uncertainty on the value of tuples in po-relations, but only on
their order: the underlying relation is always certain.

Query language. We now introduce our query language for po-relations. We start with
PosRA, i.e., the positive relational algebra, adapted to the partial-order setting. We also
support an notion of accumulation (as a last operation), which we present in the next section.
In our setting, the selection operator restricts the relation to a subset of its tuples, and
the order on them is the restriction of the input order relation. The tuple predicates are
(in)equalities over tuple attributes and/or values in D, and Boolean combinations thereof.

selection: For any po-relation I' = (ID, T, <) and tuple predicate o, we define the selection
0,(T) := (ID", T\1p, <j1p) where ID" := {id € ID | ¢(T (id)) holds}.

LA linear extension <; of < is a total order on the domain of < such that for all & < y we have z <; y [8].
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The projection operator changes the tuple values, but keeps the original tuple ordering in
the result. Following our bag semantics, we do not remove duplicate tuples when projecting.

projection: For a po-relation I' = (ID, T, <) and attributes Ay, ..., A,, we define the projec-
tion IT4,, . a, (") := (ID,T’, <) where T" maps each id € ID to IL4,, _ a,(T(id)).

As for union, we impose the minimal order constraints that are compatible with those of
the inputs. We use the parallel composition [8] of two partial orders < and <’ on disjoint
sets ID and ID', i.e., the partial order <”:= (< || <’) on ID U ID" defined by: every id € ID
is incomparable for <” with every id’ € ID’; for each id;, idy € ID, we have id; <" idy iff
idy < idy; for each id},idy € ID', we have id} <" id. iff id} <’ id,. We use this to define:
union: Let I' = (ID,T,<) and I" = (ID',T",<’) be two po-relations of the same arity,

where ID and ID" are disjoint (as can be ensured by renaming). We define T UT’ :=

(IDUID", TUT' <| <), where T UT’ maps id € ID to T(id) and id’' € ID" to T'(id").
Note that, when I" and TV are totally ordered, in general I'UT" is not. One could alternatively
impose a particular total order on I' UT”, e.g., decide that all tuples of T precede those of TV,
leading to an interpretation of union as series composition or concatenation. As we show,
this specific interpretation can be expressed in our query language instead.

We next introduce two possible product operators. First, the direct product [42] <pmg :=
(< xpm <) of two partial orders < and <’ on disjoint sets ID and ID" is defined by
(idy, id}) <pir (ida,idy) for each (idy,id)), (ids,idy) € ID x ID' iff idy < idy and id| <’ ids.
We define the direct product operator over po-relations accordingly: two tuples in the product
are comparable only if both components of both tuples compare in the same way.
direct product: For any po-relations I' = (ID, T, <) and I'" = (ID',T’, <’) with disjoint ID

and ID', we define I’ xpgg IV := (ID x ID', T x T', < xp <'), where T' x T" maps each

(id,id") € ID x ID' to (T(id), T'(id")).

Again, the direct product result may not be totally ordered even when the inputs are.

The second product operator uses the lexzicographic product (or ordinal product [42]) of
two partial orders < and <’ on disjoint ID and ID’, denoted <igx := (< X1gx <), and defined
by (idy,id}) <wex (ida,ids) for all (idy,id}), (ids,idy) € ID x ID" iff either id; < idg, or
idy = idy and id} <’ id5. This time, the result is totally ordered if the input relations are.
lexicographic product: T' x gx IV is the po-relation (ID x ID', T x T', < xygx <').

Last, we define the constant expressions that we allow:

const: for any tuple ¢, the singleton po-relation [¢] has only one tuple with value ¢;
for any n € N, the po-relation NZ, is the totally ordered relation (1,...,n), with arity 1

» Example 3. Let Q := Rest Xpm (Oaistr£<127(Hotel)). @Q admits two possible worlds:
((G,8,M,5), (G,8,B,8), (TA,5,M,5), (TA,5,B,8)), ((G,8,M,5),(TA,5,M,5),(G,8,B,8), (TA,5,B,8)).
In a sense, this is the minimal order on hotel-restaurant pairs that is consistent with the
order on the individual lists: we do not know how to order two pairs, except when both
their hotels and their restaurants compare in the same way. The resulting po-relation is
represented by the Hasse diagram in Figure 2, ordered from bottom to top.

Consider now Q' := TI(0 Rest. distr=Hotel.distr(Q)), Where the projection II projects out
Hotel.distr. Its possible worlds are ({(G,B,8), (TA,M,5)) and ((TA,M,5), (G,B,8)), intuitively
reflecting two different opinions on the order of restaurant-hotel pairs in the same district.

Defining a query Q" similarly to @’ but replacing Xpr by Xipex in @, we obtain only one
possible order, given by Rest (the leftmost product operand): ((G,B,8), (TA, M, 5)).

We can then show:

» Theorem 4. No PosRA operator can be expressed through a combination of the others.
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In particular, the proof (in Appendix) shows that the two product operators are incom-
parable. To this end, we show that if we disallow xprr then we get an output of a restricted
form (i.e., it is series-parallel, if the input po-database also is). Conversely, we show that the
full language can capture concatenation (justifying its absence from our language); however,
if we disallow Xpgx, we can no longer capture concatenation.

Furthermore, the semantics admits a natural possible-worlds interpretation, which will
be useful in the sequel. Let us accordingly define the possible worlds of a query:

» Definition 5. Let @ be a PosRA query and D be a po-database whose possible worlds

(databases of list relations) are pw(D) = { D1, ..., D, }. We define Q(D) := {Q(D1), ...,Q(Dx)}.

The following simple result indicates the soundness of our construction. In the terminology
of incomplete databases, po-relations form a strong representation system for PosRA queries:

» Proposition 6. For any PosRA query Q and po-database D, we can compute in polynomial
time in D (the exponent depending on Q) a po-relation I’ such that pw(I') = Q(D).

3 Accumulation

We now enrich PosRA with order-aware accumulation as the last operation, inspired by right
accumulation and iteration in list programming and databases, and aggregation in relational
databases. We recall the notion of a monoid, to be used as the domain of aggregation (which
may differ from the domain D of tuple values):

» Definition 7. A monoid (M, ®,¢), which we abbreviate as @, is a set M with a neutral
element ¢ € M and a binary composition law & : M x M — M such that:

@ is associative: for all u,v,w € M, we have: (udv)Bw=ud (vd w);

€ is neutral: forallve M, e@v=vde=n.

Some applications may simply use M = D (i.e. the domain of tuple values) with some
associative operation and neutral value; but we will also show cases below where M # D.

» Definition 8. Let (M, @, €) be a monoid and let h : DxN* — (M, @, ¢) be a function which
we call the accumulation map. We call accumy, g an accumulation operator, and define its
result on a totally ordered relation L = (¢4, ... ,t,) as: accumy, g (L) := h(t1,1)®---Bh(ty,n).
In particular, if L is empty then accumy, g (L) := e.

The accumulation operator thus uses the accumulation map h to map the tuples to the
accumulation monoid M, where accumulation is performed by repeated application of &.
In a sense, this captures the map-accumulation structure in LISP. Note that we allow the
map h to also take into account the absolute rank of tuples in the ordered relation.

It is then easy to extend the semantics of accumulation to po-relations: the possible
results are the results of applying accumulation to the individual possible worlds.

» Definition 9. For an accumulation operator accumy g and po-relation I', we define:
accump, g (I') := accumy, g (pw(I')) := {accumy, g (L) | L € pw(T)}.

Complexity assumption. Our definition allows arbitrary accumulation monoids, but for
practical purposes we must limit the complexity of accumulation. Throughout the paper we
thus impose a restriction on the accumulation operator, which we call PTIME-evaluability:
given any totally ordered relation L, we assume that we can compute accumy, g (L) in PTIME.
This assumption ensures that accumulation in each individual possible world is tractable, so
that accumulation does not cause hardness on its own. PTIME-evaluability is satisfied by all
examples of accumulation functions in this paper.
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The PosRA?2°¢ language. We now define the language PosRA2°: it contains all queries
of the form Q = accumy, (Q’), where accumy, g is an accumulation operator and @’ is a
PosRA query. The possible results of Q@ on a po-database D are Q(D) := accumy, g(Q'(D)).

Accumulation captures “standard” order-oblivious aggregation functions, such as sum,
max, min, etc., with the identity accumulation map and with the corresponding commutative
monoid: in this case, the result of accumulation is always certain (i.e., there is only one
possible result). In contrast, many useful functions depend on the order of tuples:

» Example 10. As a first example, let Ratings(user, restaurant, rating) be an unordered
relation describing ratings given by users to restaurants, where each user rated each restaurant
at most once. Consider a po-relation Relevance(user) giving a partially-known ordering of
users to indicate the relevance of their reviews. We wish to take reviews into account depending
on a PTIME-computable weight function w, where w(i) assigns a nonnegative weight to the
opinion of the i-th most relevant user. Consider the query (4 := accumy, 4 (o(Relevance x1px
Ratings)) where we define hj(¢,n) := t.rating X w(n), and where o selects tuples that satisfy:
restaurant = “Gagnaire” A Ratings.user = Relevance.user. @ gives the total rating of
“Gagnaire”, and each possible world of Relevance may lead to a different accumulation result.

As a second example, consider an unordered relation HotelCity(hotel, city) indicating in
which city each hotel is located, and consider a po-relation City(city) which is (partially)
ranked by a criterion such as interest level, proximity, etc. Now consider the query: Qs :=
aCCUMp, concat (Hhotel(Q/Q))a where Q/2 = UCity.city:HotelCity‘city(City XLEX HOtelClty)7 where
ha(t,n) :=t, and where “concat” denotes standard string concatenation. Q3 concatenates
the hotel names according to the preference order on the city where they are located, allowing
any possible order between hotels of the same city and between hotels in incomparable cities.

Finally, accumulation allows us to perform various kinds of position-based selection.
Consider for instance the top-k operator, which retrieves a list of the first &k tuples: for a
po-relation, the set of possible results is all possible such lists. We can implement top-k as
aCCUMp, concat With hg(f,n) being (¢) for n < k and ¢ otherwise, and with “concat” being list
concatenation. We can similarly compute select-at-k, i.e., return the tuple at position k, using
aCCUp, concat, With ha(t,n) being (¢) for n = k and € otherwise. Defining hs(t,n) := (t), we
can also define accump,; concat, Which is the identity accumulation operator over relations.

4 Possibility and Certainty

Evaluating a PosRA query @ on a po-database D yields a set of possible worlds (totally
ordered relations), which we can represent as a po-relation by Proposition 6. For PosRA2¢¢
queries, which may perform arbitrary PTIME accumulation, we have no such representation,
but we still have a set of possible query results.

In both cases, however, a natural question is whether a given result is possible or not,
i.e., whether it is one of the possible query outputs. Likewise, we can ask whether a result is
certain, namely, only this single result is possible. We formalize these problems as follows:

» Definition 11 (Possibility and Certainty). Let QQ be a PosRA query, D be a po-database,
and L a list relation. The possibility problem (P0SS) asks if L is isomorphic to some
L’ € Q(D), i.e., whether L is a possible result of the query. The certainty problem (CERT)
asks if Q(D) = {L'} where L’ is isomorphic to L, i.e., whether L is the only possible result.

Likewise, if @ is a PosRA2¢ query with accumulation monoid M, for v € M, the P0OSS
problem asks whether v € Q(D), and CERT asks whether Q(D) = {v}.

Note a subtlety in the above definitions: the identifiers of the candidate result L have
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no reason to match the identifiers in @ (D), which is why our problem is defined up to
isomorphism of identifiers. What matters is tuple values, but, as they can occur multiple
times in L and Q(D), it is not easy to match them, as the following example illustrates:

» Example 12. Consider a po-relation I' = (ID, T, <) with ID = {id13, idag, td37, 1d42, id100,
id1o2}, with T'(id13) := (Gagnaire, fr), T(idgo) := (Italia,it), T(ids7) := (TourArgent, fr),
T(id42) = (VCI‘di,it), T(Z'dloo) = (Tsukizi,jp), T(’[dlog) = (Sola,jp), and with Z'dlg < idg,77
idog < idsy, id37 < id100, 1daz < idigp, and idss < idige. Intuitively, I' describes a preference
relation over restaurants, indicating their name and the nationality of their cuisine. Consider
Q@ :=TI(T") that projects I" on nationality; we illustrate the result (with the original identifiers)
in Figure 3. Let L be the list relation (it, fr, jp, it, fr, jp), and consider POSS for @, I and L.

It is the case that L € Q(I"), as shown by the linear extension id4y <’ idi3 <’ id1g2 <’
idog <’ id3y <’ id1go of <. However, this is hard to see, because tuple values are ambiguous.

Our definitions of the POSS and CERT problems follow the standard notion of instance
possibility and certainty [4]. Remember that the problems must focus on the uncertainty of
order (or accumulation results for PosRA?°°), as the underlying relation of PosRA queries is
always certain. However, there are other sensible definitions of POSS and CERT for PosRA in
our setting, e.g.:

» Definition 13. The position possibility problem asks, given a po-database D, PosRA
query @, tuple ¢, and rank k € N, whether Q(D) has a possible world where a tuple with
value t occurs at position k. The position certainty problem asks whether this is certain.

We will also study the position possibility and certainty problem in the sequel (see
Theorem 18). However, as the following example illustrates, we can capture these problems,
as well as other variants, with our notion of POSS and CERT for PosRA®°¢ queries:

» Example 14. The position possibility and certainty problems can be reduced to our POSS
and CERT problems using the PosRA?® query Q' := select-at-k(Q) (see end of Example 10).
Similarly, we can use a query of the form @’ = top-k(Q) to determine possibility or certainty
of a list of top-k elements. Alternatively, using an adequate monoid (see Appendix), we can
also check, e.g., for two tuple values t; and to, whether it is possible that the first occurrence
of value t; precedes all occurrences of value ts.

5 General Complexity Results

We have defined the PosRA and PosRA?°° query languages, and the problems POSS and CERT.
We now start the study of their complexity, which is the main technical contribution of our
paper. We will always study their data complerity, where the query Q is fixed? (including, for
PosRA?“¢, the accumulation map and monoid, which we assumed to be PTIME-evaluable):
the input to the problem is the po-database D and candidate possible world L. Our results
for Sections 5-7 are summarized in Table 1.

Possibility. We start with POSS, which we show to be NP-complete in general.
» Theorem 15. The POSS problem is NP-complete for PosRA and for PosRA?“C.

Proof sketch. The hardness proof for PosRA is by a reduction from the UNARY-3-
PARTITION problem [21]: given numbers written in unary, determine whether they can

2 In combined complexity, with Q part of the input, POSS and CERT are easily seen to be respectively
NP-hard and coNP-hard, by reducing from the evaluation of Boolean conjunctive queries (which is
NP-hard in data complexity [1]) even without order.
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Table 1 Summary of complexity results for possibility and certainty

Query Restrictions Input relations Complexity
P0SS PosRA/PosRA*° — arbitrary NP-c. (Thm. 15)
CERT PosRA™* — arbitrary coNP-c. (Thm. 16)
CERT PosRA — arbitrary PTIME (Thm. 17)
POSS PosRApex — width < k PTIME (Thm. 21)
P0SS PosRApm — totally ordered NP-c. (Thm. 22)
PSS PosRA — ia-width < k PTIME  (Thm. 26)
CERT PosRA**¢ cancellative arbitrary PTIME (Thm. 28)
both PosRA** finite and rank-invariant  totally ordered NP-c. (Thm. 31)
both PosRAf& finite width < k PTIME (Thm. 32)
both PosRA** finite and rank-invariant  ia-width < k PTIME (Thm. 33)

be partitioned in triples of a fixed sum. The input po-relation represents the numbers of
the instance, and the candidate possible world asks whether we can enumerate sequences
of three numbers whose total number of elements is the requested sum. This immediately
implies the hardness of PosRA?“°| using the identity accumulation. |

In fact, as we will later point out, hardness holds even for quite restrictive settings, with
more intricate proofs: see Theorems 22 and 31.

Certainty. We show that CERT is coNP-complete for PosRA®¢:
» Theorem 16. CERT is coNP-complete for PosRA* queries.

Proof sketch. We show this by establishing the hardness of POSS for a specific PosRA?<¢
query @ which ensures that only two possible accumulation results may be obtained, no
matter the input po-database, so that P0OSS for @ reduces to the negation of CERT. The
query @ intuitively tests whether its two input po-relations I" and I have some common
possible world, by testing whether there is a possible world enumerating identical elements in
alternation from I" and from I'V. This is checked by performing accumulation in the transition
monoid of a specific deterministic finite automaton. |

For PosRA queries, however, we show that CERT is in PTIME. This follows from the
tractability of CERT for PosRA?°® on cancellative monoids (Theorem 28).

» Theorem 17. CERT is in PTIME for PosRA queries.

Other definitions. We can also show that the position possibility and position certainty
problems for PosRA (Definition 13) are in PTIME:

» Theorem 18. The position possibility and position certainty problems are in PTIME.

Further tractable cases. We have shown hardness for POSS with and without accumulation,
and hardness for CERT with accumulation. In the next two sections, we identify additional
restricted yet realistic cases for which POSS and CERT become tractable. Section 6 focuses on
PosRA (where CERT is always tractable) and identifies tractable cases for POSS, by restricting
the operators allowed, and the “uncertainty” of the input po-relations. Section 7 then shows
further tractable cases for POSS and CERT for PosRA?°° queries.

6 Tractable Cases for POSS on PosRA

We show that POSS is tractable for PosRA queries if we restrict the allowed operators and if

we bound some order-theoretic parameters of the input po-database, such as poset width.
We call PosRAgx the fragment of PosRA that disallows the xpg operator, but allows all

other operators (including xigx). We also define PosRApg that disallows xipgx but not Xprg.
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Totally Ordered Inputs. We start by the natural case where the individual relations are
totally ordered. This applies, e.g., to a context where we integrate data from multiple sources,
each source being certain (totally ordered), and where uncertainty only results from the
integration query. The result of a PosRA query on totally ordered relations is not totally
ordered, though, and may still have exponentially many possible worlds (e.g., the union of
two total orders has exponentially many possible interleavings). The worst offender in this

respect is the Xprg operator, whose result on two total orders may be arbitrarily “complex”.

We therefore consider the fragment PosRArgx of PosRA queries without Xpg, and show:
» Theorem 19. POSS is PTIME for PosRArgx queries if input po-relations are totally ordered.
In fact, we can show tractability for relations of bounded poset width:

» Definition 20. [38] An antichain in a po-relation I = (ID, T, <) is a set A C ID of pairwise
incomparable tuple identifiers. The width of T" is the size of its largest antichain. The width
of a po-database is the maximal width of its po-relations.

In particular, totally ordered relations have width 1, and unordered relations have a
width equal to their size (number of tuples); the width of a po-relation can be computed in
PTIME [20]. Po-relations of low width are a common practical case: they cover, for instance,
po-relations that are totally ordered except for a few tied tuples at each level. We show:

» Theorem 21. Let k be a (constant) positive integer. If the input po-database is of width
bounded by k, then POSS is in PTIME for PosRArgx queries.

Proof sketch. We show that the result I' with pw(T") = Q(D) of evaluating the query has
bounded width (as Xpy is disallowed), and compute in PTIME a chain partition of T' [14, 20]
to apply a dynamic algorithm whose state is the position on the chains. |

We last justify our choice of disallowing the Xprg product. Indeed, if we allow Xpig, then
POSS is hard on totally ordered relations, even if we disallow Xpgx:

» Theorem 22. The POSS problem is NP-complete for PosRApir queries, even when the
input po-database is restricted to consist only of totally ordered po-relations.

Proof sketch. We take the product R xprg S of two totally ordered relations, yielding a grid,
and adapt the UNARY-3-PARTITION argument of Theorem 15 to the large antichain on the
diagonal, eliminating the rest of the product (see Appendix for the technical argument). <

Unordered Inputs. We now show the tractability of POSS for unordered input relations, i.e.,
po-relations that allow all possible orderings over their tuples. This applies, e.g., to contexts
where the order on input tuples is irrelevant or unknown; all order information must then be
imposed by the (fixed) query, using the ordered constant relations N <o We show:

» Theorem 23. POSS is in PTIME for PosRA queries if input po-relations are unordered.

Here again we prove a more general result, capturing the case where the input is “almost
unordered”. We introduce for this purpose a novel order-theoretic notion, ia-width, which
decomposes the relation in classes of indistinguishable sets of incomparable elements.

» Definition 24. Given a poset (V,<) , a subset S C V is an indistinguishable antichain if
it is both an antichain (there are no x,y € S such that = < y) and an indistinguishable set
(or interval [19]): for all z,y € Sand z € V\S, 2 < ziff y < z, and z < z iff z < y.

An indistinguishable antichain partition (ia-partition) of a poset is a partition of its
domain into indistinguishable antichains. The cardinality of such a partition is its number of
classes. The ia-width of a poset (or po-relation) is the cardinality of its smallest ia-partition.
The ia-width of a po-database is the maximal ia-width of its relations.
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For instance, any po-relation T' has ia-width < |T'|, and unordered relations have an
ia-width of 1. Po-relations may have low ia-width in practice when order is totally unknown
except for a few comparability pairs given by users, or when objects of a constant number of
types are ordered based only on some order on the types. We show that ia-width, like width,
can be computed in PTIME, and that bounding it ensures tractability (for all PosRA):

» Proposition 25. The ia-width of any poset, and a corresponding ia-partition, can be
computed in PTIME.

» Theorem 26. For any k € N, P0OSS is in PTIMFE for PosRA queries assuming that input
po-databases have ia-width < k.

Proof sketch. As in the proof of Theorem 21, we first show that the query result " also has
bounded ia-width. We then consider the order on ia-partition classes of I'. For each linear
extension, we apply a greedy algorithm for possibility by mapping candidate tuples to the
first available class in the extension where a suitable tuple remains. |

7 Tractable Cases for PosRA?2¢°

The previous section illustrated tractable cases for POSS on PosRA queries. We now study
tractable cases for POSS and CERT on PosRA?“. In addition to restrictions on the PosRA
operators and input po-relations, we will also need to impose restrictions on accumulation
(in addition to PTIME-evaluability). Recall that if the monoid is commutative, the result of
accumulation is always certain, and therefore POSS and CERT are trivially in PTIME.

We first start with an approach that only restricts the accumulation operator, from
monoids to cancellative monoids. We show that CERT is tractable for PosRA?¢ queries
in cancellative monoids, generalizing the tractability of CERT for PosRA (Theorem 17);
by contrast, POSS remains intractable. We then impose other conditions on accumulation
(finiteness, and rank-invariance), which allow us to extend the results of Section 6 to PosRA2<c.

Cancellative Monoids. We will study accumulation in cancellative monoids:

» Definition 27. [23] For any monoid (M, ®, ), we call a € M cancellable if, for all b,c € M,
we have that a @ b = a @ ¢ implies b = ¢, and we also have that b ® a = ¢ ® a implies b = c.
We call M a cancellative monoid if all its elements are cancellable.

Many interesting monoids are cancellative; in particular, this is the case of all monoids
in Example 10. More generally, all groups are cancellative monoids (but some infinite
cancellative monoids are not groups, e.g., the monoid of concatenation). For this large class
of accumulation functions, we design an efficient algorithm for certainty.

» Theorem 28. CERT is in PTIME for PosRA®¢ with accumulation in a cancellative monoid.

Proof sketch. We show that the accumulation result in cancellative monoids is certain iff
the po-relation on which we apply accumulation respects the following safe swaps criterion:
for all tuples t; and t; and consecutive positions p and p + 1 where they may appear, we
have h(t1,p) ® h(te,p+ 1) = h(t2,p) ® h(t1,p +1). We can check this in PTIME. <

Hence, CERT is tractable for PosRA (Theorem 17), via the concatenation monoid, and
CERT is also tractable for top-k (defined in Example 10). The hardness of POSS for PosRA
(Theorem 15) then implies that POSS, unlike CERT, is hard even on cancellative monoids.

Other Restrictions on Accumulation. We next revisit the results of Section 6 for queries
with (PTIME-evaluable) accumulation. However, we first need to introduce other assumptions

11
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on accumulation. First, in all the following results, we assume that accumulation takes place
in a finite monoid:

» Definition 29. A PosRA?“¢ query is said to perform finite accumulation if the accumulation
monoid (D', ®,¢) is finite.

For instance, if the domain of the output is assumed to be fixed (e.g., ratings in {1, ...,10}),
then our examples of select-at-k and top-k (the latter for fixed k) are finite.

Furthermore, for some results, we will require rank-invariant accumulation, namely, that
the accumulation map does not depend on the absolute rank of tuples:

» Definition 30. Recall that the accumulation map h has in general two inputs: a tuple and
its rank. A PosRA®°® query is said to be rank-invariant if its accumulation map ignores the
second input, so that effectively its only input is the tuple itself.

Note that the monoid operation still receives the input in order, so order-aware accumula-
tion (e.g., concatenation) can still be implemented. We will use these restrictions to lift the
results of Section 6. However, note that they do not suffice to make POSS and CERT tractable:

» Theorem 31. POSS and CERT are respectively NP-hard and coNP-hard for PosRA?° queries
performing finite and rank-invariant accumulation, even assuming that the input po-database
contains only totally ordered po-relations.

Revisiting Section 6. We now revisit our previous results for queries with accumulation,
and for POSS and CERT, under the additional assumptions on accumulation that we presented.
We call PosRA#g; the extension of PosRA gy with accumulation.

We can first generalize Theorem 21 to PosRAZES queries with finite accumulation:

» Theorem 32. For PosRA#gs queries performing finite accumulation, POSS and CERT are
in PTIME on po-databases whose po-relations have bounded width.

We can then generalize Theorem 26 to PosRA?¢ queries, assuming finite and rank-
invariant accumulation:

» Theorem 33. For PosRA? queries performing finite and rank-invariant accumulation,
POSS and CERT are in PTIME on po-databases whose po-relations have bounded ia-width.

The finiteness assumption is important, as the previous result does not hold otherwise.
Specifically, we can show a query that performs rank-invariant but not finite accumulation,
for which POSS is NP-hard even on unordered po-relations (see Appendix).

8 Duplicate Consolidation

We last study the problem of consolidating tuples with duplicate values. We have only
considered bag semantics for PosRA so far, but in some cases users may wish to treat duplicate
tuples as if they refer to the same object, and choose to collapse different occurrences into a
single tuple, without relying on rank aggregation techniques to decide on a particular order.

Thus, we define a new operator, dupElim, and introduce a semantics for it. The main
problem is that tuples with the same values may be ordered differently relative to other
tuples. Hence, the representative tuples that we keep may yield different orders on the result,
i.e., introduce more order uncertainty. To mitigate this, we introduce the notion of id-sets:

» Definition 34. Given a list relation L = (¢1,...,t,), a subset S of the tuples in L is an
indistinguishable duplicate set (or id-set) if for every ¢;,t; € S, we have ¢; = ¢;, and for every
t € L\S, we have that ¢ precedes (resp. follows) t; in L iff ¢ precedes (resp. follows) ¢, in L.
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» Example 35. Consider the list relation defined by Li := Hpoteiname (Hotel), with Hotel as
in Figure 1. The two “Mercure” tuples are not an id-set: they disagree on their ordering with
“Balzac”. Consider now the list relation Lo := (A4, B, B,C), where A, B, and C are tuples

over D. The two occurrences of B form an id-set. Note that a singleton is always an id-set.

We define a semantics for dupElim on any list relation L using id-sets. First, check
that for every tuple ¢ in L, the occurrences of ¢ form an id-set. If this holds, we say
that L is safe, and we set dupElim(L) to be the single possible world obtained by picking
one representative element per id-set (clearly the result does not depend on the chosen
representatives). Otherwise, we call L unsafe and say that duplicate consolidation has failed;
we set dupElim(L) to be an empty set of possible worlds. Intuitively, duplicate consolidation
tries to reconcile (or “synchronize”) order constraints for tuples sharing the same values, and
fails when this cannot be done. We discuss other possibilities at the end of this section.

» Example 36. In Example 35, we have dupElim(L;) = () but dupElim(Ls) = (4, B, C).

We then extend the semantics of dupElim to po-relations. We consider all possible results
of duplicate elimination on the possible worlds, ignoring the unsafe possible worlds. If all
possible worlds are unsafe, then we completely fail.

» Definition 37. Letting I' be a po-relation, we define dupElLim(T') := ¢, () dupElim(L).
dupElim(T") completely fails if dupElim(T") = @, that is, dupElim(L) = @ for every L € pw(T).

» Example 38. Consider the totally ordered relation Rests := (Tsukizi, Gagnaire) and
Rest as in Figure 1, and the query @ := dupElm(IL, cstname (Rest) U Rests). Intuitively, @
combines restaurant rankings, performing duplicate consolidation to collapse two occurrences
of the same restaurant name into a single tuple. The only possible world of @ is (Tsukizi,
Gagnaire, TourArgent), since duplicate elimination fails in the other possible worlds of the
union, and this is indeed the only possible way to combine the rankings.

We next show that po-relations still form a strong representation system for PosRA with
dupElim, up to complete failure (which may be efficiently identified).

» Theorem 39. For any po-relation T', we can test in PTIME if dupElim(T") completely fails;
if it does not, we can compute in PTIME a po-relation I such that pw(I”) = dupElm(T).

Possibility and certainty. All complexity results of Sections 57 continue to hold when
extending PosRA and PosRA?°° to allow dupElim. To prove this, we use Theorem 39, and
show that the width and ia-width order complexity bounds of Section 6 are also preserved by
dupElim (see Appendix for formal result and proof). Furthermore, if in a set-semantics spirit
we require that the query output has no duplicates, POSS and CERT are always tractable:

» Theorem 40. For any PosRA query @, POSS and CERT for dupElim(Q) are in PTIME.

Alternative semantics. A main downside of our proposed semantics for dupElim is the fact
that complete failure is allowed. We conclude this section by briefly considering alternative
semantics that avoid failure, and illustrate the other problems that they have.

A first possibility is to do a weak form of duplicate elimination: keep one element for
each mazximal id-set, rather than for each value, and leave some duplicates in the output:

» Example 41. Letting A # B be two tuples, let us consider the totally ordered relation
L := (A, B, B, A). With weak duplicate elimination, we would have dupElim(L) = (4, B, A).

However, when generalizing this semantics from totally ordered relations to po-relations,
we notice that the result of dupElim on a po-relation may not be representable as a po-relation,
since possible worlds differ in their tuples and not only on their order:
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» Example 42. Consider the po-relation I' = ({a1,b,a2},T, <) with T(a1) = T(az) = A
and T'(b) = B, where A # B are tuples, and < defined by a1 < b and a; < as. We have
pw(T') = {(4,B,A), (A4, A, B)} and dupElim(T") = {(A, B, A), (4, B)} for weak duplicate

elimination: we cannot represent it as a po-relation (the underlying relation is not certain).

A second possibility is to do an aggressive form of duplicate elimination: define dupElim(L)
for totally ordered L as the set of all totally ordered relations that we can obtain by picking one

representative element for each value, even when the representatives are not indistinguishable.

In other words, we do not fail even if we cannot reconcile the order between duplicate tuples:

» Example 43. Applying aggressive dupElim to T’ from Example 41 yields {(A4, B), (B, A)}.

However, again dupElim(I") may not be representable as a po-relation, this time because
the set of possible orders may not correspond to a partial order:

» Example 44. Cousider L := (A, C, B, C, A) with distinct tuples A, B, C. Then dupElim(L)
is{(4,C,B),(4,B,C),(B,C,A),(C,B,A)}. No po-relation I satisfies pw(I") = dupElim(L),
because no comparability pair holds in all possible worlds, so I' must be unordered, but then
all permutations of {A, B, C} are possible worlds of T', which is unsuitable.

We leave for future work the question of designing a practical semantics for duplicate
consolidation that maintains an efficient representation system while avoiding failure.

9 Related Work

Incompleteness in databases. Incomplete information management has been studied for
various models [6, 30], in particular relational databases [24]. This field inspires our design of
po-relations as a strong representation system, and our study of possibility and certainty [4, 34].
However, uncertainty in these settings typically focuses on whether tuples exist or on what
their values are (e.g., with nulls [11], including the novel approach of [31, 32]; with c-tables [24],
probabilistic databases [44] or fuzzy numerical values as in [40]).

To our knowledge, though, our work is the first to study possible and certain answers
in the general context of order-incomplete data (see discussion below of uncertain order in
different contexts). Combining order incompleteness with standard tuple-level uncertainty is
left as a challenge for future work. Note that some works on incomplete databases [9, 29, 32]
use partial orders on relations to compare the informativeness of uncertain representations.
However, this is unrelated to our use of partial orders on tuples as a representation system.

Trees, bags, lists, posets, and pomsets. Our work focuses on querying ordered relations,
with uncertainty with respect to order. Expressive query languages have been designed for
bags [33] and for ordered structures such as lists [12, 13] and trees [37], usually extending the
relational algebra to the nested relational algebra [33]. However, these works often do not
handle uncertainty, and thus do not address the problems that we study here.

Uncertainty with respect to order is of course well-studied in the context of order theory.
In particular, labeled partial orders [36] are essentially equivalent to our po-relations, with
“labels” corresponding to tuples. However, we are unaware of works on labeled partial orders
that investigate query languages over them or complexity issues, to the notable exception
of [22], which studies an algebra for pomsets. Our approach and results are different, however:
we focus on the investigation of POSS and CERT, which [22] does not study; in fact, as [22]
allows a very expressive language, our complexity results would probably fail in their setting.

Ordered domains. Another line of work has studied relational data management where the
domain elements are ordered, rather than the tuples: some works assume a total order, hence
no uncertainty [25], but others assume a partial order [35, 45]. However, the perspective
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is different: we see order on tuples as part of the relations, and as being constructed by
applying our operators; these works see order on elements as being given outside of the query.
Hence, unlike us, they do not study how uncertainty is propagated and generated while
evaluating queries. Last, queries in such works can often directly access the order relation on
the domain [45, 7], which impacts their complexity results.

Some works also investigate the possible orders that can be expressed via numerical
uncertainty on totally ordered numerical domains [40, 41], whereas we look at general order
relations. In this context, some of the present authors are submitting another work to
the same venue [3]; the problem studied there is very different, however, as it focuses on
probabilities and unknown numerical values under order constraints on the values, and on
top-k computation, rather than our query language and the problems of POSS and CERT.

Practical Implementations. Uncertain order on tuples arises in the context of many prac-
tical systems. For instance, unioning two sorted relations in SQL implementations yields an
ordered bag relation: the order is implementation-dependent, but there is no representation
of the multiple possibilities. Indeed, by the SQL standard, “ordering of the rows of the
table specified by the query expression is guaranteed only for the query expression that
immediately contains the ORDER BY clause” [26]. SQL also rejects some queries that combine
DISTINCT with ORDER BY. Query languages for XML follow a similar approach: see, e.g.,
Section 3.4.2 in [46]. Our work can thus be seen as a generic attempt to fill these gaps.

Temporal Databases. Temporal databases [10, 39] consider order on facts, but it is usually
induced by timestamps, hence total. A notable exception is [18] which considers that some
facts may be more current than others, with constraints leading to a partial order. In
particular, they study the complexity of retrieving query answers that are certainly current,
for a rich query class. In contrast, we can manipulate the order via queries, and we can also
ask about aspects beyond currency, as shown throughout the paper (e.g., via accumulation).

Using Preference Information. Order theory has been also used to handle preference
information in database systems [27, 5, 28, 2, 43], with some operators being the same as
ours, and for rank aggregation [17, 27, 16], the problem of retrieving top-k query answers given
possibly incompatible rankings. However, such works typically try to resolve uncertainty
by reconciling many conflicting representations (e.g. via knowledge on the individual scores
given by different sources and a function to aggregate them [17], or a preference function [2]).
The problems that we study are complementary: we focus on the querying of uncertain
data in a compositional way, namely, maintaining a faithful model of all possible worlds
without assuming or making any intermediate choice on how to reconcile them; we then
return possible and certain answers with respect to all possible worlds.

10 Conclusion

This paper introduced an algebra for order-incomplete data, based on the bag semantics of
the positive relational algebra, and proposed an order-aware accumulation operator. We have
studied the complexity of possible and certain answers for this algebra, including duplicate
consolidation. We have shown that the problems are generally intractable, but identified
useful tractable cases by limiting the query language, accumulation operator, and input data.

An important direction for future work is to add other operators (e.g., group-by, list
map, difference, and others from [22]) and study the impact on our results. Other directions
include the search for different semantics, e.g., for duplicate elimination, and the investigation
of how to combine order-uncertainty with uncertainty on values (e.g., NULLs).
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A  Proofs for Section 2 (Data Model and PosRA)

A.1 Additional Preliminaries

A bag or multiset over a set X is a function B : X — N. The support of a bag B is B~}(N™)
and we write © € B if and only if B(xz) # 0. We write a bag B with finite support as
B = {{b1,...,by }} where n =" _\ B(x) is the size |B| of B: for every x € X, we have
B(z) = {1 < k < n|bp ==z}. For any bag B and Boolean predicate ¢ on elements of X,
the bag {{x € B | ¢(z) }} is the function that maps x to B(z) if ¢(z) holds and maps z to 0
otherwise.

For any two bags By, By over the same set X, B; W By is the bag over X defined by
x + Bi(z) + Ba(z). For any bag B over X and any function F' from X to bags over X,
W,ep F(x) is the bag over X defined by y — > .5 B(x) - F(z)(y).

We define the Boolean formulas over tuples that will be used for the selection operator —
for simplicity, we sometimes adopt in the proofs the unnamed perspective and thus identify
positions within tuples by their index:

» Definition 45. A tuple predicate is a Boolean formula over atoms of the form “.m = .n”,
“m=#.n", “m=4d”, or “.m # d”’ where m,n are positive integers and d € D.

A tuple predicate ¢ of the form “.m = .n” (resp., “.m # .n”) holds for a tuple t,
denoted ¢(t), if and only if m < a(t), n < a(t), and t.m = t.n (resp., t.m # t.n). A tuple
predicate ¢ of the form “.m = d” (resp. “.m # d”) holds for a tuple t, denoted ¢(t), if and
only if m < a(t) and t.m = d (resp., t.m # d).

Given a totally ordered relation L = (t1,...,%,), for two tuples ¢; and t; of L, we write
t; <z t; (resp. t; <r t;) to mean that t; precedes (resp. strictly precedes) t;, i.e., ¢ < j (resp.
i <j).

A.2 Proof of Theorem 4

» Theorem 4. No PosRA operator can be expressed through a combination of the others.

We prove Theorem 4 by considering each operator in turn, showing it cannot be expressed
through a combination of the others.

We first consider constant expressions. We will show differences in expressiveness even
when setting the input po-database to be empty.

For [t], consider the query [(0)]. The value 0 is not in the database, and cannot be
produced by the NZ, constant expression, and so this query has no equivalent that does
not use the [t] constant expression.

For N, , observe that NZ, is a po-relation with a non-empty order, while any query
involving the other operators will have empty order (none of our unary and binary
operators turns unordered po-relations into an ordered one, and the [t] constant expression
produces an unordered po-relation).

Moving on to unary and binary operators, the first three are easily shown to be non-
expressible:

o is the only operator that can decrease the size of an input po-relation.

IT is the only operator that can decrease the arity of an input po-relation.

[(0)] U [(1)] (over the empty po-database) cannot be simulated by any combination of
operators, as can be simply shown by induction: no other operator will produce a
po-relation which has in the same attribute the two elements 0 and 1.

There remains to prove that xp and Xpgx are not redundant. As in Section 6, we use
the name PosRAprg for the fragment of PosRA where Xigx is not used; and PosRAgx for
the fragment of PosRA where Xpzy.
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A.2.1 Transformations Not Expressible in PosRAgx

Let us start by showing that PosRApiz can express some transformations that PosRAjgx
cannot: specifically, the output of a PosRAgx query is always a series-parallel po-relation
when the input relations also are.

» Definition 46. [Sch03] The series-parallel (sp) posets is the class of posets containing all
single-element posets and defined inductively as follows: for any two sp-posets P, = (V1, <1)
and P = (Va, <2) with disjoint domains, we can build the following sp-posets on V; U V3,
whose orders follow <; (resp. <3) on Vi x Vi (resp. Vo x V3):

Series composition: set p < p’ for any (p,p’) € V1 x Va;
Parallel composition: make p and p’ are incomparable for any (p,p’) € Vi X Va.

A series-parallel po-relation is a po-relation whose underlying poset is either sp or empty.

We first introduce the notion of sp-tree to make it easier to reason about series-parallel
posets:

» Definition 47. An sp-tree [Bv96] is a rooted ordered tree whose internal nodes are labeled
either series or parallel, and leaf nodes are labeled with singleton. The decoding of an sp-tree
is a series-parallel poset (defined up to isomorphism) obtained in the following fashion:

the decoding of a singleton node is the poset ({s}, ) where s is a fresh element;

the decoding of a series node is the series composition of the posets obtained as the
decoding of the children of this node, in the order in which they appear;

likewise, the decoding of a parallel node is the parallel composition of the decoding of the
children.

We now show PosRA;gx queries preserve being series-parallel.

» Proposition 48. Let QQ be any PosRAigx and D a po-database D whose po-relations are
all series-parallel. Then for any po-relation T' such that pw(T') = Q(D), T' is series-parallel.

Proof. We prove the claim by induction. For the base case:

The relations of D are series-parallel.
The expressions [t] and N, result in series-parallel orders.

For the induction step:

The union of two series-parallel po-relations of compatible arity is a series-parallel po-
relation, whose underlying poset is the parallel composition of the two original posets.
The projection of a series-parallel po-relation is still series-parallel (the underlying poset
does not change).

The selection of a series-parallel po-relation has an underlying poset which is either empty
or is a non-empty restriction of a series-parallel poset, so it is still series-parallel [BGR97].
The LEX product R” := R xygx R’ of two series-parallel relations R and R’ is series-parallel.
To show this, note that If either of R or R’ are empty, then the product is also empty.
Otherwise, the underlying poset P” of R” is defined as the lexicographic product of
the underlying posets P and P’ of R and R’ respectively, which are series-parallel. To
see why P’ is series-parallel, consider any sp-trees T and 1" of P and P’ respectively.
Clearly, the result of replacing every singleton node of T' by a copy of T” is an sp-tree for
P. Hence, P" is series-parallel.

This concludes the proof. |

This allows us to conclude:

19

34 CEST 2016

00

Generated Mon Mar 28 10



Draft preview -- not a final published version

20

Possible and Certain Answers for Queries over Order-Incomplete Data

» Corollary 49. There are transformations expressible in PosRApmr but not in PosRApgx.

Proof. By Proposition 48, any transformation expressed by a PosRA;gx query is such that
the image of a po-database of totally ordered relations is a series-parallel po-relation (see
Definition 46). Hence, to show that some transformations can be expressed by PosRAprz but
not by PosRAgx, it suffices to provide an example of a PosRAprr query @ and series-parallel

po-database D such that Q(D) is the set of possible worlds of a non—series-parallel po-relation.

Consider @) the query agp(N*<2 XDIR Ngg) and D the empty po-database, where ¢ is the
tuple predicate:

(1 — 442” A 2 — 44177) v (1 — 44277 A 2 — 14277) \/ (1 — 15177/\ 2 — “2”) v (1 — “1” A 2 — 44377)

It is easily verified that Q(D) is the set of possible worlds of a po-relation T" with four tuples
t1, ta, t3 and t4, with respective values (2, 1), (2,2), (1,2) and (1, 3), such that exactly the
following comparability relations hold: t; < 3, t3 < to9, t3 < t4. But this is exactly the
N-shaped poset of [M6h89] which is an example of a non-series-parallel poset. Hence, T is
not series-parallel, proving the desired result. |

A.2.2 Transformations Not Expressible in PosRApy

We now show the converse, that PosRAgx expresses some transformations that cannot be
expressed in PosRAprr. To do this, we introduce concatenation as follows:

» Definition 50. For L; and Lo two list relations with a(L;) = a(Lsy), the concatenation
of L1 and Lo, written L1 Ugar Lo, is the set formed of the single list where all tuples of L,
(in order) come before those of Ly (in order).

We extend concatenation to po-relations by defining the result of concatenating two
po-relations as series composition of their two partial orders. Its set of possible worlds is the
set of all concatenations of a possible world of the first relation and a possible world of the
second relation. We show that concatenation can be captured with PosRA|gx.

» Lemma 51. For any arity n € N, there is a PosRArgy query Q, with two distinguished
relation names R and R’ such that, for any two po-relations I' and I of arity n, letting D
be the database mapping R to T and R’ to I, Qn(D) is pw(T Ugr I').

Proof. For any n € N and names R and R’, consider the following query:

Qn(R,R') :==1I3 19 (U.1=.2 (N*gl Xpex (([1] xrex R) U ([2] XrEx R/))))
It is easily verified that Q,, satisfied the claimed property. |
By contrast, we show that concatenation cannot be captured with PosRApzg.

» Lemma 52. For any arity n € Ni and distinguished relation names R and R', there is no
PosRApg query Q, such that, for any po-relations T' and T’, letting D be the po-database
that maps R to T and R’ to T", Q,(D) evaluates to pw(T Uepr TV).

To prove Lemma 52, we first introduce the following concept:

» Definition 53. Let v € D. We call a po-relation I v-impartial if, for any two tuples t;
and to and 1 < ¢ < a(T") such that exactly one of 1.4, 5.7 is v, the following holds: ¢; and t9
are tncomparable, namely, t; precedes to in some possible order of I', and 5 precedes t; in
some possible order of T'.

» Lemma 54. Let v € D\N be a value. For any PosRApr query Q, for any po-database D
of v-impartial po-relations, any po-relation T' such that pw(T') = Q(D) is v-impartial.
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Proof. Let v € D\N be such a value. We show the claim by induction on the query Q.
The base cases are the following:

For the base relations, the claim is vacuous by our hypothesis on D.

For the empty and singleton constant expressions, the claim is trivial as they contain less
than two tuples.

For the N ; constant expressions, the claim is immediate as v ¢ N.

We now prove the induction step:

For selection, the claim is shown by noticing that, for any v-impartial po-relation T,
letting T be the image of I by any selection, I' is itself v-impartial. Indeed, considering
two tuples ¢; and to in I and 1 < ¢ < a(T") satisfying the condition, as I' is v-impartial, ¢;
and t9 are incomparable in I, so they are also incomparable in I': applying the selection
to the two possible orders witnessing impartiality in IV, yields two possible orders of T'
witnessing its v-impartiality.

For projection, the claim is also immediate as the property to prove is maintained when
reordering, copying or deleting attributes. Indeed, considering again two tuples ¢; and to
of " and 1 < ¢ < a(T"), the preimage ¢} and t} of t; and ¢» before the projection satisfy
the same condition for some different ' which is the preimage of i, so we again use the
impartiality of the original po-relation to conclude.

For union, the property is preserved. Indeed, for IV = I’ UT”, assume by contradiction
the existence of two tuples t1,to € I and 1 < ¢ < a(T"”) such that exactly one of ¢;.i and
to.1 is v but (without loss of generality) ¢; precedes to in every possible world of T, Tt
is easily seen that, as t; and ty are not incomparable, they must come from the same
relation; but then, as that relation was v-impartial, we have a contradiction.

We now show that the property is preserved for xprr. Consider I = T' xpg IV where
T and I are v-impartial, and assume that there are two tuples (t1,t2) and (¢],t,) in
I and 1 < @ < a(I"”) that violate the v-impartiality of I'’. We distinguish on whether
1<i<a(l) ora(l) <i<a(l)+a(l’). In the first case, we deduce that exactly one of
t1.i and ¢}.7 is v, so that in particular ¢; # ¢}. Thus, by definition of the order in Xpgy, it
is easily seen that, because (¢1,ts) precedes (t},t5) in every possible world of I'"/| ¢; must
precede t] in every possible world of T, contradicting the v-impartiality of I'. The second
case is symmetric. |

We now conclude with the proof of Lemma 52:

Proof. Let us assume by way of contradiction that there is n € Ny and a PosRAprg query @,
capturing Uer, with T a po-relation such that pw(I'”) = @, (D). Let v # v' be two distinct
values in D\N, consider the singleton po-relations T = (¢) and T = (¢'), where ¢ (resp. t’)
are tuples of arity n containing n times the value v (resp. v’). Consider the po-database D
mapping R to T and R’ to I". Now, as " and I are (vacuously) v-impartial, we know by
Lemma 54 that I'” is v-impartial, hence, as n > 0, taking ¢« = 1, as t # t’ and exactly one of
t.1 and #'.1 is v, there is a possible world of I where ¢’ precedes ¢. This contradicts the fact
that we should have I'" = T Ugar I, namely, I = (¢,¢'), which has a single possible world
where ¢ does not precede t. This proves that Ugyr cannot in fact be captured by a PosRApg
query. <

Corollary 49, Lemma 51, and Lemma 52 conclude the proof of Theorem 4.

A.3 Proof of Proposition 6

» Proposition 6. For any PosRA query Q and po-database D, we can compute in polynomial
time in D (the exponent depending on Q) a po-relation T' such that pw(T') = Q(D).

21
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Proof. We show the claim by induction on the query Q.

If Q is a relation name R, Q(D) = pw(D(R)), with D(R) obtained in time linear in D.
If @ = [t], we let T" be the po-relation on the singleton tuple (¢).

If @ =N, welet I' == ([1;n], k — (k), <) where < is the total order over integers. This
has constant size in D.

If Q = 0,(Q"), writing Q' (D) = pw(’) with I" = (ID',T',<’) by the induction
hypothesis, let ID be the set of all « € ID" such that ¢(7"(:)) holds. Then we let
I = (ID, T|IID7 <TID), which is constructible in time linear in I".

If Q = Iy, .. 1, (Q), writing Q' (D) = pw(I'") with I = (ID',T’,<’) by the induction
hypothesis, define T' : v — Iy, &, (T"(¢)). Then we let T’ := (ID',T,<’), which is
constructible in time linear in I".

If Q = Q1 UQq, for i € {1,2}, use the induction hypothesis to write Q;(D) = pw(T;)
with I'; = (ID;, T;, <;). If IDy and ID, are not disjoint, we rename identifiers from one
of them to fresh identifiers, redefining 7; and <; accordingly, which is linear in D. Hence,
we assume without loss of generality that ID; and IDs are disjoint.

We let T' := (ID1 U IDo, Ty UT5, <1 U <3). This construction is linear in I'y and I'y. We
will now prove that this gives the right semantics, using the fact that a linear extension of
the union of two partial orders on disjoint domains is an arbitrary interleaving of linear
extensions of the two partial orders.

For the forward direction, let L be a possible world of I'. By our remark above about T,
there is a possible world L of I'; and Lo of I's such that L is an interleaving of L1 and Ls.
By the induction hypothesis, we have Ly € Q1(D) and Ls € Q2(D). Since (Q1 U Q2)(D)
is formed of all interleavings of Q1(D) and Q2(D), we have L € (Q1 U Q2)(D) = Q(D).
For the backward direction, let L € Q(D). By our remark above, L is an interleaving
ofa L1 € Q1(D) and a Ly € Q2(D). By the induction hypothesis, we have L; € pw(T;)
and Lo € pw(T'2). Thus, L is a possible world of T'.

If Q@ = Q1 xpr @2, for ¢ € {1,2}, use the induction hypothesis to write Q;(D) =
pw(T;) with T; = (ID;,T;, <;). We define T := (IDy x IDy,T,<) where T : (t1,12) —
(T'(t1),T(12)) and < is defined as the minimal order relation such that (11,t2) < (21, ¢5)
whenever there are i # j € {1,2} such that ¢; < ¢} and ¢; < ¢ (i.e., either ¢; = 1} or
Ly < L;) We can construct this in time polynomial in the product of the size of I'; and
T's, hence, in time polynomial in D: to construct the order, enumerate all pairs that are
as above, and then complete the set of constraints into an order in PTIME via transitive
closure.

Now, to prove correctness, let L be a possible world of I". The definition of < ensures
there is no (11, t2) < (1f,t4) if ¢} < ¢; for all ¢ € {1,2}. This means L € Q(D). Conversely,
if L € Q(D), L does not violate any of the constraints of <, and is therefore a possible
world of T.

If Q@ = Q1 X1ex Q2, for ¢ € {1,2}, use the induction hypothesis to write Q;(D) = pw(T;)
with T'; = (ID;, T}, <;). We define T" := (IDy x IDs, T, <) where T is as in the previous
case and < is the lexicographic product of the orders <; and <5. This is constructible in
linear time in the size of the product of I'y and I'y, and the definition of Xigx ensures
that possible worlds of I are exactly possible outcomes of @) over pw(D). <

Proofs for Section 4 (Possibility and Certainty)

Capturing the possibility of order relations. To check whether the first occurrence of a
tuple ¢t; precedes any occurrence of t2, we use the accumulation operator accumy, o defined
as follows. We define the accumulation map h by h(t1,n) = T, h(ta,n) = L and h(t,n) =¢
for t # t1,t2. We define the monoid operator & by imposing T T =T & L = T and
1@ 1 =16T=_1. This ensures that evaluating accumy, (L) on a totally ordered relation
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L yields ¢ if neither £; not t, is present, T if the first occurrence of ¢; precedes any occurrence
of to, and L otherwise. Hence, to check whether it is possible that the first occurrence of t;
precedes all values of ¢y in the result of evaluating a PosRA query @ on a po-database D,
it suffices to solve the POSS problem for the PosRA?*® query accumy, g (Q) with D and the
candidate value T.

C Proofs for Section 5 (General Complexity Results)

C.1 Proofs of Theorems 15 and 16

» Theorem 15. The POSS problem is NP-complete for PosRA and for PosRA®<¢.
» Theorem 16. CERT is coNP-complete for PosRA* queries.
We first show the upper bounds:

» Proposition 55. For any PosRA?*° query @Q, POSS for @ is in NP and CERT for Q is in
co-NP.

Proof. To show the NP membership of POSS, evaluate in PTIME the query without ac-
cumulation using Proposition 6, yielding a po-relation I'. Now, guess a total order of T,
checking in PTIME that it is compatible with the comparability relations of I". If there is no
accumulation function, check that it achieves the candidate result. Otherwise, evaluate the
accumulation (in PTIME as the accumulation operator satisfies PTIME-evaluability), and
check that the correct result is obtained.

To show the co-NP membership of CERT, follow the same reasoning but guessing an order
that achieves a result different from the candidate result. <

We now point to the proofs of the lower bounds. For Theorem 15, the lower bound
for PosRA queries follows from Theorem 22, proven in Section D.1.2; the lower bound for
PosRA?<¢ queries follows from it, by using the identity accumulation map and concatenation
as accumulation (as in the proof of Theorem 17 below). For Theorem 16, the lower bound
for PosRA?°¢ queries follows from Theorem 31 for CERT, proven in Section E.2.2

C.2 Proof of Theorem 17

» Theorem 17. CERT is in PTIME for PosRA queries.

Proof. By Theorem 28 (proven in Section E.1), we know that the CERT problem is in PTIME
for PosRA?°® queries which perform accumulation in a cancellative monoid (see Definition 27).

To prove Theorem 17, let @ be the PosRA query of interest. Let k be the arity of its
result. We will use the identity accumulation operator. Consider the monoid where M
consists of the totally ordered relations on DF, that is, the finite sequences of elements
of DF, the neutral element ¢ is the empty sequence, and the associative operation @ is
concatenation. This clearly defines a monoid, and it is clearly cancellative. Hence, consider
the query @’ := accumy, (@), with & defined in this way, and with h being a rank-invariant
accumulation map that maps each tuple to the singleton totally ordered relation containing
precisely one tuple with that value. It is clear that any totally ordered relation L is a
possible world of the PosRA query Q iff L is a possible result of the PosRA?° query Q.
Now, we know that CERT for @’ is in PTIME, because it is a PosRA?¢ query that performs
accumulation in a cancellative monoid, so we can use Theorem 28. Hence, the CERT problem
for @ is in PTIME as well. <
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C.3 Proof of Theorem 18
» Theorem 18. The position possibility and position certainty problems are in PTIME.

Proof. Given an instance of the position possibility or certainty problem for @, which
includes a po-database D, we first compute a po-relation I" such that pw(T') = Q(D) in
PTIME by Proposition 6.

Now, considering the po-relation I' = (ID, T, <), we can compute in PTIME, for every
element x € ID, its earliest index i~ (), which is its number of ancestors by < plus one, and
its latest index it (z), which is the number of elements of I' minus the number of descendants
of x. It is easily seen that for any element x € ID, there is a linear extension of I' where z
appears at position i~ (), or at position i (z), or in fact at any position of [i™(x),i (z)],
the interval of x.

Hence, position possibility and position certainty for tuple ¢ and position k can be decided
by checking whether some element of the order whose interval contains k£ has value ¢, or
whether all such elements have value t. This concludes the proof for position possibility and
certainty. |

D Proofs for Section 6 (Tractable Cases for POSS on PosRA)

D.1 Totally Ordered Inputs
D.1.1 Tractability Result: Proof of Theorems 19 and 21

The point of restricting to PosRAgx queries is that they can only make the width increase
in a way that depends on the width of the input relations, but not on their size:

» Proposition 56. Let k > 2 and Q be a PosRAgx query. Let k' = kR For any
po-database D of width < k, the po-relation Q(D) has width < k'.

Proof. We prove by induction on the PosRAgx query @ that one can compute a bound on

the width of the output of the query as a function of the bound % on the width of the inputs.

For the base cases:

Input po-relations have width < k.
Constant po-relations have width 0 (for the empty po-relation) or 1 (for singletons and
for constant chains).

For the induction step:

Given two po-relations I'; and I's with bounds k7 and ks, their union I'y U T’ clearly has
bound ki + ko, as any antichain in the union must be the union of an antichain of I'; and
of an antichain of I'y.

Given a po-relation I'y with bound k1, applying a projection or selection to I'y cannot
make the width increase.

Given two po-relations I'y and I's with bounds k; and ko, their product I' := I'y Xygx I'2
has bound k1 - ko. To show this, consider any set A of > ki - ko tuples in I', which we see
as pairs of a tuple of I'; and a tuple of I's. It is immediate that one of the following must
hold:

1. Letting Sp := {u | Jv, (u,v) € A}, we have |S1| > k;
2. There exists u such that, letting So(u) := {v | (u,v) € A}, we have |Sa| > ko

Informally, when putting > k1 - ko values in buckets (the value of their first component),
either > & different buckets are used, or there is a bucket containing > ko elements.

In the first case, as S7 is a subset of tuples of I'; of cardinality > k; and I'y has width &4,
it cannot be an antichain, so it must contain two comparable elements u; < usg, so that,
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considering v and vy such that a; = (u1,v1) and ags = (ug,v2) are in A, we have by
definition of Xigx that aq <r as, so that A is not an antichain of T".

In the second case, as Sa(u) is a subset of tuples of I'y of cardinality > ko and I's has
width ks, it cannot be an antichain, so it must contain two comparable elements vy < vs.
Hence, considering a; = (u,v1) and ag = (u,vy) which are in A, we have a1 <r ag, and
again A is not an antichain of T'.

Hence, we deduce that no set of cardinality > ki - ko of I' is an antichain, so that I" has
width < kq - ko, as desired.

Letting o be the number of product operators in @) plus the number of union operators,
it is now clear that we can take k' = k°*!. Indeed, po-relations with no product or union
operators have width at most k (using that k£ > 1). As projections and selections do not
change the width, the only operators to consider are product and union. If ; has o
operators and Qo has 0y operators, bounding by induction the width of Q1(D) to be k°1+1
and Qo(D) = k2Tt for Q = Q1 U Q2, the number of operators is oy + 02 + 1, and the new
bound is k21! + k2t which as k > 2 is less than k21102 F1 that is, k(o1 to2tD+1 For
Xgx, we proceed in the same way and directly obtain the k(©1T22t1)+1 hound. Hence, we
can indeed take k' = kIQI+T, <

From this, we will deduce POSS is tractable for PosRAgx queries when the input po-
database consists of relations of bounded width. We now prove Theorem 21, which clearly
generalizes Theorem 19. We will prove both the result for PosRA1gx queries and its extension
to PosRARgS queries with finite accumulation (Theorem 32).

» Theorem 21. Let k be a (constant) positive integer. If the input po-database is of width
bounded by k, then POSS is in PTIME for PosRArgx queries.

Let T" be a po-relation, such that pw(T") is the result of evaluating the query @ of interest,
excluding the accumulation operator, if any (so this amounts to evaluating a PosRAgx
query). We can compute this in PTIME using Proposition 6. Letting k&’ be the constant
(only depending on @ and k) given by Proposition 56, we know that w(T") < k.

We first show the tractability of POSS and CERT for PosRA#gs queries with finite ac-
cumulation, which amounts to applying directly a finite accumulation operator to I'. We
then deal with PosRArgy queries, which amounts to solving directly POSS and CERT on the
po-relation T'.

PosRAZSE queries with finite accumulation. It suffices to show the following rephrasing
of the result:

» Theorem 57. For any constant k' € N, and accumulation operator accumy, g with finite
domain, we can compute in PTIME, for any input po-relation T' such that w(T') < K/, the set
accumy, g (T).

Indeed, once the possible results are determined, it is immediate to solve possibility and
certainty.
For this, we need the following notions:

» Definition 58. A chain partition of a poset P is a partition L = (Lj,..., L) of the
elements of P, i.e., P =Ly U---U L,, such that each L; is a total order. (However, P may
feature comparability relations not present in the L;, i.e., relating elements in L; to elements
in L; for i # j.) The width of the partition L = (L4,...,Ly) is n.

» Definition 59. Given a poset P, an order ideal of P is a subset S of P such that, for all
z,y€ P ifxr <yandy € S thenz € S.

We also need the following known results:
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» Theorem 60 [Dil50]. Any poset P has a chain decomposition of width w(P).

» Theorem 61 [Ful55]. For any poset P, we can compute in PTIME a chain decomposition
of P of minimal width.

We now prove Theorem 57:

Proof of Theorem 57. Consider a po-relation I' = (ID, T, <), with underlying poset P =
(ID, <). Using Theorems 60 and 61, compute in PTIME a chain decomposition L of P of
width &'. For 1 <4 < K/, write n; := |L;], and for 0 < j < n;, write ij to denote the subset
of L; containing the first j elements of the chain (in particular Lfo =0).

We now consider all vectors of the form (my,...,my ), with 0 < m; < n;, of which there
are polynomially many (there are < |F|k/, where &k’ is constant). To each such vector m we
associate the subset s(m) of P consisting of |_|f;1 Lfmi.

We call such a vector m sane if s(m) is an order ideal. (While s(m) is always an order
ideal of the subposet of the comparability relations within the chains, it may not be an
order ideal overall because of the additional comparability relations across the chains that
may be featured in P.) For each vector m, we can check in PTIME whether it is sane, by
materializing s(m) and checking that it is an ideal for each comparability relation (of which
there are O(|P[*)).

By definition, for each sane vector m, s(m) is an ideal. We now observe that the converse
is true, and that for every ideal S of P, there is a sane vector m such that s(m) = S. To
see why, consider an ideal S, and determine for each chain L; the last element of the chain
present in the ideal; let m; be its position in the chain. S then does not include any element
of L; at a later position, and because L; is a chain it must include all elements before, hence,
SNL; = Lfmi. As L is a chain decomposition of P, this entirely determines S. Thus we
have indeed S = s(m), and the fact that s(m) is sane is witnessed by S.

For any sane vector m, we now write t(m) := accumy, (7 (s(m))) (recall that T maps
elements of the poset to tuples, and can therefore naturally be extended to map sub-posets to
sub-po-relations). This is a subset of the accumulation domain M (since the latter is finite,
this subset is of constant size). It is immediate that ¢((0,...,0)) = €, the neutral element

of the accumulation monoid, and that ¢((n,...,nx)) = accumy, g(I') is our desired answer.

Denoting by e; the vector consisting of n — 1 zeroes and a 1 at position 4, for 1 <7 < k', we
now observe that, for any sane vector m, we have:

tm) = |J { o h (T(Li[mib, 1+ _Zmi)

1<ig<k!

v € t(m— ei)} (1)

where the operator “—” is the component-by-component tuple difference and where we define
t(m—e;) to be () if m — e; is not sane or if one of the coordinates of m —e; is < 0. Equation 1
holds because any linear extension of s(m) must end with one of the maximal elements of
s(m), which must be one of the L;[m;] for 1 < i < m such that m; > 1, and the preceding
elements must be a linear extension of the ideal where this element was removed (which
must be an ideal, i.e., m — e; must be sane, otherwise the removed L;[m;] was not actually
maximal because it was comparable to (and smaller than) some L;[m;] for j # i). Conversely,
any sequence constructed in this fashion is indeed a linear extension. Thus, the possible
accumulation results are computed according to this characterization of the linear extensions.
We store with each possible accumulation result a witnessing totally ordered relation from
which it can be computed in PTIME, namely, the linear extension prefix considered in the
previous reasoning, so that we can use the PTIME-evaluability of the underlying monoid to
ensure that all computations of accumulation results can be performed in PTIME.

This last equation allows us to compute t(nq,...,nx ) in PTIME by a dynamic algorithm,
enumerating the vectors (of which there are polynomially many) in lexicographical order, and
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computing their image by ¢ in PTIME according to the equation above, from the base case
t((0,...,0)) = ¢ and from the previously computed values of t. Hence, we have computed
accumy, g (I') in PTIME, which concludes the proof. |

PosRA;zx queries. First note that, for queries with no accumulation, we cannot reduce POSS
and CERT to the case with accumulation, because the monoid of tuples under concatenation
does not satisfy the hypothesis of finite accumulation. Hence, we need specific arguments to
prove Theorem 21 for queries with no accumulation.

Recall that the CERT problem is in PTIME for such queries by Theorem 17, so it suffices
to study the case of POSS. We do so by the following result, which is obtained by adapting
the proof of Theorem 57:

» Theorem 62. For any constant k € N, we can determine in PTIME, for any input
po-relation T' such that w(I') < k and totally ordered relation L, whether L € pw(T).

Proof. The proof of Theorem 57 adapts because of the following: to decide instance possibility,
we do not need to compute all possible accumulation results (which may be exponentially
numerous), but it suffices to store, for each sane vector m, whether the prefix of the correct
length of the candidate possible world can be achieved in the order ideal s(m). More formally,
we define £((0,...,0)) := true, and:

t(m):= \/ (t(m—ei)/\T(Li[mi]):L

1<k’

x)

where L is the candidate possible world. We conclude by a dynamic algorithm as in
Theorem 57. <

This concludes the proof of Theorem 21, and, as an immediate corollary, of Theorem 19.

D.1.2 Hardness result: Proof of Theorem 22

» Theorem 22. The POSS problem is NP-complete for PosRApr queries, even when the
input po-database is restricted to consist only of totally ordered po-relations.

Proof. The reduction is from the UNARY-3-PARTITION problem [GJ79]: given 3m integers
E = (ny,...,ns,) written in unary (not necessarily distinct) and a number B, decide if the
integers can be partitioned in triples such that the sum of each triple is B. We reduce an
instance Z = (E, B) of UNARY-3-PARTITION to a P0SS instance in PTIME.

Fix D := NU{s,n, e}, standing for start, inner, and end. Let S be the totally ordered
po-relation N2 ,, and let S” be the totally ordered po-relation constructed from the
instance Z as follows: for 1 < ¢ < 3m, we consider the concatenation of one tuple ti1 with
value s, n; tuples t; (with 2 < j < n; + 1) with value n, and one tuple t;#z with value e, and
S’ is the total order formed by concatenating the 3m sequences of length n; + 2. Consider
the query @ :=II5(S Xpp S’), where II; projects to the attribute coming from relation S’
Note that S’ is an input relation, not the constant expression that gives the same relation.

We define the candidate possible world as follows:

L, is a totally ordered relation defined as the concatenation, for 1 < ¢ < 3m, of 3m — i
copies of the following sublist: one tuple with value s, n; tuples with value n, and one
tuple with value e.

L5 is a totally ordered relation defined as above, except that 3m — i is replaced by ¢ — 1.
L' is the totally ordered relation defined as the concatenation of m copies of the following
sublist: three tuples with value s, B tuples with value n, three tuples with value e.

L is the concatenation of L, L', and L.
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We now consider the POSS instance that asks whether L is a possible world of the query
Q(S,S’), where S and S’ are the input totally ordered relations. We claim that this instance
is positive iff the original UNARY-3-PARTITION instance Z is positive. As the reduction
process described above is clearly PTIME, this suffices to show our desired hardness result,
so all that remains to show our hardness result for PosRApry is to prove this claim. We now
do so.

Denote by R the po-relation obtained by evaluating Q(S,S’), and note that all tuples of
R have value in {s,n,e}. For 0 < k < |L1|, we write LE* for the prefix of Ly of length k. We
say that Lfk is a whole prefix if either k = 0 (that is, the empty prefix) or the k-th symbol
of L1 has value e. We say that a linear extension L” of R realizes Lfk if the sequence of its
k-th first values is LT", and that it realizes L, if it realizes Lf‘Ll‘. When L realizes LT,
we call the matched elements the elements of R that occur in the first k& positions of L”, and
say that the other elements are unmatched. We call the i-th row of R the elements whose
first component before projection was ¢ — 1: note that, for each i, R imposes a total order on
the i-th row.

We first observe that for any linear extension L realizing Lfk, for all 4, writing the i-th
rowast) <...<t s the unmatched elements must be all of the form ¢} for j > k; for some
k;, i.e., they must be a prefix of the total order of the i-th row. Indeed, if they did not form

a prefix, then some order constraint of R would have been violated when enumerating L”.

Further, by cardinality we clearly have ). k; = k.

Second, when a linear extension L” of R realizes Lfk , we say that we are in a whole
situation if for all 7, the value of element t;c 41 is either undefined (i.e., there are no row-i
unmatched elements, which means k; = |S’|) or it is s. This clearly implies that k; is of
the form E;izl(nj +2) for some ;; we call S; := ¥, ;;, {{n; }} the bag of row-i consumed
integers. The row-i remaining integers are E\S; (seeing F as a multiset).

We now prove the following claim: for any linear extension of R realizing L, we are in
a whole situation, and the multiset union |4, <i<am S; is equal to the multiset obtained by
repeating integer n; of £ 3m — i times for all 1 < ¢ < 3m.

We prove the first part of the claim by showing it for all whole prefixes Lfk, by induction
on k. It is certainly the case for ngo (the empty prefix). Now, assuming that it holds for
prefixes of length up to [, to realize a whole prefix LS! with I’ > [, you must first realize
a strictly shorter whole prefix LY with 1" < 1 (take it to be of maximal length), so by
induction hypothesis you are in a whole situation when realizing LY. Now to realize
the whole prefix LSV having realized the whole prefix Lgl”, by construction of Li, the
sequence L" of additional values to realize is s, a certain number of n’s, and e, and it is easily
seen that this must bring you from a whole situation to a whole situation: since there is only
one s in L”, there is only one row such that an s value becomes matched; now, to match the
additional n’s and e, only this particular row can be used, as any first unmatched element (if
any) of another row is s. Hence the claim is proven.

To prove the second part of the claim, observe that whenever we go from a whole prefix to
a whole prefix by additionally matching s, n; times n, and e, then we add to .S; the integer n;.
So the claim holds by construction of Lj.

A similar argument shows that for any linear extension L” of R whose first |L;]| tuples
achieve L; and whose last |Ls| tuples achieve Lo, the row-i unmatched elements are a
contiguous sequence t;- with k; < j < m; for some k; and m;. In addition, if we have
ki < m; — 1, then t; has value e and ¢;,,, has value s, and the unmatched values (defined
in an analogous fashion) are a multiset corresponding exactly to {{ n1,...,nsmy }}. So the
unmatched elements when having read L; (at the beginning) and Lo (at the end) are formed
of 3m totally ordered sequences, of length n; + 2 for 1 < ¢ < 3m, of the form s, n; times
n, and e, with a certain order relation between the elements of the sequences (arising from
the fact that some may be on the same row, or that some may be on different rows but
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comparable by definition of Xprg).

But we now notice that we can clearly achieve L; by picking the following, in that order:
for 1 < j < 3m, for 1 <7 < 3m — j, pick the first n; +2 unmatched tuples of row ¢. Similarly,
to achieve Lo at the end, we can pick the following, in reverse order: for 3m > j > 1, for
3m >4 > 3m — j+1, the last n; + 2 unmatched tuples of row . When we pick elements this
way, the unmatched elements are 3m totally ordered sequences (one for each row, with that

of row 7 being s, n; times n and e, for all 4) and there are no order relations across sequences.

Let T be the sub-po-relation of R that consists of exactly these unmatched elements. We
denote the elements of T as u] with 1 < j < 3m iterating over the totally ordered sequences,
and 1 <! < n; + 2 iterating within each sequence. T is the parallel composition of 3m total
orders, namely, u’l < ug << uZ,J 4o for all §, having values s for u{, e for uqu 1o, and n for
the others.

We now claim that for any sequence L”, the concatenation LiL"” Lo is a possible world
of R if and only if L” is a possible world of T. The “only if” direction was proved with the
construction above. The “if” direction comes from the fact that T is the least constrained
possible po-relation for the unmatched sequences, since the order on the sequences of
remaining elements when matching Ly and Lo is known to be total. Hence, to prove our
original claim, it only remains to show that the UNARY-3-PARTITION instance Z is positive
iff L’ is a possible world of T. (In other words, the point of the construction so far was
to reduce POSS under our restrictive assumptions to POSS for instances of a slightly less
restricted kind, namely, the parallel composition of an unbounded number of total orders of
unbounded length.)

To see why this last claim holds, observe that there is a bijection between 3-partitions of E
and linear extensions of 7' which achieve L’. Indeed, consider a 3-partition s = (s¢, s, s%) for
1 < i <m, with Ngi +ng +ng = B for all 4, and each element of E occurring exactly once
in s. We can realize L’ from s, picking successively the following for 1 < i < m: the tuples

ui"’ for 1 < p < 3 that have value s; the tuples uj—p forl<p<3and2<j< Mg + 1 that

have value n (hence, B tuples in total); the tuples ti”i 4o for 1 < p < 3 that have value e.
°p

Conversely, it is easy to build a 3-partition from any linear extension to achieve L’ from T.

This proves our last claim, and concludes the proof. <

D.2 Unordered Inputs
D.2.1 Auxiliary Result on la-Width: Proof of Proposition 25

We first show a preliminary result about indistinguishable sets:

» Lemma 63. For any poset (V, <) and indistinguishable sets S1,S3 C V such that S1N Sy #
(, S; U Sy is an indistinguishable set.

Proof. Let z,y € S; U S; and z € V\(S1 U S2), assume that z < z and show that y < z. As
S7 and Sy are indistinguishable sets, this is immediate unless € S1\52 and y € S\ 51, or

vice-versa. We assume the first case as the second one is symmetric. Consider w € S1 N Ss.

As = < z, we know that w < z as S is an indistinguishable set, so that y < z as S is an
indistinguishable set, which proves the desired implication. The fact that z < x implies z < y
is proved in a similar fashion. |

The lemma implies:

» Corollary 64. For any poset (V, <) and indistinguishable antichains Ay, Ay CV such that
A1 NAy #0, A1 U Ay is an indistinguishable antichain.

Proof. We only need to show that A; U A5 is an antichain. Proceed by contradiction, and
let z,y € A; U Ay such that x < y. As A; and A, are antichains, we must have x € A\ Ay
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and y € As\ A1, or vice-versa. Assume the first case, the second case is symmetric. As A
is an indistinguishable set, letting w € A; N As, as ¢ < y and x € Ay, we have w < y. But
w € As and y € Ay, which contradicts the fact that A5 is an antichain. <

We also show:

» Lemma 65. For any poset (V, <) and indistinguishable antichain A, for any A’ C A, A’
is an indistinguishable antichain.

Proof. Clearly A’ is an antichain because A is. We show that it is an indistinguishable set.

Let z,y € A’ and z € V\A’, and show that 2 < z implies y < z (the other three implications
are symmetric). If z € V\ A, we conclude because A is an indistinguishable set. If z € A\ A,
we conclude because, as A is an antichain, z is incomparable both to z and to y. |

We can now state and prove the Proposition:

» Proposition 25. The ia-width of any poset, and a corresponding ia-partition, can be
computed in PTIME.

Proof. Start with the trivial partition in singletons (which is an ia-partition), and for every
pair of items, see if their current classes can be merged (i.e., merge them, and check in
PTIME if it is an antichain, and if it is an indistinguishable set). Repeat the process while it
is possible to merge classes (i.e., at most linearly many times). This process concludes in
PTIME.

Now assume that there is a partition of strictly smaller cardinality. There has to be a
class ¢ of this partition which intersects two different classes ¢; # co of the original partition,

otherwise it is a refinement of the previous partition and so has a higher number of classes.

But now, by Corollary 64, cUc; and cUcy are indistinguishable antichains, and thus cUc; Ucs
also is. Now, by Lemma 65, this implies that c¢; U ¢z is an indistinguishable antichain. Now,
when constructing our original ia-partition, the algorithm has considered one element of
c1 and one element of ¢y, attempted to merge the classes, and, since it has not merged
them, ¢; U co was not an indistinguishable antichain; yet, we have just proved that it was, a
contradiction. |

D.2.2 Tractability Result: Proof of Theorems 23 and 26

As already mentioned, Theorem 23 is a direct corollary of the more general result:

» Theorem 26. For any k € N, P0OSS is in PTIME for PosRA queries assuming that input
po-databases have ita-width < k.

We now prove Theorem 26. Once again, as in the proof of Theorem 21 (Appendix D.1.1),
we use Proposition 6 to evaluate in PTIME the accumulation-free part of the query @ to a
po-relation I'. We will show that the result of this query has bounded ia-width, with the
following general result:

» Proposition 66. For any PosRA query Q and k € N, there is k' € N such that for any
po-database D of ia-width < k, the po-relation Q(D) has ia-width < k.

Proof. We compute the bound &’ by induction. For the base cases:

The input relations have ia-width at most k.
The constant relations have constant ia-width with the trivial ia-partition.

For the induction step:

Projection clearly does not change ia-width.
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Selection may only reduce the ia-width: the image of an ia-partition of the original
relation is an ia-partition of the selection, and it cannot have more classes.
The union of two relations with ia-width ¢; and ¢y has ia-width at most ¢; + ¢, taking
an ia-partition of the union as the union of ia-partitions of the operands.
The Xpg or Xy gx product of two relations I'y and I'y with ia-width respectively < ¢; and
< ¢ is < ¢1 - ¢o. Indeed, create partition the result of the product by creating one class
per pair of classes of each input relation. Now, observe that it is clear that if (¢1,%2) and
(t},t5) are in the same class of the product, then they are incomparable, because ¢; and
I, and to and ¢}, are in the same class of the ia-partitions of T’y and T's respectively,
hence incomparable. Further, it is clear that the order relation between any (¢, t2) and
(t],t5) in the product only depends on the order relation between ¢; and ¢}, t2 and ¢,
which only depends by indistinguishability on the classes of ¢; and t{, and t2 and t}, in
the ia-partitions of I'; and I'; respectively. This shows that the partition of the product
that we have defined is indeed an ia-partition of the product, and it has size < ¢y - ¢s.

Further, we show as for Proposition 56 that the bound is max(q, k, 2)°*! where o is the
number of unions and products of the query, and ¢ is the largest value such that N, appears
in the query @ (taking ¢ = 0 if no N, appears in Q). Indeed, input relations have ia-width
at most k, and constant relations have ia-width at most ¢ < k, so, if we take max(k, ¢, 2)
as a global bound, the worst composition operations are products, which yields the desired
bound. |

Now that we know that the resulting relation I' has ia-width bounded by a constant
k € N, we will again study first the case of finite and rank-invariant PosRA2° queries (with
aggregation directly applied to the po-relation I'), and then PosRA queries, where it suffices
to study P0SS (and solve it directly on T').

PosRA?°¢ queries with finite and rank-invariant accumulation. It suffices to show the
following rephrasing of the result:

» Theorem 67. For any constant k € N, and finite and rank-invariant accumulation operator
accumy, g, we can compute in PTIME, for any input po-relation I' with ia-width < k, the set
accumy, g (I").

Proof. We consider the constant-size partial order P’ on the classes of the ia-partition of the
underlying poset of I'. For each class, we consider a constant-size vector indicating, for each
possible @ € M, the number of elements v of I such that h(v,-) = a which have already
been enumerated in the class (thanks to rank-invariance, we know that h does not depend on
its second argument). Clearly the number of such vectors is polynomial, and they uniquely
describe all possible ideals of the relation, up to identifying ideals that only differ by elements
in the same class which are mapped to the same value by h (They also describe some subsets
which are not ideals.)

We use a dynamic programming approach in the same way as in the proof of Theorem 57.
Indeed, we can enumerate the polynomial number of vectors and compute for each of them
in PTIME whether it actually describes an ideal, and we can determine exactly the possible
accumulation results for each vector as a function of those of the preceding vectors in the
lexicographic order. We use the PTIME-evaluability of the underlying accumulation monoid
to ensure that all computations of accumulation results can be performed in PTIME, again
by storing with each accumulation result a witnessing totally ordered relation from which
the result is computed in PTIME, which is a prefix of a linear extension of I'. <

PosRA queries. Now, for PosRA queries, once again the CERT problem is tractable by
Theorem 17. For POSS, we prove the following, using an entirely different approach (again
because we cannot use the identity monoid as it is not finite):
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» Proposition 68. For any constant k € N, we can determine in PTIME, for any input
po-relation T with ia-width < k and totally ordered po-relation L, whether L € pw(T).

Proof. Let P = (cy,...,cx) be an ia-partition of width &k of I', which can be computed in
PTIME by Proposition 25.

If there is a way to realize L as a possible world of I', we call the finishing order the
permutation 7 of {1,...,k} obtained by considering, for each class ¢; of P, the largest
position n; of {1,...,|L|} to which an element of ¢; is mapped, and sorting the class indexes
by ascending finishing order. We say we can realize L with finishing order « if there is a
realization of L whose finishing order is w. Hence, it suffices to check, for every possible
permutation 7, whether L can be realized from I' with finishing order 7: this does not make
the complexity worse as the number of finishing orders depends only on k£ and not on I, so
it is constant. (Note that the order relations across classes may imply that some finishing
orders are impossible to realize altogether.)

We now claim that to determine whether L can be realized with finishing order =, the
following greedy algorithm works. Read L linearly. At any point, maintain the set of elements
of I which have already been used (distinguish the used and unused elements; initially all
elements are unused), and distinguish the classes of P in ezhausted classes, the ones where
all elements have been mapped; open classes, the ones where all smaller elements have been
mapped; and blocked classes, the ones where some smaller element is not mapped (initially
the open classes are those which are roots in the poset obtained from the underlying poset
of T by quotienting by the equivalence relation induced by P; and the others are blocked).

When reading a value v from L, consider all open classes. If none of these classes have
an unused element with value v, reject, i.e., conclude that we cannot realize L as a possible
world of I with finishing order 7. Otherwise, take the open class with the lowest finishing
time (i.e., appears the earliest in 7) that has such an element, and use an arbitrary suitable
element from it. (Update the class to be exhausted if it is, in which case update from blocked
to open the classes that must be). Once L is read, accept iff all elements are used (i.e., all
classes are exhausted).

It is clear by construction that if this greedy algorithm accepts then it has found a way to
match L in I'; indeed all matches that it performs satisfy the values and the order relations
of I'. It must now be proved that if L can be matched in I with finishing order =, then
the algorithm accepts when considering 7. To do so, we must show that if there is such a
match, then there is such a match where all elements are mapped, following what the greedy
algorithm does, to a suitable element in the open class with smallest finishing time (we call
this a minimal element); if we can prove this, then this justifies the existence of a match
that the greedy algorithm will construct (we call this a greedy match).

Now, to see why this is possible, consider a match m and take the smallest element ¢
of L mapped to an element s in class ¢ in I' which is non-minimal, i.e., these is a minimal
element s’ in class ¢’ # ¢ that has the same value, and 7(¢’) < 7(c), i.e., ¢’ finishes earlier

than ¢ according to m. Let ¢’ be the element to which s’ is mapped by m (and t < t').

Consider the match m’ obtained by mapping ¢ to s’ and ¢’ to s. The new match m’ still
satisfies conditions on the values because s and s’ have the same value. If we can show that
m’ additionally satisfies the order constraints of I', then we will have justified the existence
of a match that differs from a greedy match at a later point; so, reapplying the rewriting
argument, we will deduce the existence of a greedy match. So it only remains to show that
m’ satisfies the order constraints of T'.

Let us assume by way of contradiction that m’ violates an order constraint of I'. The only
possible kind of violation, given that m had no violation, is that some t” of L, t <p t"" < t/,
is matched to s” in T' for which we have s < s” (so this order constraint of T is respected by
m but not by m’). Now, using indistinguishability of elements in ¢, if s” was thus mapped in
m, it means that the class ¢ of s was exhausted when reaching ¢ in L: indeed, as s < s”,
any non-matched element of ¢ would be an ancestor of s’ and prevent us from mapping "
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to it. Now, because t’ was not reached yet in m, the class ¢’ of s’ was not exhausted yet.

However, this contradicts the fact that ¢ finishes before ¢ according to w. So m’ also satisfies
the order constraints.

This shows that we can rewrite m to a greedy match, which the greedy algorithm will
find. This concludes the proof. |

E Proofs for Section 7 (Tractable Cases for PosRA?°¢)

E.1 Cancellative Monoids

» Theorem 28. CERT is in PTIME for PosRA®¢ with accumulation in a cancellative monoid.

We formalize the definition of possible ranks for pairs of incomparable elements, and of the
safe swaps property:

» Definition 69. Given two incomparable elements x and y in T, their possible ranks prp(z,y)
is the interval [a + 1, |T'| — d], where a is the number of elements that are either ancestors
of z or of y in I (not including = and y), and d is the number of elements that are either
descendants of x or of y (again excluding = and y themselves).

Let (M, @®,¢) be an accumulation monoid and let h : D x N — M be an accumulation
map. The po-relation I' has the safe swaps property with respect to M and h if the following
holds: for any pair ¢t; # ts of incomparable tuples of I'; for any pair p,p + 1 of consecutive
integers in prp(t1,t2), we have:

We first show the following soundness result for possible ranks:

» Lemma 70. For any poset P and incomparable elements x,y € P, for any p # q €
prp(z,y), there exists a linear extension L of P such that element x is enumerated at
position p in L, and element y is enumerated at position q, and we can compute it in PTIME

from P.

Proof. We can construct the desired linear extension L by starting to enumerate all elements
which are ancestors of either x or y in any order, and finishing by enumerating all elements
which are descendants of either x or y, in any order: that this can be done without enumerating
either x or y follows from the fact that x and y are incomparable.

Call p’ = p—a, and ¢’ = ¢ — a; it follows from the definition of prp(x,y) that 1 < p’, ¢’ <
|P| — d — a, and clearly p’ # ¢'.

All unenumerated elements are either z, y, or incomparable to both z and y. Consider any

linear extension of the unenumerated elements except x and y; it has length |P| —d — a — 2.

Now, as p’ # ¢, if p’ < ¢’, we can enumerate p’ — 1 of these elements, enumerate z, enumerate
q' — p' — 1 of these elements, enumerate y, and enumerate the remaining elements, following
the linear extension. We proceed similarly, reversing the roles of x and y, if ¢ < p’. The
overall process is clearly in PTIME. |

We can then show:

» Lemma 71. We can determine in PTIME, given a po-relation I', whether I has safe swaps
with respect to @ and h.

Proof. Consider each pair (¢1,t2) of elements of T, of which there are quadratically many.

Check in PTIME whether they are incomparable. If yes, compute in PTIME prp(¢1, t2), and
consider each pair p, p 4+ 1 of consecutive integers (there are linearly many).

Using Lemma 70, construct in PTIME a possible world L of I" where t; and t5 occur
respectively at positions p and p + 1. By definition, using associativity of the composition
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law, the result of accumulation on L is w := v @ h(t1,p) & h(ta,p + 1) & v/, where v is the
result of accumulation on the tuples in L before t1, and v’ is the result of accumulation on
the tuples in L after t5. As the accumulation operator satisfies PTIME-evaluability, we can
compute w in PTIME from L.

Now, by symmetry of the definition of prp, it is clear that we have p,p + 1 € prp(ta,t1),
so using Lemma 70 again we obtain in PTIME a possible world L’ where t2 and ¢; occur
respectively at positions p and p + 1; further, from the proof of Lemma 70 it is clear that
L’ can be constructed to be equal to L except at positions p and p + 1. Hence, the result
of accumulation on L' is w’ := v & h(ta,p) ® h(t1,p + 1) ® ', which we again compute in
PTIME thanks to PTIME-evaluability.

Now, as M is cancellative, v is cancellable, so, for any a,b € M, if v @& a = v & b then
a = b; conversely, it is obvious that if a = b then v ® a = v & b. Likewise, by cancellativity
of v/, we have v a®v =vdb® v iff a = b, for any a,b € M. This means that we can test
whether 1, t3, p and p 4+ 1 are a violation of the safe swaps criterion by checking whether
w# w. <

Now it is easily seen that Theorem 28 is implied by the following claim.

» Proposition 72. If the monoid (M, ®,¢) is cancellative, then, for any po-relation T', we
have |accumyp, g(T)| = 1 ¢ff T has safe swaps with respect to @ and h.

Indeed, given an instance (D, v) of the CERT problem for query @, we can find T' such
that pw(T) = Q(D) in PTIME by Proposition 6, and we can test in PTIME by Lemma 71
whether I' has safe swaps with respect to @ and h. If it does not, then, by the above claim,
we know that v cannot be certain, so (D, v) is not a positive instance of CERT. If it does,
then, by the above claim, Q(D) has only one possible result, so to determine whether v
is certain it suffices to compute any linear extension of I', obtaining one possible world L
of Q(D), and checking whether accumulation on L yields v. If it does not, then (D,v) is
not a positive instance of CERT. If it does, then as this is the only possible result, (D,v) is a
positive instance of CERT.

We now prove this claim:

Proof of Proposition 72. For one direction, assume that I' does not have the safe swaps
property. Hence, there exist two incomparable elements ¢; and t5 in I" and a pair of consecutive
integers p,p + 1 in prp(t1,ts) such that the following disequality holds:

h(t1,p) ® h(t2,p +1) # h(t2,p) ® h(t1,p +1) (2)

By the same reasoning as in the proof of Lemma 71, we compute two possible worlds L
and L’ of I" that are identical except that t; and ¢; occur respectively at positions p and
p+1in L, and at positions p + 1 and p respectively in L’. We then use cancellativity (as
in the same proof) to deduce that L and L’ are possible worlds of T' that yield different
accumulation results w # w’, so we conclude that |accumy, g (T')| > 1.

For the converse direction, assume that I" has the safe swaps property. Assume by way
of contradiction that there are two possible worlds L; and Ly of " such that the result of
accumulation on L; and on Lg, respectively w; and ws, are different, i.e., w; # wy. Take
L1 and Ls to have the longest possible common prefix, i.e., the first position i such that
tuple ¢ of L1 and tuple ¢ of Lo are different is as large as possible. Let iy be the length of the
common prefix. Let IV be I’ but removing the elements enumerated in the common prefix of
Ly and Lo, and let L} and L} be Ly and Lo without their common prefix. Let ¢; and s,
t1 # to, be the first elements respectively of L) and L}; it is immediate that ¢; and ¢ are
roots of I, that is, no element of IV is less than them. Further, it is clear that accumulation
over L} (but offsetting all ranks by ig) and accumulation over L} (also offsetting all ranks by
ip), respectively w] and w}, are different, because, by the contrapositive of cancellativity,
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combining them with the accumulation result of the common prefix leads to the different
accumulation results wy and ws.

Our goal is to construct a possible world L% of IV whose first element is ¢; but such that
the result of accumulation on Lj is w). If we can build such an Lj, then combining it with
the common prefix will give a possible world L3 of I" such that the result of accumulation on

L3 is wo # wy, yet Ly and Lz have a common prefix of length > ig, contradicting minimality.

Hence, it suffices to show how to construct such a Lj.

As ty is a root of I, L, must enumerate t1, and all elements before ¢; in L) must be
incomparable to t;. Write these elements as Ly = s1,...,sm, and write L}’ the sequence
following ¢1, so that L} is the concatenation of L}, [t1], and L4’. We now consider the
following sequence of totally ordered relations, which are clearly possible worlds of I":

S1... SmtlLIQH

S1... Smfltlsngl

$1 .- Sm—2t18m—_18m LY’

S1 ... Sm,3t18m72 PN SmLIQN

S1... 83t134 .o Sng/
1
5182t153 e SmL2
1
51t1$2 e SWLLQ
t151 N SmL/QH

We can see that any consecutive pair in this list achieves the same accumulation result.

Indeed, it suffices to show that the accumulation result for the only two contiguous indices
where they differ is the same, and this is exactly what the safe swaps property for ¢; and s;

says, as it is easily checked that j,j + 1 € prp.(s;,t1), so that j 4o, j +io + 1 € prp(s;, t1).

Now, the first totally ordered relation in the list is L%, and the last totally ordered relation
in this list is our desired L%. This concludes the second direction of the proof.
Hence, the desired equivalence is shown. |

This finishes the proof of Proposition 72, which, as we argued, concludes the proof of
Theorem 28.

E.2 Other Restrictions on Accumulation

» Theorem 31. POSS and CERT are respectively NP-hard and coNP-hard for PosRA?C queries
performing finite and rank-invariant accumulation, even assuming that the input po-database
contains only totally ordered po-relations.

E.2.1 Proof of Theorem 31 for POSS

We show the following strengthening of the result, which will be useful to prove the result
for CERT in Section E.2.2.

» Proposition 73. There is a PosRA?° query Q with finite and rank-invariant accumulation
such that the POSS problem is NP-hard for @, even assuming that all input po-relations are
totally ordered. Further, for any input po-database D (no matter whether the relations are
totally ordered or not), we have |Q(D)| < 2.

Define the following finite domains:

D_:={s_,n_,e_};

Dy = {sy,ny,eq};
Dy :=D_UDy U{l,r} (the additional elements stand for “left” and “right”).
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Define the following regular expression on D7, and call balanced a word that satisfies it:
e:=1I(s_syn_nile_e;)*r
We now define the following problem for any PosRA query:

» Definition 74. The balanced checking problem for a PosRA query @ asks, given a po-
database D of po-relations over Dy, whether there is L € pw(Q(D)) such that L is balanced
(i.e., can be seen as a word over Dy that satisfies e).

Note that the balanced checking problem only makes sense (i.e., is not vacuously false) for
unary queries (i.e., queries whose output arity is 1) whose output tuples have value in D.

We also introduce the following regular expression: e’ := D% r, which we will use later
to guarantee that there are only two possible worlds. We show the following lemma:

» Lemma 75. There exists a PosRA query Qy, over po-databases with domain in Dy such
that the balanced checking problem for Qp is NP-hard, even when all input po-relations are
totally ordered. Further, Qp is such that, for any input po-database D, all possible worlds

of Qu(D) satisfy €.

To prove this lemma, we construct the query Q (R, S) := [I] Uaar (RU S) Uear [r]), €.,
Q, (R, S) is the parallel composition of R and S, preceded by | and followed by r. Recall the
definition of Ugyr (Definition 50), and recall from Lemma 51 that Ugyr can be expressed by a
PosRA query.

We write L, for any word w € D} to be the totally ordered unary po-relation whose only
possible world is the sequence obtained by mapping each letter of w to the corresponding
letter in D_. We claim the following:

» Lemma 76. For any w € DX and unary po-relation S over D, we have w € pw(S) iff
{R+~— L,,S — S} is a positive instance to the balanced checking problem for Q}; in other
words, iff Qi,(Ly,,S) has some balanced possible world.

Proof. For the first direction, assume that w is indeed a possible world L of S and let us
construct a balanced possible world L’ of Q(Ly,,S). L’ starts with |. Then, L’ successively
contains alternatively one tuple from L, and one from L, in their total order. Finally, L’
ends with r. L’ is clearly balanced.

For the converse direction, observe that a balanced possible world of @} (L, S) must
consist of first |, last r, and, between the two, tuples alternatively enumerated from L, from
one of the possible worlds of S, with that possible world of S achieving w. |

We now use Lemma 76 to prove Lemma 75:

Proof of Lemma 75. By Theorem 22 and its proof, there is a unary query @y in PosRA
such that the POSS problem for Qg is NP-hard, even for input relations over Dy (this is by
observing that the proof uses {s, n, e} and renaming the alphabet), and even assuming that D
contains only totally ordered relations. Consider the query Qp(R, D) := QL (R, Qo(D)); Qb
is a PosRA query, and by definition of Q) it satisfies the additional condition of all possible
worlds satisfying e’.

We reduce the POSS problem for @y to the balanced checking problem for @}, in PTIME:
more specifically, we claim that (D, w) is a positive instance to POSS for @ iff D’ obtained
by adding to D the relation name R that maps to the totally ordered L, is a positive
instance of the balanced checking problem for Qp. This is exactly what Lemma 76 shows.
This concludes the reduction, so we have shown that the balanced checking problem for Q) is
NP-hard, even assuming that the input po-database (here, D’) contains only totally ordered
po-relations. <
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Hence, all that remains to show is to prove Proposition 73 using Lemma 75. The idea is
that we will reduce the balanced checking problem to POSS, using an accumulation operator
to do the job, which will allow us to ensure that there are at most two possible results. To
do this, we need to introduce some new concepts.

Let A be the deterministic complete finite automaton defined as follows, which clearly
recognizes the language of the regular expression e, and let ) be its state space:

there is a I-transition from the initial state ¢; to a state qo;
there is a r-transition from ¢ to the final state gr;
for o € {s,n,e}:

there is an a-transition from ¢ to a state qq;

there is an a_-transition from ¢, to qg;

all other transitions go to a sink state gs.

We now define the transition monoid of this automaton, which is a finite monoid (so
we are indeed performing finite accumulation). Let F¢g be the finite set of total functions
from @ to @, and consider the monoid defined on Fg with the identity function id as the
neutral element, and with function composition o as the (associative) binary operation. We
define inductively a mapping h from DI to Fg as follows, which can be understood as a
homomorphism from the free monoid on D% to the transition monoid of A:

For € the empty word, h(e) is the identity function id.

For a € D4, h(a) is the transition table for symbol a for the automaton A, i.e., the
function that maps each state ¢ € Q to the one state ¢’ such that there is an a-labeled
transition from ¢ to ¢’; the fact that A is deterministic and complete is what ensures that
this is well-defined.

For w € D} and w # ¢, writing w = aw’ with a € Dy, we define h(w) := h(w') o h(a).

It is easy to show inductively that, for any w € D3, for any ¢ € Q, (h(w))(g) is the state
that we reach in A when reading word w from state q. We will identify two special elements
of Fy:

fo, the function mapping every state of @) to the sink state gs;
f1, the function mapping the initial state ¢; to the final state ¢, and mapping every other

state in Q\{g} to gs.

Recall the definition of the regular expression e’ earlier. We claim the following property
on the automaton A:

» Lemma 77. For any word w € D% that matches €', we have h(w) = f1 if w is balanced
(i.e., satisfies ) and h(w) = fo otherwise.

Proof. By definition of A, for any state ¢ # ¢;, we have (h(l))(q) = gs, so that, as ¢ is a
sink state, we have (h(w))(q) = gs for any w that satisfies /. Further, by definition of A,
for any state ¢, we have (h(r))(¢) € {gs,gr}, so that, for any state ¢ and w that satisfies ¢/,
we have (h(w))(q) € {gs,¢}. This implies that, for any word w that satisfies e/, we have
hw) € {for f1}.

Now, as we know that A recognizes the language of e, we have the desired property,
because, for any w satisfying e’, h(w)(g;) is ¢f or not depending on whether w satisfies e or
not, so A(w) is f1 or fy depending on whether w satisfies e or not. <

Hence, consider the query (), whose existence is guaranteed by Lemma 75, and such that
all its possible worlds satisfy e/, and construct the query @, := accumy, o(Qp) — we see h as a
rank-invariant accumulation map. We conclude the proof of Proposition 73 by showing that
P0OSS is NP-hard for @Q),, even when the input po-database consists only of totally ordered
po-relations; and that |Q.(D)| < 2 in any case:

37

34 CEST 2016

00

Generated Mon Mar 28 10



Draft preview -- not a final published version

38

Possible and Certain Answers for Queries over Order-Incomplete Data

Proof of Proposition 73. To see that (), has at most two possible results on D, observe

that, for any po-database D, writing Q(D) as a word w € D4, we know that w matches ¢’.

Hence, by Lemma 77, we have h(w) € {fo, f1}, so that Q.(D) € {fo, f1}.

To see that POSS in NP-hard for @@, even on totally ordered po-relations, we reduce the
balanced checking problem for @ to POSS for (), with the trivial reduction: we claim that
for any po-database D, Q(D) is balanced iff f; € Q,(D), which is proven by Lemma 77
again. Hence, Q(D) is balanced iff (D, f1) is a positive instance of POSS. This concludes the
reduction. |

E.2.2 Proof of Theorem 31 for CERT

We rely on Proposition 73, proven in Section E.2.1. We show that it implies the part of
Theorem 31 that concerns CERT:

Proof. Consider the query @ from Proposition 73. We show a PTIME reduction from the
NP-hard problem of P0SS for @ (for totally ordered input po-databases) to the negation
of the CERT problem for @ (for input po-databases of the same kind). The query @ uses
accumulation, so it is of the form accumy, o(Q’).

Consider an instance of POSS for @) consisting of an input po-database D and candidate
result v € M. Evaluate R = Q'(D) in PTIME by Proposition 6, and compute in PTIME
an arbitrary possible world L’ of R: this can be done by a topological sort of R. Let
v = accumy, g(L'). If v =’ then (D,v) is a positive instance for POSS for Q. Otherwise, we
have v # v'. Now, solve the CERT problem for @ on the input (D,v’). If the answer is yes,
then (D, v) is a negative instance for POSS for (). Otherwise, there must exist a possible world
L" in pw(R) with v"" = accumy, g (L") and v’ # v’. However, we know that |Q(D)| < 2 by
Proposition 73. Hence, as v # v’ and v/ # v”, we must have v = v”. So (D, v) is a positive
instance for POSS for Q.

Thus, we have reduced POSS for ) in PTIME to the negation of CERT for @), showing
that CERT for () is coNP-hard. <

E.3 Revisiting Section 6

For the proof of the results of Section E.3, refer to the proof of the corresponding results in
Section 7: Theorem 32 is proven together with Theorem 21, Theorem 33 is proven together
with Theorem 26.

F Proofs for Section 8 (Duplicate Consolidation)
F.1 Proof of Theorem 39
We first define the notion of quotient of a po-relation by value equality:

» Definition 78. For a po-relation I' = (ID, T, <), we define the value-equality quotient of T
as the directed graph Gr = (ID', E) where:

ID' is the quotient of ID by the equivalence relation idy ~ idy < T(idy) = T(ids);
E = {(id,, id,) € ID'* | id,, # idy A 3(idy, idy) € id) x id} s.t. idy < ids}.

We claim that cycles in the value-equality quotient of I" precisely characterize complete
failure of dupElim.

» Proposition 79. For any po-relation T, dupElim(T") completely fails iff Gr has a cycle.
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Proof. We first show that the existence of a cycle implies complete failure of dupElim. Let
idy, ..., id.,, id} be a simple cycle of Gr. For all 1 < i < n, there exists idy;, ide; € id}
such that ide; < idy(;41) (With the convention idy(,41) = id11) and the T'(idy;) are pairwise
distinct.

Let L be a possible world of I'" and let us show that dupElim fails on L. Assume by
contradiction that for all 1 < 7 < n, z'dg forms an id-set of L. Let us show by induction
on j that for all 1 < j < n, iday < idy;. The base case is trivial. Assume this holds for j
and let us show it for j + 1. Since idy; < idl(H_l), we have idy; < idy; <g idl(j_H). Now,
if idg(j+1) <r ’L.d21, then Z'dg(j+1) <r, Z'dgl <r, Z'dl(j+1) with T(ng(]+1)) = T(’Ldl(j_;,_l)) 7&
T(id21), so this contradicts the fact that z'd;-+1 is an id-set. Hence, as L is a total order,
we must have ida; <r, ida(j11), which proves the induction case. Now the claim proven by
induction implies that ido; <, idsy,, and we had ids, <r id1, and therefore ids, <p idi1, so
this contradicts the fact that 4d} is an id-set. Thus, dupElim fails in L. We have thus shown
that dupElim fails in every possible world of T', so that it completely fails.

Conversely, let us assume that Gr is acyclic. Consider a topological sort of Gr as
idy, ..., id,. For 1 < j < n, let L; be a linear extension of the poset (z’d’j,<‘id}). Let L be
the concatenation of Ly, ... L,. We claim L is a linear extension of I' in which dupElim does
not fail; this latter fact is clear by construction of L, so we must only show that L obeys the
comparability relations of I'. Now, let ¢t; < to in I'. Either for some 1 < j < n, t1,ts € id;
and then t; <y, t2 by construction which means t; <y, t2; or they are in different classes
idj;, and id}, and this is reflected in Gr, which means that j; < j, and ¢; <p, to. Hence, L is
a linear extension, which concludes the proof. |

We can now state and prove the result:

» Theorem 39. For any po-relation T, we can test in PTIME if dupElim(T") completely fails;
if it does not, we can compute in PTIME a po-relation T such that pw(I”) = dupElm(T).

Proof. We first observe that Gr can be constructed in PTIME, and that testing that Gr
is acyclic is also done in PTIME. Thus, using Proposition 79, we can determine in PTIME
whether dupElim(T") fails.

If it does not, we let Gr = (ID', E) and construct the relation I'" that will stand for
dupElim(T") as (ID',T’,<’) where T'(id') is the unique T"(id) for id € id’ and <’ is the
transitive closure of E, which is antisymmetric because Gr is acyclic. Observe that Rel(I")
is the set of all tuples within the bag Rel(I") (but with no duplicates).

Now, it is easy to check that pw(I") = dupElim(T"). Indeed, any possible world L of I can
be achieved in dupElim(I") by considering, as in the proof of Proposition 79, some possible
world of I" obtained following the topological sort of Gr defined by L. This implies that
pw(I'") C dupElim(T).

Conversely, for any possible world L of T', dupElim (L) fails unless, for each tuple value,
the occurrences of that tuple value in L is an id-set. Now, in such an L, as the occurrences
of each value are contiguous and the order relations reflected in Gr must be respected, L
is defined by a topological sort of Gr (and some topological sort of each id-set within each
set of duplicates), so that dupElim(L) can also be obtained as the corresponding linear
extension of IV. Hence, we have dupElim(I") C pw(I"), proving their equality and concluding
the proof. <

F.2 Possibility and Certainty Results

We first clarify the semantics of query evaluation when complete failure occurs: given
a query @ in PosRA extended with dupElim, and given a po-database D, if complete
failure occurs at any occurrence of the dupElim operator when evaluating Q(D), we set
pw(Q(D)) := (), pursuant to our choice of defining query evaluation on po-relations as yielding
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all possible results on all possible worlds. If @ is a PosRA?¢ query extended with dupElim,
we likewise say that its possible accumulation results are (.

This implies that for any PosRA query @ extended with dupElim, for any input po-
database D, and for any candidate possible world v, the POSS and CERT problems for ) are
vacuously false on instance (D, v) if complete failure occurs at any stage when evaluating
Q(D). The same holds for PosRA?® queries.

F.2.1 Adapting the Results of Section 5-7

All complexity upper bounds in Sections 5—7 are proven by first evaluating the query result in
PTIME using Proposition 6. So we can still evaluate the query in PTIME, using in addition
Theorem 39. Either complete failure occurs at some point in the evaluation, and we can
immediately solve POSS and CERT by our initial remark above, or no complete failure occurs
and we obtain in PTIME a po-relation on which to solve POSS and CERT. Hence, in what
follows, we can assume that no complete failure occurs at any stage.

Now, the only assumptions that are made on the po-relation obtained from query
evaluation are proven using the following facts:

For Theorem 21 and Theorem 32, that the property of having a constant width is preserved
during PosRAgx query evaluation, using Proposition 56;

For Theorem 26 and Theorem 33, that the property of having a constant ia-width is
preserved during PosRA query evaluation, using Proposition 66.

Hence, it suffices to show the analogous preservation results for the dupElim operator.
We now do so.

» Proposition 80. For any constant k € N and po-relation T' of width < k, if dupElim(T")
does not completely fail then it has width < k.

Proof. It suffices to show that to every antichain A of dupElim(I") corresponds an antichain
A’ of the same cardinality in I'. Construct A’ by picking a member of each of the classes of A.
Assume by contradiction that A’ is not an antichain, hence, there are two tuples t; < to
in A’, and consider the corresponding classes id; and ids in A. By our characterization of the
possible worlds of dupElim(T") in the proof of Theorem 39 as obtained from the topological
sorts of the value-equality quotient Gr of I'; as t; < to implies that (idy, ids) is an edge of Gr,
we conclude that we have id; < ids in A, contradicting the fact that it is an antichain. <

» Proposition 81. For any constant k € N, there exists k' € N such that, for any po-relation
T of ia-width < k, if T’ := dupElim(T") does not completely fail then T has ia-width < k'.

Proof. Let k € N and fix k' := 2*. Consider an ia-partition P = (¢, ...,c,) of minimal
cardinality of T' (hence, of cardinality < k). Define a partition P’ of I with classes indexed
by the powerset of P, where each element id of IV is mapped to the class of P’ corresponding
to the set of the classes of P that contain some tuple ¢t € I which is in id. It is clear that P’
is a partition, and that it has cardinality < k&’. We now show that P’ is an ia-partition of I".

We first observe the following: for any class ¢’ of P’, either ¢’ is a singleton class (i.e.,
it contains only one element in R’) or the classes of P to which P’ corresponds are all
incomparable (i.e., there are no comparability relations between any elements of them in R).
To see why, assume to the contrary the existence of ¢’ € P’ that contains two different
elements id; # ido of R’ such that the subset of P associated to ¢’ contains two distinct
classes ¢, # ¢, of P that are not incomparable: without loss of generality, we have r, < 7y
for some tuples r, € ¢, and 1, € ¢, and, by definition of classes being indistinguishable
subsets, this implies that all elements of ¢, are less than all elements of ¢, in R. Now, the
existence of id; and ids in R’ implies that there are two distinct tuple values v; # vy such
that there are two tuples s; # s in ¢, and t1 # to in ¢, with s; and ¢; having value v; and
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s2 and to having value vo. Then we have s; <pg to and sy <g t1 so that there is an edge in
Gpg from 4d; to ide and from ids to idy. Hence Gy is not acyclic, so dupElim(R) completely
fails, contradicting our assumption. Hence, our preliminary claim in proven.

The preliminary claim implies that any ¢ in P’ is an antichain. Otherwise, assuming
that idy <pgs idy for idq, idy € ¢, by the preliminary claim all classes of P associated to ¢’
are incomparable, but, taking ¢, € id; and to € idy such that t; <g o, t; and to cannot be
both in the same class of P (as they are antichains) so they are in two different classes which
are associated to ¢’ and are comparable, a contradiction.

Second, let us show that any ¢’ in P’ is an indistinguishable set, concluding the proof of
the fact that P’ is an ia-partition. More specifically, we must show that for any class ¢’ of P’
and for any two tuples id # id’ in ¢, for any tuple id” of R’ not in ¢/, we have id” <g: id
iff id” <p id and id > id" iff id >pg id”. We show the first of the four implications;
the other three are symmetric. Assume that id” < id; then there are ¢ € id”, t € id such
that t” <gr t. Let ¢ be the class of P in which ¢ occurs; we cannot have t” € c as c is an
antichain. As c is in the subset of P associated to ¢’ and id’ € ¢, there is t’ € id’ which is in
c. Now, as c is indistinguishable and ¢ ¢ ¢, we have ¢/ <g t', so that id” < id'. Hence, ¢ is
an indistinguishable set. This proves that P’ is an ia-partition, and concludes the proof. <

F.2.2 Proof of Theorem 40
» Theorem 40. For any PosRA query @, POSS and CERT for dupElim(Q) are in PTIME.

Proof. Let D be an input po-relation, and L be the candidate possible world (totally
ordered relation). We compute the po-relation I such that pw(I”) = Q(D) in PTIME
using Proposition 6 and the po-relation I' := dupElim(T") in PTIME using Theorem 39. If
duplicate elimination fails, we vacuously reject for POSS and CERT, following the remark at
the beginning of Appendix F.2. Otherwise, the result is a po-relation I', with the property
that each tuple value is realized exactly once, by definition of dupElim. Note that we can
reject immediately if L contains multiple occurrences of the same tuple, or does not have
the same underlying set of tuples as I'; so we assume that L has the same underlying set of
tuples as I and no duplicate tuples.

The CERT problem is in PTIME on I' by Theorem 17, so we need only study the case of
POSS, namely, decide whether L € pw(T"). As L and I' have no duplicate tuples, there is only
one way to match each tuple of L to a tuple of I". Build I'” from I" by adding, for each pair
t; <r ti+1 of consecutive tuples of L, the order constraint t; <p~ ¢t 11 to the corresponding
tuples in T, We claim that L € pw(T) iff the resulting possible world is a po-relation, i.e.,
its transitive closure is still antisymmetric, which can be tested in linear time by computing
the strongly connected components of I and checking that they are all trivial.

To see why this works, observe that, if the result I’ is a po-relation, it is a total order,
and so it describes a way to achieve L as a linear extension of I' because it doesn’t contradict
any of the comparability relations of I'. Conversely, if L € pw(T'), assuming to the contrary
the existence of a cycle in I'”/, we observe that such a cycle must consist of order relations of
I" and L, and the order relations of I' are reflected in L as it is a linear extension of I, so we
deduce the existence of a cycle in L, a contradiction. |
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