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ABSTRACT
Query evaluation is hard on probabilistic databases, even on very
simple probabilistic data frameworks and fairly simple queries, ex-
cept for limited classes of safe queries. We study the problem from
a different angle: rather than restricting the queries, at which con-
ditions on the data can we tractably evaluate expressive queries on
probabilistic instances? More specifically, we restrict the data tree-
width, which we define on a circuit-based generalization of c-tables,
in a natural way that restricts both the underlying instance and the
annotations. We then leverage known tree-automata constructions
to evaluate queries on bounded-treewidth instances, for such log-
ical fragments as monadic second-order logic or frontier-guarded
Datalog. We prove that we can compute in linear time a bounded-
treewidth lineage circuit for automaton runs on tree decompositions
of bounded-treewidth instances, so that the probability of the query
can then be evaluated in linear-time data complexity (assuming unit-
cost arithmetic). We also show that a similar construction can yield
a circuit representation of the semiring provenance for absorptive
semirings in the case of monotone queries. For known probabilistic
data frameworks, this results implies bounded-treewidth tractabil-
ity of query evaluation on BID relational models, and sufficient
tractability conditions for probabilistic XML models.

1. INTRODUCTION
While relational database management systems are useful

to query exact data, real-world data is often approximate, out-
dated, or incomplete: think of data extracted from unreli-
able sources, or using noisy techniques. These problems are
the focus of uncertain and probabilistic data management, a
topic investigated both from a theoretical angle [41, 50] and
through practical implementations [34].

However, a limit of these works is that query evaluation on
such instances is often hard. As an example, consider the sim-
ple tuple-independent (TID) model, with uncertainty at the
tuple level: each tuple is present or absent with some prob-
ability, and we assume independence between all tuples. It
is already #P-hard [18] to compute the probability that possi-
ble worlds of an input TID instance satisfies the simple, fixed
CQ (conjunctive query) ∃x∃y R(x)∧ S(x,y)∧ T (y); by con-
trast, this query has PTIME (even AC0) data complexity on
usual relational instances.

Existing works have studied two main ways to mitigate this.
The first one is to compute approximate probabilities, e.g.,
through sampling [36]. The second is to restrict the fixed
query to safe query classes [39, 50] that guarantee tractable
data complexity on all instances.

This works investigates a third approach, for which much
less is understood: to restrict the input instances to ensure
tractability no matter the query. We believe this approach
has practical relevance (real-world data is not arbitrary) and
has proven fruitful in other theoretical contexts. Consider
the example of monadic second-order (MSO) queries, which
are NP-hard to evaluate on (non-probabilistic) instances [6],
but have linear-time complexity on instances whose treewidth

is bounded [17], intuitively restricting them to be close to
trees. Such results also apply, e.g., to counting and reliability
calculations [6], which suggests a natural question: can we
adapt them to query evaluation on probabilistic instances and
show tractability assuming bounded treewidth?

Two obstacles make this question harder to answer. First,
there are many probabilistic frameworks (TID, BID, proba-
bilistic c-tables, probabilistic XML. . . ), so it is difficult to
define a general notion of treewidth for all of them. Second,
probabilistic models such as pc-tables have probabilistic cor-
relations which can also cause hardness even for a trivial un-
derlying instance: it is not clear how to bound simultaneously
the instances and the correlations.

This work presents a solution to both of these problems.
We introduce the probabilistic framework of pcc-instances, a
straightforward extension of pc-tables with tuple annotations
given by a circuit rather than by formulae. We then show
how to define a very natural notion of tree decompositions for
pcc-tables, intuitively encoding the annotating circuit in the
instance. This allows us to prove our desired result: query an-
swering has tractable data complexity when the instance tree-
width is bounded; in fact it is even linear assuming constant-
time arithmetic operations.

While our result applies to pcc-tables, which may be of in-
dependent interest as a concise representation for pc-tables,
we show that pcc-tables capture other formalisms, and the
bounded-treewidth condition neatly translates to them. So a
first strength of our result is that it implies tractability corol-
laries for all the probabilistic frameworks mentioned so far,
assuming a constant bound on a natural notion of width for
each model. For instance, fixed CQs are tractable to evaluate
on input TID instances if they have bounded treewidth in the
usual sense, ignoring probabilities.

A second strength of our results is that they cover very ex-
pressive queries languages. In fact, they generalize from CQs
to all queries that can be rewritten to tree automata on rela-
tional instances of bounded treewidth. This query class, as
we show, includes MSO, and in fact covers many expressive
query languages, such as frontier-guarded Datalog, which are
fragments of guarded second-order logic; we study the trade-
off between expressiveness and query complexity. While the
tractability of such expressive languages is not so surprising
as it matches known results in the non-probabilistic setting, it
is in stark contrast with the narrow classes of queries which
are tractable on arbitrary probabilistic instances.

A third strength is that our approach does not depend ei-
ther on the specifics of probability computation. In fact, as
we show, determining whether the query holds on a possible
world of the input instance reduces to determining whether
a certain circuit representation of the problem evaluates to
true, and the circuit can be computed in linear time and has
bounded treewidth. This allows us to apply probabilistic in-
ference algorithms [9,11,43] as a black box on the circuit rep-
resentation, which isolates neatly the “symbolical” aspects
of the reduction, and the “numerical” aspects of probability
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computation, yielding a very modular proof.
What is more, we show that these circuits are not a mere

technical tool, but have independent interest: they represent
concisely which valuations of the probabilistic events satisfy
the query. In this sense, we study how they relate to semir-
ing provenance [30], a very general framework to understand
the link between data instance and query result. More specifi-
cally, we show that a variant of our circuit construction can be
used as a provenance circuit [20], if we assume that the query
is monotone, and that the semiring is absorptive. This study
of provenance is novel in at least two respects. First, follow-
ing our focus on logical queries (rather than relational algebra
or Datalog), we give an intrinsic (rather than operational) def-
inition of provenance for queries on both sets and multisets
of tuples, that we connect to standard definitions [30]. Sec-
ond, our work provides (to our knowledge) the first general
study of provenance for bounded-treewidth data, with inter-
esting technical connections between tree automata and the
resulting provenance circuit.

Paper structure. We state our problem in Section 2 with
the minimal definitions, introduce some required technical
tools in Section 3, and present our main definitions and re-
sults in Section 4, and their proof in Section 5. Sections 6
and 7 investigate respectively the ramifications of this result
in terms of query languages, and in terms of probabilistic
evaluation. Section 8 spells out the consequences for various
existing probabilistic formalisms, and Section 9 investigates
the connections to semiring provenance. We finally discuss
related work in Section 10. Our results are provided with
complete proofs which are deferred to the appendix because
of space constraints.

2. PROBLEM STATEMENT
In this section, we define instances and queries [1] and the

problems we study on uncertain and probabilistic data [50].

Instances. We fix a countable domain D = {ak | k > 0}. A
signature σ is a finite set of relation names (e.g., R) with
associated arity arity(R)> 1. A relational instance (or struc-
ture) I over σ is a finite set I of ground facts of the form R(a)
with R∈ σ , where a is a tuple of arity(R) elements ofD. The
domain dom(I)⊆D of I is the finite set of domain elements
used in I. Two instances I and I′ are isomorphic if there is a
bijection ϕ from dom(I) to dom(I′) such that ϕ(I) = I′. We
say that an instance J is a subinstance1 of I, written J ⊆ I,
if it contains some subset of the facts of I, which implies
dom(J)⊆ dom(I).

Queries. We focus on queries expressed by (function-free)
first-order (FO) and second-order (SO) formulae. We omit
definitions on FO [1], noting that we allow the equality pred-
icate; SO is the extension of FO that allows second-order
quantification over predicates (of arbitrary arity) which can
then be used as part of the signature. Monadic second-order
(MSO) is the SO fragment where all second-order variables
have arity 1 (i.e., sets).

We mainly focus on Boolean queries, i.e., formulae with
no free variables. For other queries, we assume that all free-
variables are first-order and that query results are always from
the domain of the instance (e.g., the query is safe [1]).

Uncertain and probabilistic instances. A probability dis-
tribution is a pair (U ,Pr) of a finite universe U (whose ele-
ments are called possible worlds) and a probability measure
Pr : U → [0,1] such that ∑I∈U Pr(I) = 1.

1Subinstances are not necessarily “induced” by a subset of the do-
main, they can be arbitrary subsets of facts.

N(a,b) xa∧ xb
N(b,c) xb∧ xc
N(c,d) xc∧ xd
N(d,e) xd ∧ xe
N(e, f ) xe∧ x f
S(a,c) t
S(b,e) t

a

b

c d

e

f abc
gagbgabgbcgt

bce
gbgcgbcgegt

cd e
gcgdgegcdgde

e f
geg f ge f

(a) c-instance JU (b) instance IU (c) tree dec. TU , T ′U , TC

inpga

inpgb

inpgc

inpgd

inpge

inpg f

tgt

∧gab

∧gbc

∧gcd

∧gde

∧ge f

N(a1,a2)
gagbgabgbcgt

a1a2a3

N(a2,a3)
gagbgabgbcgt

a1a2a3

S(a1,a3)
gagbgabgbcgt

a1a2a3

S(a2,a4)
gbgcgbcgegt

a2a3a4

N(a3,a1)
gcgdgegcdgde

a3a1a4

N(a1,a4)
gcgdgegcdgde

a3a1a4

N(a4,a1)
geg f ge f

a4a1

(d) circuit CU (e) tree encoding EU , cc-tree-encoding E ′U
An uncertainty framework gives to objects O in some lan-

guage a semantics JOK which is a universe of instances (which
may be much larger than O). Likewise, a probabilistic frame-
work gives to O a semantics JOK which is a probability distri-
bution over instances.

A fundamental example of an uncertainty and probabilistic
framework are c-instances and pc-instances:
DEFINITION 2.1 [31, 34, 35]. A c-instance J is a relational
instance where each tuple is labeled with a propositional for-
mula of variables (or events) from a fixed set X. For a val-
uation ν of X mapping each variable to {t, f}, the possible
world ν(J) is obtained by retaining exactly the tuples whose
annotation evaluates to t under ν; JJK is the set2 of all these
possible worlds.

A pc-instance J = (J′,π) is defined as a c-instance J′ and a
probabilistic valuation3 π : X → [0,1] for the variables used
in J′. The probability distribution JJK defined by J has uni-
verse JJ′K and probability measure PrJ(I) ··=∑ν |ν(J′)=I PrJ(ν)
with the product distribution on valuations:

PrJ(ν) ··= ∏ x∈X
ν(x)=t

π(x) ∏ x∈X
ν(x)=f

(1−π(x)).

EXAMPLE 2.2. The instance IU of Figure (b), or Figure (a)
ignoring annotations, represents people seated around a U-
shaped dinner table: N indicates neighbors which can whis-
per to one another, and S (dashed in Figure (b)) indicates
married couples. We will use it as our running example.

We add uncertainty with one Boolean event xi per person i
indicating whether they are available to talk (rather than
busy, e.g., eating). Hence, a neighbor pair can communi-
cate only when both people are available. This yields the
c-instance JU of Figure (a).
Problem statement. In this paper, we study generalizations
of the standard problem of evaluating a query on an instance,
for the setting of uncertain and probabilistic instances:
DEFINITION 2.3. Given a fixed query q and an uncertainty
2Different valuations may yield the same possible world.
3Like all probabilities in this paper, the values of π are rationals.
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framework, the probabilistic query evaluation problem is to
determine, for an input probabilistic instance J with (U ,Pr)=
JJK, the probability that the query holds in a possible world
of J, namely: ∑I∈U

I|=q
Pr(I)

We are considering the data complexity of these problems:
q is fixed and we measure complexity as a function of |J|. In
the whole paper, we use |A| to denote an estimation of the
size needed to represent an object A: for example, for a set
of abstract objects, this is its cardinality in the usual sense,
for an integer the length of its binary representation, and for
a function f : S 7→ T , | f | is |S| log |T |.
EXAMPLE 2.4. We consider the MSO query qU : ∃xyS(x,y)∧
N∗(x,y), where N∗(x,y) is the (MSO-expressible) transitive
closure of N(x,y)∨N(y,x); it asks whether there are two mar-
ried people who can communicate by passing whispered mes-
sages along table neighbors. So our problem is, given the in-
put pc-instance J = (JU ,π) with some π indicating the prob-
ability that every person is busy (assuming independence), to
compute the probability that qU holds in possible worlds of J.

3. TECHNICAL PRELIMINARIES
We now introduce technical tools: tree decompositions [22],

tree automata [52], and circuits [53].

Trees. Given a fixed alphabet Γ, we will define a Γ-tree
(V,Ch ,Ch ,λ ) as a set of nodes V , two partial mappings
Ch ,Ch : V →V that associate an internal node with its left
and right child, and a labeling function λ : V → Γ. Unless
stated otherwise, the trees are rooted, directed, ordered, bi-
nary, and full (each node has either zero or two children). We
write n ∈ T to mean n ∈V . When Γ is finite, the size |T | of T
is O(|V | · (log |Γ|+ log |V |)). We say that two trees T1 and T2
have same skeleton if they are the same tree up to labels.

Tree decompositions. A tree decomposition T of a rela-
tional instance I is a T -tree T = (B,Ch ,Ch ,dom) where
T is the set of subsets of dom(I). The nodes of T are called
bags and their label is written dom(b). We require:

1. for every a∈ dom(I), letting Ba ··= {b∈B | a∈ dom(b)},
for every two bags b1,b2 ∈ Ba, all bags on the (unique)
undirected path from b1 to b2 are also in Ba;

2. for every fact R(a) of I, there exists a bag ba ∈ B such
that a⊆ dom(ba).

The width of T is w(T ) ··= k−1 where k ··= maxb∈T |dom(b)|.
The treewidth (or width) of an instance I, written w(I), is the
minimal width w(T ) of a tree decomposition T of I. It is NP-
hard, given an instance I, to determine w(I). However, given
a fixed width k, one can compute in linear time in I a tree
decomposition of width 6 k of I if one exists [10].
EXAMPLE 3.1. Figure (c), ignoring for now the gi elements,
is a tree decomposition TU of width k = 2 of IU . (For brevity,
when drawing trees we omit any additional nodes that would
be needed to make them full.)

Tree encodings. Structures of bounded treewidth can be rep-
resented by a variant of their tree decomposition which is a
tree labeled on a finite alphabet. The representation is up to
isomorphism, namely, the identities of constants are lost.

Our finite alphabet is the set of possible facts on an instance
of fixed size; we will use element co-occurrences between
one node and its parent in the tree as a way to encode element
reuse4:
DEFINITION 3.2. The set of k-facts of σ , written fctk(σ), is
the set of pairs τ = (d,s) where:

4This idea is from [15], where tree encodings are called proof trees.

• the domain d is a subset of size at most k+1 of the first
2k+2 elements of D, a1, . . . ,a2k+2;
• the structure s is a zero- or single-fact structure over σ

such that dom(s)⊆ d.
A tree encoding E of width k is a fctk(σ)-tree. We say that
n ∈ E is empty if its label is of the form (d, /0).

One can verify that, for nσ the number of relations of σ

and aσ the maximal arity of σ , we have:
|fctk(σ)|= ∑

k+1
i=0

(2k+2
i

)(
1+∑R∈σ iarity(R)

)
= O

(
22knσ kaσ

)
.

We first explain how a tree encoding E can be decoded to a
structure I = 〈E〉 (defined up to isomorphism) and a tree de-
composition T of width k of I. Process E top-down. At each
(d,s)-labeled node of E that is child of a (d′,s′)-labeled node,
pick fresh elements inD for the elements of d\d′ (at the root,
pick all fresh elements), add the fact of s to I (replacing the
elements in d by the fresh elements, and by the old elements
of dom(I) for d ∩ d′), and add a bag to T with the elements
of I matching those in d. If we ever attempt to create a fact
that already exists, we abort and set 〈E〉 ··=⊥ (we say that E
is invalid).

We can now define tree encodings in terms of decoding:
DEFINITION 3.3. We call a fctk(σ)-tree T a tree encoding of
width k of a σ -structure I if 〈T 〉 is isomorphic to I.

We note that clearly if a structure I has a tree encoding
of width k, then w(I) 6 k. We now justify that one can effi-
ciently compute a tree encoding of width k of I from a tree
decomposition of width k of I (this result is implicit in [15]).
LEMMA 3.4. From a tree decomposition T of width k of a σ -
structure I, one can compute in linear time a tree encoding E
of width k of I with a bijection from the facts of I to the non-
empty nodes of E.

Proof sketch. The intuition is that we assign each fact R(a)
of I to a bag b ∈ T such that a⊆ dom(b), which can be done
in linear time [22]. We then encode each node of T as a chain
of nodes in E, one for each fact assigned to T .
EXAMPLE 3.5. A tree encoding EU of IU following TU is
given as Figure (e). (Ignore for now the gi elements.) Each
node is labeled by a domain and a fact using elements of the
domain. The node clusters represent chains of facts created
for each bag of TU . Note that the domains of EU correspond
to those of TU ; yet, e.g., the two leaves use a1 in the encoding,
to refer to both d and f in TU .

Tree automata. A bottom-up deterministic tree automaton
on (binary full) Γ-trees, or Γ-bDTA, is a tuple A = (Q,F, ι ,δ )
of a set Q of states, a subset F ⊆ Q of accepting states, an
initial function ι : Γ→Q determining the state of leaves from
their label, and a transition function δ : Q2×Γ→Q determin-
ing the state of internal nodes from their label and the states
of their children. |A| is |Q|2 |fctk(σ)| up to polylogarithmic
factors (intuitively the size of a table for δ ).

The run of A on a Γ-tree E is a function ρ : E→Q such that
for each leaf node n, ρ(n) = ι(λ (n)), and for every internal
node n, ρ(n) = δ (ρ(Ch (n)),ρ(Ch (n)),λ (n)). The run is
accepting if, for the root nr of E, ρ(nr) ∈ F ; and A accepts E
(written E |= A) if its run on E is accepting.

Circuits. Let V = {V1, . . . ,Vm} be a finite set of value sets
where each Vi is countable, and F = { f1, . . . , fk} a finite set
of gate functions where each fi is a function from a product
of value sets V i

n( f ) (06 n< arity( f )) to a value set V o, where
06 arity( f )6 3. A (V,F)-circuit5 is a directed acyclic graph

5The dependence on V and F is omitted from notation when clear
from context; we also simply write K-circuit when V = {K}.
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C = (G,W ), where each gate g∈G is associated with a value
set V (g) ∈ V and a type which is either f ∈ F (we then call
g a function gate and require V o( f ) = V (g)) or inp (we call
g an input gate). Edges, or wires, of W are triples (g′,g, i)
where (g′,g) is an edge in the usual sense, g is a function
gate with function f , and 0 6 i < arity( f ) is the position of
the wire with respect to g. We require that a gate g with
function f have exactly arity( f ) incoming wires with distinct
positions (and input gates have no incoming wires). We may
write g ∈C for g ∈ G.

A valuation of the inputs Cinp of a circuit C is a function
from its input gates to a value of their domain. Each such val-
uation ν defines a unique evaluation ν(C) of C by ν , namely,
a function mapping each g ∈ C to ν(C)(g) ∈ V (g), which
is defined inductively: ν(C)(g) is ν(g) for g ∈ Cinp, and
ν(C)(g) for g /∈Cinp is the value of the function f of gate g on
the sequence (ν(C)(g′)) for (g′,g, i) ∈W , 0 6 i < arity( f ).

A common example of circuits are Boolean circuits, where
we have V = {{t, f}}, F = {∧,∨,¬, t, f} with arity(∧) =
arity(∨) = 2, arity(¬) = 1, arity(t) = arity(f) = 0, and the
expected truth tables. Any propositional formula can be trans-
lated in linear time to a Boolean circuit by creating one input
gate per variable and one function gate per constant and per
subexpression (using associativity to ensure that all ∧ and ∨
operators are binary).
Tree decompositions of circuits. To a set F of gate func-
tions, we can associate a relational signature σF with one
unary relation Inp and one relation R f of arity arity( f )+ 1
for every f ∈ F . We can thus encode in linear time a (V,F)-
circuit C = (G,W ) to a σF instance IC with dom(IC) = G
that contains one fact Inp(g) for each g ∈Cinp, and one fact
R f (g,g1, . . . ,garity( f )) for each g /∈ Cinp with function f ∈ F
and inputs g1, . . . ,garity( f ). The treewidth w(C) of C is w(IC)
(but we talk of tree decompositions of C as shorthand).
EXAMPLE 3.6. Looking only at the gi nodes, Figure (c) rep-
resents a tree decomposition TC (of non-minimal width) of the
Boolean circuit CU of Figure (d).

4. GENERAL MODEL AND MAIN RESULT
Our goal is to investigate the tractability of query evalu-

ation on probabilistic instances under a suitable notion of
bounded treewidth. Rather than investigating separately all
existing probabilistic frameworks, we introduce new frame-
works for uncertain and probabilistic instances, namely cc-
instances and pcc-instances. These models are a straightfor-
ward generalization of (p)c-instances annotated by circuits
rather than formulae. We next define a notion of tree decom-
position and treewidth for them.

This being done, we focus on cc-instances only, and state
our main result: the evaluation of some query classes on
bounded-treewidth cc-instances can be represented in linear
time by a bounded-treewidth circuit. We first state a simple
version of this result (Theorem 4.8), and then a more elabo-
rate version which accounts for combined complexity (Theo-
rem 4.13).

Those results are proven in the next section. Section 6
then studies to which query classes they apply, and Section 7
points out their consequences for our original problem of
probabilistic query evaluation.
4.1 CC-Instances

We define the circuit c-instance (cc-instance) uncertainty
framework, and the corresponding pcc-instance probabilistic
framework:
DEFINITION 4.1. A cc-instance is a triple J = (I,C,ϕ) of
a relational σ -instance I, a Boolean circuit C, and a map-

ping ϕ from the facts of I to gates of C. The inputs Jinp
of J are Cinp. For every valuation ν of Jinp, the possible
world ν(J) is the subinstance of I that contains the facts F
of I such that ν(C)(ϕ(F)) = t, and, as for c-instances, JJK is
the set of possible worlds of J.

A pcc-instance is a 4-tuple J = (I,C,ϕ,π) such that J′ =
(I,C,ϕ) is a cc-instance (and Jinp ··= J′inp) and π : Jinp→ [0.1]
gives a probability to each input. As for pc-instances, the
probability distribution JJK has universe JJ′K and probability
measure PrJ(I′) = ∑ν |ν(J)=I′ PrJ(ν) with the product distribu-
tion: PrJ(ν) = ∏ g∈Jinp

ν(g)=t

π(g)∏ g∈Jinp

ν(g)=f

(1−π(g)).

Naturally, (p)cc-instances are very related to (p)c-instances,
except that their annotations are represented as circuits. It is
straightforward that (p)cc-instances capture (p)c-instances:
PROPOSITION 4.2. For any (p)c-instance J, one can com-
pute in linear time a (p)cc-instance J′ whose inputs are the
variables X of J, such that for any valuation ν of X, ν(J) =
ν(J′) (and, for the probabilistic version, PrJ(ν) = PrJ′(ν)).
EXAMPLE 4.3. The cc-instance J′U corresponding to JU maps
each fact N(x,y) by ϕ to the gate gxy of circuit CU , and maps
the S facts to gt.

Conversely, while (p)c-instances do capture (p)cc-instances
(they can clearly represent any universe or probability distri-
bution), the naïve translation from cc-instances to c-instances
leads to a blowup, intuitively because c-instances cannot share
common subexpressions between tuple annotations.
EXAMPLE 4.4. We temporarily leave our running example
aside. Fix n ∈ N and a universe Un whose possible worlds
are /0, {R(a1,a2)}, {R(a1,a2),R(a2,a3)}, . . . , {R(a1,a2), . . . ,
R(an−1,an)}. For instance, this could be a representation of
the possible worlds of a chain in an uncertain XML docu-
ment, where the removal of an edge implies that all descen-
dant edges are also removed.

It is easy to represent Un as a cc-instance J with underlying
instance I ··= {R(a1,a2), . . . ,R(an−1,an)}, C defined by g1 =
gi

1, and g j ··= g j−1 ∧ gi
j for 1 < j 6 n− 1, with the gi

j being
inputs, and ϕ(R(ai,ai+1)) = gi. This J has size linear in n.

By contrast, it is harder to represent Un as a c-instance, as
the annotation of every fact “depends” on that of the previ-
ous fact in the chain. If we consider the natural encoding J′
where each fact R(a j,a j+1) is annotated by the conjunction
e1∧·· ·∧ e j, we see that J′ has size quadratic in n.

We leave open the question of whether (p)cc-instances are
strictly more compact than (p)c-instances no matter the trans-
lation, noting that it is related to the problem of comparing
the compactness of Boolean formulae and circuits [53]. In
that context, some linear-size circuits are known [32] to have
no equivalent formulae shorter than O(n3−ε); but this does
not directly translate to a bound for our setting.

4.2 Tree Decompositions
We now introduce our notion of tree decomposition of a cc-

instance. Intuitively, it is a simultaneous tree decomposition
of its underlying relational instance and of the relational en-
coding of its circuit, which respects the mapping ϕ between
the two. However, we can just formalize it as a tree decom-
position in the usual sense for a natural notion of relational
encoding of the cc-instance.
DEFINITION 4.5. Let σb be the signature of the relational
encoding of Boolean circuits. Let σ be a signature and σ+

be the signature with one relation R+ of arity arity(R) + 1
for every relation R of σ . The relational encoding IJ of a
cc-instance J = (I,C,ϕ) over signature σ , is the (σb tσ+)-
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instance containing both the σb-instance IC encoding C and
one fact R+(a,ϕ(F)) for every fact F = R(a) in I.

A tree decomposition of a cc-instance J is a tree decompo-
sition of IJ . Tree decompositions of pcc-instances are defined
as a tree decomposition of the corresponding cc-instance (the
probabilities are ignored).

As the relational encoding of a (p)cc-instance can clearly
be computed in linear time, all existing algorithms and com-
plexity bounds [10] for the computation of tree decomposi-
tions of relational instances also apply to (p)cc-instances. In
particular, for a fixed k, we can compute in linear time in the
input cc-instance J a tree decomposition of J of width 6 k if
one exists.

Note that for a cc-instance J = (I,C,ϕ), we have w(J) >
w(I), and w(J) > w(C), as a tree decomposition of width k
of J doubles as a tree decomposition of width 6 k of both I
and C; but conversely w(C)6 k and w(I)6 k does not imply
that w(J) is bounded. Note also that any possible world I′
of J has treewidth at most k (as I′ ⊆ I, w(I′)6 w(I)).
EXAMPLE 4.6. Returning to our running example, Figure (c)
is a tree decomposition T ′U of the cc-instance J′U ; it combines
both the tree decomposition TU of IU and TC of CU , in a com-
patible way (the facts of IU are covered, including their image
by ϕ).

4.3 Main Result
We now state our main result, but we must first define the

query class to which it applies.
DEFINITION 4.7. A fctk(σ)-bDTA A tests a Boolean query q
for treewidth k if for any fctk(σ)-tree E, E |= A iff 〈E〉 |= q.
(In particular, if 〈E〉=⊥ then A rejects E.)

We say that a Boolean query q is fixed-treewidth automata-
rewritable (FTAR) if, for every k, one can compute a bDTA Ak
on fctk(σ) that tests q for treewidth k.

Many important query classes, such as UCQs, MSO, or
guarded Datalog, are FTAR: we review them in Section 6.

The key point is that a FTAR query can be tested in linear-
time data complexity on a bounded-treewidth relational in-
stance I by computing an instance-independent automaton A,
computing a tree encoding E of I, and running A on E. Our
main result shows that something similar can be done when
the instance and tree encodings are uncertain:
THEOREM 4.8. For any fixed integer k and FTAR query q,
one can compute in linear time, from a cc-instance J with
w(J) 6 k, a Boolean circuit C on Jinp with a distinguished
gate g such that for every valuation ν of Jinp, ν(C)(g) = t iff
ν(J) |= q, with w(C) depending only on k and q.

In other words, for a bounded-treewidth cc-instance J, a
FTAR query q can be “instrumented” in linear time data com-
plexity, in the sense of producing a circuit C describing which
valuations of J satisfy q; furthermore, the treewidth of C is
bounded. We show in Section 7 the consequences of this fact
in terms of probability, by an application of belief propaga-
tion to justify that the probability that q holds on J is tractable
to evaluate. In terms of provenance, we study in Section 9
how the resulting circuit relates to semiring provenance.
EXAMPLE 4.9. The Boolean circuit C′ obtained for qU on JU
would represent the Boolean function describing when qU
holds on a possible world of JU ; in this case, it would be
equivalent to xb∧ xc∧ (xa∨ (xd ∧ xe)).

A limitation of the result is that FTAR queries are by def-
inition Boolean; and they must be invariant under isomor-
phism, which forbids constants. Can our theorem apply to
such queries? We see this by introducing the required no-
tions:

DEFINITION 4.10. We say that a Boolean query q over σ is
quasi-FTAR if there exists a linear-time computable FTAR
query q′ over some σ ′ and set of facts Iq such that for any
instance I over σ , I |= q iff I∪ Iq |= q′.

We say that a non-Boolean query q is non-Boolean quasi-
FTAR if for every tuple a with the output arity of q, there ex-
ists a linear-time computable Boolean quasi-FTAR query qa
such that for any instance I, I |= q(a) iff I |= qa.

Quasi-FTAR queries encompass in particular queries that
contain constants when the underlying constant-free query
language is FTAR: by replacing constants in the query as
unary predicates that contain a single fact, one can obtain
a constant-free query. Section 6 proves this formally for our
query languages. Now, it is clear that our theorem also ap-
plies to Boolean quasi-FTAR queries, with the same data
complexity. Also, since non-Boolean queries are assumed
to only return elements from the domain of the instance, a
fixed non-Boolean query has only polynomially many possi-
ble outputs, so Theorem 4.8 applies to them as well, but with
polynomial rather than linear complexity.

4.4 A Finer Result
Theorem 4.8 is useful in terms of data complexity, but does

not give any insight about combined complexity. We now
give a stronger (but more complex) statement which high-
lights the contribution of the query and of the cc-instance’s
treewidth, both in terms of instance and circuit.

First, we need to give a technical definition that we use to
distinguish the contribution of the instance and circuit:
DEFINITION 4.11. Given a cc-instance J and a tree decom-
position T of J, we let kI ··= (maxb∈T |dom(b)∩dom(I)|)−1
and likewise for kC.We call (kI ,kC) the mixed width of T .

Clearly it holds that max(kI ,kC)6 w(J)6 kI + kC +1.
Our stronger result considers the mixed width of a tree de-

composition provided as input with the cc-instance: it cannot
talk about the mixed width of the input instance, as we can no
longer justify that a tree decomposition with the prescribed
mixed width can be computed in linear time.

There is a second technical definition to give: as our more
elaborate result separates the (instance-independent) cost of
compiling the query to a bDTA, it takes an automaton as input
rather than a query. So we need to impose a condition on this
automaton (which is respected in particular by any automaton
testing some FTAR query q):
DEFINITION 4.12. A fctk(σ)-bDTA A is said to be encoding-
invariant if for any two fctk(σ)-trees E and E ′ such that 〈E〉
and 〈E ′〉 are isomorphic, E |= A iff E ′ |= A.

Let us now state the theorem, that we prove in Section 5:
THEOREM 4.13. Let T be a tree decomposition of mixed
width (kI ,kC) of a cc-instance J, and A an encoding-invariant
fctk(σ)-bDTA with state set Q. We pose V = {{t, f},Q}, There
is someF depending only on A such that one can compute, in
time O(|A| · (|T |+ |J|)), a (V,F)-circuit C and distinguished
gate g with domain {t, f} such that for every valuation ν

of Jinp, ν(C)(g) = t iff ν(J) |= q; and compute a tree de-
composition T of C of width kC + 5 where each bag has at
most kC+6 nodes with value set {t, f} and 5 nodes with value
set Q.

Up to polylogarithmic factors, our combined complexity
is thus in O

(
|Q|222knσ kaσ (|J|+ |T |)

)
, using the bound on

|fctkI (σ)| established in Section 3. Note that this result does
not account for the time needed for the (separate) tasks of
compiling the query to A (see Section 6) or of computing
probabilities from C (see Section 7). Also note that this the-
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orem has no clear extension to (non-Boolean) quasi-FTAR
queries, as it deals with an input automaton, not a query.

We conclude this section by observing that, while bound-
ing the mixed width suffices (as we show) to ensure tractable
data complexity for probabilistic query evaluation, bounding
the width of I and of C in isolation does not suffice. Of
course, it is already known that for simple queries, probabilis-
tic query evaluation is #P-hard in an input cc-instance J for
trivial C and arbitrary I ([18], Theorem 7), or for trivial I and
arbitrary C (immediate reduction from #SAT). Yet, we show
that even when I and C have constant treewidth, hardness
may ensue; intuitively, it is crucial that we have a tree decom-
position of J which simultaneously decomposes I and C:
PROPOSITION 4.14. There is a fixed CQ q such that the prob-
abilistic query evaluation for q is #P-hard even when input
pcc-instances J =(I,C,ϕ,π) are restricted by imposing w(I)=
w(C) = 1.

5. PROOF OF MAIN RESULT
In this section, we prove Theorem 4.13. It will be more

convenient to work with K-cc-instances, that is, cc-instances
annotated with an arbitrary set K, which we now fix.
DEFINITION 5.1. A K-instance is an instance where every
fact F is annotated by an element α(F) from K.

A K-tree-encoding of width k is a (fctk(σ)×K)-tree. The
decoding 〈E〉 of a K-tree-encoding E is a K-instance ob-
tained in the expected fashion, by labeling each created fact
with the annotation6 in the node label. Given a function
f : E → K, we write f (E) for the K-tree-encoding obtained
from E in the expected way.

A K-cc-instance J = (I,C,ϕ) is a cc-instance where C is a
K-circuit. For any valuation ν of Cinp, ν(J) is the K-instance
where each fact F is annotated by ν(C)(ϕ(F)).

For usual cc-instances, the value set K is {t, f}, so in ν(J)
facts are annotated with t if they must be kept and f if they
must be discarded. There is no important difference between
annotating facts with f and actually discarding them, as au-
tomata can be rewritten from one case to the other (see Ap-
pendix for details).
CC-encodings. We first explain how K-tree-encodings can
be generalized for K-cc-instances: we encode the underlying
instance while retaining the original circuit to provide the (yet
unknown) annotations.
DEFINITION 5.2. A K-cc-encoding of width (kI ,kC) is a tu-
ple E ′ = (E,C,T,χ) of an (unannotated) tree encoding E
of width kI , a K-circuit C, a tree decomposition T of C of
width kC with same skeleton as E, and a mapping χ : T →C
selecting a distinguished gate such that χ(b) ∈ dom(b) for
all b ∈ T . The inputs E ′inp of E ′ are Cinp.

Given a valuation ν of Cinp, we see ν(C) as an annotation
function on E by setting ν(C)(n) ··= ν(C)(χ(b)) for the bag
b of T corresponding to n in E, and write ν(E ′) the resulting
K-tree-encoding.

We can compute a K-cc-encoding of our K-cc-instance J =
(I,C,ϕ) by “splitting” its tree decomposition T in a tree de-
composition of C and a tree encoding E of I with same skele-
ton, with χ keeping track of the gate of C to which each node
n ∈ E was mapped by ϕ . Formally:
LEMMA 5.3. Given a K-cc-instance J = (I,C,ϕ) and a tree
decomposition T of J of mixed width (kI ,kC), one can com-
pute a K-cc-encoding E ′ = (E,C′,T ′,χ) of width (kI ,kC),
with C =C′, such that for any valuation ν of Cinp, ν(C)(E ′)
is an encoding of ν(J). The computation is in O(|T |+ |C|).
6The annotations are lost for nodes with 0-fact structures.

EXAMPLE 5.4. Figure (e) represents a {t, f}-cc-encoding E ′U :
it combines the tree encoding EU of IU and a tree decompo-
sition T ′C of C constructed from TC (the gi nodes), which has
same skeleton as EU . Note that the image by ϕ of the instance
facts for the nodes of EU are present (and underlined) in the
corresponding bag of T ′C.

Run circuits. Forgetting temporarily the original circuit C,
we now describe how the run of a (fctk(σ)×K)-bDTA A
on the encoding E, with its yet-unknown annotations, can
be “instrumented” as a run circuit C′′ following E, with C′′inp

waiting to receive each node’s annotation.
DEFINITION 5.5. Let E be a fctk(σ)-tree, and A be a bDTA
on (fctk(σ)×K) with states Q. A run circuit of A on E is
a tuple (C,T,ξ ,go) where C is a {K,Q,{t, f}}-circuit, T is
a tree decomposition of C with same skeleton as E, ξ is a
bijection from T to Cinp, and go is a distinguished gate of C
with value set {t, f}.

For any annotation function f : E→K, letting ν be the cor-
responding valuation of Cinp (for every bag b of T , ν(ξ (b))=
f (n) where n is the node of E corresponding to ξ (b)), we re-
quire that ν(C)(go) = t iff f (E) |= A.

Intuitively, a run circuit computes the result of running A
on E depending on the annotation of E (which are fed to the
gates indicated by ξ ). We now justify that run circuits of
bounded treewidth can be constructed:
LEMMA 5.6. Assume that K is finite. Let k ∈ N∗, and A be
(fctk(σ)×K)-bDTA with state space Q. Let V = {K,Q,{t, f}}.
There exists a function set F such that, for any tree encoding
E of width k, one can compute in O(|E| · |A|) a run (V,F)-
circuit (C,T,ξ ,go) of A on E such that w(T ) = 4.

Proof sketch. The circuit has the same structure as E with
one input gate per n ∈ E representing the annotation of n,
and one state gate with domain Q representing the state of
the automaton at n, whose inputs are the input gate and the
state gate of children (if any). The function set F encodes
the transitions of the automaton.

Circuit stitching. We now need to “stitch together” the cc-
instance circuit C and the run circuit C′′.
DEFINITION 5.7. Let C = (G,W ) and C′ = (G′,W ′) be cir-
cuits such that G∩G′ =C′inp (we say that C and C′ are stitch-
able). The stitching of C and C′, denoted C◦C′, is the circuit
(G∪G′,W ∪W ′). In particular, (C ◦C′)inp =Cinp.

We show that a tree decomposition for C ◦C′′ can be ob-
tained from two tree decompositions T and T ′′ for C and C′′
that have same skeleton, as the sum T +T ′′ with same skele-
ton where each bag b′′ of T + T ′ is the union of the corre-
sponding bags b and b′ in T and T ′. Namely:
LEMMA 5.8. Let C and C′ be stitchable circuits with tree
decompositions T and T ′ with same skeleton (with witnessing
bijection ψ). Assume that for any g ∈ C′inp and bag b of T ′

with g ∈ dom(b), we have g ∈ dom(ψ−1(b)). Then T +T ′ is
a tree decomposition of C ◦C′.

Concluding. We now sketch the overall proof. We compute
from the cc-instance J and its decomposition T a cc-encoding
E ′ = (E,C,T ′,χ), and from the (fctkI (σ)×K)-bDTA A (hav-
ing added K = {t, f}) and the unannotated encoding E we
compute a run circuit C′′ of E on A and tree decomposition
T ′′ of C′. Now C and C′′ being essentially stitchable and hav-
ing tree decompositions T ′ and T ′′ with same skeleton, we
stitch them, yielding the desired circuit and tree decompo-
sition. Correctness follows from the fact that C′′ correctly
instruments the run on A on E ′, that is, on E following the
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annotations given by the original circuit C.
Theorem 4.13 implies Theorem 4.8 as the tree decomposi-

tion can be computed in linear time even if not given in the
input, and we can rewrite the gates with domain Q represent-
ing the automaton state by Boolean gates, which does not
change data complexity or the treewidth beyond a multiplica-
tive constant.

6. REWRITING QUERIES TO AUTOMATA
In this section, we give a survey of query languages which

are FTAR (recall Definition 4.7). We show that the very ex-
pressive language of guarded second-order logic is FTAR,
and then study the complexity of compiling the automaton,
as a function of the query and treewidth, for more restricted
query languages: unions of conjunctive queries (UCQ), and
frontier-guarded datalog. We close by an example of a non-
FTAR language, namely Datalog.

We first look at MSO queries, well-known to be rewritable
to tree automata on bounded treewidth instances [22,51]. We
restate this result in our setting:
THEOREM 6.1. Constant-free MSO sentences are FTAR.

Proof sketch. The main problem is to justify that MSO sen-
tences can be rewritten to MSO sentences on our tree encod-
ings, as we can then use [51] to compile them to a bDTA. We
rely on [22] for that result, but we must translate between our
tree encodings and theirs. We do so by a general technique
of justifying that certain product trees annotated with both
encodings can be recognized by a bDTA.

While MSO captures many useful query languages (in par-
ticular, all FO queries), it does not capture languages such as
Datalog or its various restrictions, which we now define:
DEFINITION 6.2. A Datalog query P over the signature σ

consists of a signature σint of intensional predicates with a
special relation Goal() (exceptionally with arity 0) and a fi-
nite set of rules of the form R(x)← R1(y1), . . . ,Rk(yk) where
R ∈ σint, Ri ∈ σ tσint for 1 6 i 6 k, and each variable in
the tuple x also occurs in some tuple yi. The left-hand (resp.,
right-hand) side of a Datalog rule is called the head (resp.,
body) of the rule. The query is called monadic [1] if all
the intentional predicates are unary, guarded [28] if all the
variables of the body occur together in some body atom, and
frontier-guarded [7] if all the variables of the head atom ap-
pear together in some body atom. The semantics of P is that
I |= P whenever the fact Goal() can be derived on I by apply-
ing the rules of P (see [1] for formal definitions).

While monadic Datalog is captured by MSO, is it true that
guarded Datalog is FTAR? What about the more expressive
frontier-guarder Datalog? In fact, it is known that these lan-
guages can be expressed in an SO fragment called guarded
second-order logic (GSO). We define GSO and show that it
captures frontier-guarded Datalog (and thus guarded Datalog):
DEFINITION 6.3. Guarded Second-Order logic (GSO) is the
restriction of SO where quantification on second-order vari-
ables is semantically restricted so that it only applies to the
guarded tuples, namely, the tuples formed by elements which
occur together in some fact of the instance.
PROPOSITION 6.4. Any frontier-guarded Datalog program
can be expressed as a GSO formula.

We now show the following, using a result of [29] about
GSO queries being rewritable to MSO queries on an inci-
dence instance which has roughly the same treewidth:
THEOREM 6.5. Constant-free GSO sentences are FTAR.

Hence, in terms of data complexity, Theorem 4.8 applies
to any fragment of GSO. The result generalizes to GSO for-

mulae with free variables and constants:
COROLLARY 6.6. GSO sentences (resp., queries) are quasi-
FTAR (resp., non-Boolean quasi-FTAR).

However, when we are concerned with combined complex-
ity, we must account for the (data-independent) step of rewrit-
ing the query to a bDTA, and the complexity of this task for
MSO (and hence GSO) is nonelementary [25]. We therefore
turn to studying the complexity of this task for less expressive
fragments of GSO, to prove better complexity bounds.
DEFINITION 6.7. Let σ be a fixed signature. The rewriting
complexity of a FTAR fragment is the complexity of rewriting
a query q from this fragment to a fctk(σ)-bDTA Aq that tests
the query, as a function of the query size |q| and treewidth k.

First, we consider unions of conjunctive queries. A con-
junctive query is an existentially quantified conjunction of
positive atoms and unions of conjunctive queries (UCQs) are
disjunctions of CQs.
PROPOSITION 6.8. [15] The rewriting complexity of UCQs
is in 2-EXPTIME in |q| and k.

Second, we look at frontier-guarded Datalog:
PROPOSITION 6.9. [12] The rewriting complexity of frontier-
guarded datalog is in 3-EXPTIME in |P| and k.

We conclude by an example of a non-FTAR language:
PROPOSITION 6.10. Datalog is not FTAR.

7. PROBABILITY EVALUATION
In this section, we show how probability evaluation can be

tractably performed on bounded-treewidth circuits. Together
with Theorem 4.8, this implies that FTAR query evaluation is
tractable on bounded-treewidth pcc-instances. The result is
based on an existing technique to determine marginal proba-
bilities in bounded-treewidth Bayesian networks, through be-
lief propagation.

Recall our definition of circuit from Section 3, and the no-
tion of tree decomposition of a circuit.
DEFINITION 7.1. The probability evaluation problem for a
circuit C, distinguished gate g, and probabilistic valuation π

associating each g′ ∈Cinp to a probability distribution πg′ on
its value set V (g′), is to compute the probability distribution
of g under the product distribution for the inputs (i.e., assum-
ing independence), that is, Prg mapping d ∈V (g) to

∑valuation ν
ν(C)(g)=d

∏g′∈Cinp
πg′(ν(g′)).

As probability evaluation requires computation over ratio-
nal probabilities, we carefully define a notion of tractability:
DEFINITION 7.2. An algorithm runs in ra-linear time (for
rational-arithmetic linear time) if it runs in linear time assum-
ing that arithmetic operations over rationals take constant
time and rationals are stored in constant space, and runs in
polynomial time without this assumption.

We can now state our main result for this section:
THEOREM 7.3. Let V be a set of finite value sets, and let
k1, . . . ,k|V| be integers. Given a tree decomposition T of a
V-circuit C such that the number of gates of value set Vi in
any bag of T is less than ki for all 1 6 i 6 |V|, and given a
probabilistic valuation πg′ for every g′ ∈Cinp, the probability
evaluation problem for C, a gate g, and π can be solved in
time ra-linear in |T |×h(k)+ |π|+ |C|, where h(k) = ∏i |Vi|ki .

Proof sketch. The result is by the known technique of belief
propagation (or sum-product message passing) [9,11,43] ap-
plied to bounded treewidth circuits. We introduce a potential
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function for every bag and edge of T , initialize them using
the distribution π and the constraints imposed by the func-
tions of F , and apply belief propagation (amounting to one
bottom-up and one top-down pass), so our desired distribu-
tion is obtained by marginalizing the potentials.

As for Theorem 4.13 we must assume that T is given be-
cause we can no longer argue it is computable in PTIME;
but this problems disappears if we are only interested in data
complexity, yielding the simpler corollary:
COROLLARY 7.4. Fix the value sets V and k ∈ N∗. Given a
circuit C with w(C)6 k, g∈C and a probabilistic valuation π ,
the probability evaluation problem can be solved in time ra-
linear in |C|+ |π|.

We can now combine Theorem 4.8 with Corollary 7.4 and
finally obtain the desired tractability result for FTAR query
evaluation over bounded-treewidth pcc-instances:
THEOREM 7.5. The probabilistic query evaluation problem
for FTAR queries on bounded-treewidth pcc-instances can be
solved in ra-linear time data complexity.

Of course, this result has immediate consequences for the
possibility and certainty problem, namely, that of determin-
ing whether a query is satisfied in some possible world or in
all possible worlds of an input cc-instance:
COROLLARY 7.6. The query certainty and possibility prob-
lems for FTAR queries on bounded-treewidth cc-instances
can be solved in ra-linear time.

Note that belief propagation additionally allows efficient
computation of other properties [33] of the probability distri-
bution over circuit gates: conditional distributions, arbitrary
marginals, etc.

8. APPLICATIONS
We now investigate the consequences of Theorem 4.8 for

probabilistic query evaluation on various existing models. All
results are stated for Boolean MSO queries for readability;
however, they actually hold for all quasi-FTAR query lan-
guages (see Section 6), and for non-Boolean queries if linear-
time claims are demoted to PTIME (see Section 4.3).

8.1 Relational Models
We first study relational probabilistic models: pc-instances

and block-independent disjoint instances (BID) [8, 46].
pc-instances. Recall the definition of (p)c-instances and pc-
instances, which intuitively are (p)cc-instances where each
tuple is mapped to a tree-shaped circuit representation of its
formula, with no sharing between trees except the inputs.

Ignoring the structure of the annotation formulae (except
event occurrences), we can accordingly define a notion of
bounded treewidth for (p)c-instances, which implies the ana-
logue of Theorem 4.8 for (p)c-instances.
DEFINITION 8.1. Let σo = σ ∪{Occ,Cooc}, where Occ and
Cooc have arity two. From a pc-instance J, we define the re-
lational encoding IJ of J as the σo-instance where each event
e of J is encoded to a fresh ae ∈ dom(J), and where we add a
fact Occ(a,ae) in IJ whenever a∈ dom(J) is used in a fact an-
notated by a formula involving e, and Cooc(ae,a f ) whenever
events e and f co-occur in the formula of some fact.

The treewidth w(J) of a (p)c-instance J is w(IJ).
This notion of treewidth, through event (co-)occurrences,

can be connected to treewidth for (p)cc-instances, to ensure
tractability of query evaluation on (p)c-instances of bounded
treewidth in that sense. A technicality is that we must first
rewrite annotations of the bounded-treewidth (p)c-instance to
bound their size by a constant; but we can show:

PROPOSITION 8.2. For any fixed k, given a (p)c-instance J of
width 6 k, we can compute in linear time a (p)cc-instance J
which is equivalent in the sense of Proposition 4.2 and has
treewidth depending only on k.

Combining this with Theorem 4.8, we deduce:
THEOREM 8.3. For bounded-treewidth pc-instances, the prob-
abilistic query evaluation problem for Boolean MSO queries
can be solved in ra-linear time data complexity.

This clearly implies the same claim for tuple-independent
databases (TID) [18, 42], with the treewidth of a TID being
that of the underlying relational instance, as it is straightfor-
ward to encode in linear time a TID instance to a pc-instance
with the same treewidth up to an additive constant.

BID instances. Following [8, 46], we define:
DEFINITION 8.4. A BID instance I is a relational instance
with each relation partitioned into key and value positions.
For each valuation of the key positions, all matching facts
(that form a block) are mutually exclusive, each has a proba-
bility > 0 and the probabilities of the block sum to 6 1. The
semantics is to keep, independently between blocks, one fact
at random in each block, according to the indicated probabil-
ities (or possibly no fact if probabilities sum to < 1).

To ensure ra-linear time complexity, we assume that BID
instances are given with facts regrouped per blocks; other-
wise our bounds are PTIME as we first need to sort the facts.
DEFINITION 8.5. We define the treewidth w(I) of a BID in-
stance I as that of the underlying relational instance, forget-
ting about the probabilities.

We are able to show the tractability of MSO query evalua-
tion on BID through Theorem 4.8 thanks to the following:
LEMMA 8.6. For any fixed k ∈ N∗, given a BID instance J
with w(J) 6 k, we can compute in ra-linear time an equiva-
lent pcc-instance J′ where w(J′) depends only on k.

However, the proof of this result is subtler. By an encoding
to pc-instances, it is straightforward to show the result if we
assume that the size of each block is bounded by a constant.
But otherwise, we need to build a decision circuit for which
value to pick for each key; we do so in a tree-like fashion
following a decomposition of the BID instance.

Combining Lemma 8.6 and Theorem 4.8, we can conclude:
THEOREM 8.7. The probabilistic query evaluation problem
for Boolean MSO queries on bounded-treewidth BID instances
can be solved in ra-linear time data complexity.

8.2 Probabilistic XML
We now turn to probabilistic XML models [41].

XML documents. We first describe XML documents and
their connections to relational models.
DEFINITION 8.8. An XML document with label set Λ (or Λ-
document) is an unranked Λ-tree.

We always assume that the label set Λ is fixed (not pro-
vided as input). As XML documents are unranked, it is often
more convenient to manipulate their binary left-child-right-
sibling representation:
DEFINITION 8.9. The left-child-right-sibling (LCRS) repre-
sentation of an unranked rooted ordered Λ-tree T is the fol-
lowing Λ-tree T ′: a node n whose children are the ordered
sequence of siblings n1, . . . ,nk is encoded as the node n with
Ch (n)= n1, Ch (n1)= n2, ..., Ch (nk−1)= nk; we complete
by nodes labeled ⊥ /∈ Λ to make the tree full.

We now define how XML documents can be encoded to
the relational setting.
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DEFINITION 8.10. Given a Λ-document D, let σΛ be the re-
lational signature with two binary predicates FC and NS (for

“first child” and “next sibling”), and unary predicates Pλ for
every λ ∈ Λ. The relational encoding ID of D is the-σΛ in-
stance with dom(ID) = dom(D), such that:
• for any consecutive siblings (n,n′), NS(n,n′) holds;
• for every pair (n,n′) of a node n ∈ D and its first child

n′ ∈ D following sibling order, FC(n,n′) holds;
• for every node n ∈ D, the fact Pλ (n)(n) holds.

Unlike other relational encodings of XML [2], we have:
LEMMA 8.11. The relational encoding ID of an XML docu-
ment D has treewidth 1 and can be computed in linear time.

Importantly, the language of MSO queries7 on XML docu-
ments [44], which we now define, can be easily translated to
queries on the relational encoding:
DEFINITION 8.12. An MSO query on XML documents is a
MSO formula where first-order variables refer to nodes and
where atoms are λ (x) (x has label λ ), x→ y (x is the parent
of y), and x < y (x and y are siblings and x comes before y).
LEMMA 8.13. For any MSO query q on Λ-documents, one
can compute in linear time an MSO query q′ on σΛ such that
for any Λ-document D, D |= q iff ID |= q′.

Probabilistic XML. We now turn to the setting of proba-
bilistic XML documents, to present tractability results about
probabilistic query evaluation on classes of such documents.
The main variant that we study is [41]:

DEFINITION 8.14. A PrXMLfie probabilistic XML document
D = (D′,π) is a (Λt{fie})-document D′ where edges from
fie nodes to their children are labeled with a propositional
formula over some set of Boolean events X, and a probabilis-
tic valuation π mapping each e ∈ X used in D to an indepen-
dent probability π(e) ∈ [0,1] of being true.

The semantics JDK of D is obtained by extending π to a
probability distribution on valuations ν of X as usual, and
defining ν(D) for ν to be D′ where all fie nodes are replaced
by the collection of their children with edge annotation Φ

such that ν(Φ) = t (the others, and their descendants, are
discarded). We require the root to have label in Λ.

We encode PrXMLfie documents into pc-instances:

DEFINITION 8.15. The pc-encoding of a PrXMLfie document
D = (D′,π) in Λt{fie} is the pc-instance JD = (J′D,π

′) with
same events, π ′ = π , and where the c-instance J′D is the re-
lational encoding of D′ with the following annotations. NS-
and FC-facts are annotated with t. Pλ (n)-facts are annotated
with the annotation Φ of the edge from the parent of n to n, if
Φ exists, with t otherwise.
PROPOSITION 8.16. For any MSO query q on Λ-documents,
one can compute in linear time an MSO query q′ on σΛ such
that for any PrXMLfie XML document D, for any valuation
ν of D, letting ν ′ be the corresponding valuation of JD, we
have that ν(D) |= q iff ν ′(JD) |= q′.

Of course we cannot hope the pc-encoding of a PrXMLfie

document always has constant treewidth for it is known that
for PrXMLfie, evaluating MSO queries is almost always #P-
hard ([40], Theorem 5.2). A first notion of tractability for
a PrXMLfie document D is the treewidth (following Defini-
tion 8.1) of the pc-encoding of D. Indeed, a direct conse-
quence of Proposition 8.16 is:

COROLLARY 8.17. For PrXMLfie documents with bounded-
treewidth pc-encoding, the MSO probabilistic query evalua-

7MSO subsumes other languages such as tree-pattern queries [3].

tion problem can be solved in ra-linear time data complexity.
However, it is not so easy to compute the width of the rela-

tional encoding directly from the PrXMLfie document, even
though it can be computed in linear time if we assume that
it is bounded by a constant. We now give a simpler suffi-
cient condition for tractability, whose corresponding notion
of width can be evaluated in PTIME on PrXMLfie documents,
even without a-priori bounds. Intuitively, the gist of this cri-
terion is that, given a PrXMLfie document D, we are looking
for tree decompositions of JD in a certain form: those which
mimic exactly the LCRS representation of JD, with the addi-
tion of events in this fixed decomposition.

DEFINITION 8.18. Consider a PrXMLfie document D with
event set X and its LCRS representation D′. We say that an
event e ∈ X occurs in a node n of D′ if e occurs in the anno-
tation of the edge from the parent of n to n. For every e ∈ X,
let D′e be the smallest connected subtree of D′ that covers
all nodes where e occurs. The event scope S(n) of a node
n ∈ D′ is {e ∈ X | n ∈ D′e}. The event scope width of D is
ws(D) ··= maxn∈D |S(n)|.
PROPOSITION 8.19. For any PrXMLfie document D, we have
w(JD)6 ws(D)+1.

COROLLARY 8.20. For PrXMLfie documents with bounded
event scope, the MSO probabilistic query evaluation problem
on PrXMLfie has ra-linear data complexity.

Bounded event scope width is a strictly weaker condition
than bounded treewidth of the pc-encoding: in some situa-
tions, the minimal-width tree decomposition of the XML doc-
ument has smaller width than the straightforward one.

PROPOSITION 8.21. There exists a family of PrXMLfie docu-
ments Dn such that w(JDn)6 4 but ws(Dn) is not bounded.

As a consequence of Corollary 8.20, we obtain the MSO
tractability over the PrXMLmux,ind model [41] (definitions and
details in appendix), a result that was previously proved in [16]:
PROPOSITION 8.22. The MSO query evaluation problem on
PrXMLmux,ind has ra-linear time data complexity.

9. SEMIRING PROVENANCE
Our main theorem in Section 4 described how to build,

from a Boolean query q and cc-instance J, a Boolean cir-
cuit C on Jinp which describes exactly the possible worlds
of J which satisfy q. So, in a sense, C records the depen-
dency of the query result on Jinp; we can use it, e.g., to test
whether q still holds when changing the valuation.

This is reminiscent of semiring provenance [30], which
provides a framework to annotate query results with an ex-
pression describing how they depend from the input tuples.
This section studies under which hypotheses we can general-
ize our results to a semiring-based provenance construction.

For simplicity, we limit ourselves to constant-free Boolean
queries, but the distinction is inessential: for a non-Boolean
query, for instance, we can always consider each possible out-
put tuple (there are polynomially many) and build a prove-
nance representation for that tuple.

9.1 Definitions
The main difference between our setting and that of semir-

ing provenance is our use of negation. Negation can occur
in the circuit of the cc-instance, and it is also needed in our
construction of the run circuit, intuitively because the query
itself may use negation. Yet, negation is hard to incorporate
to semiring-based provenance constructions [4, 26].

We will accordingly require that the circuit of cc-instances
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use only semiring operations (in the case of Boolean circuits,
∧ and ∨, but no negation), and restrict to queries which are
monotone in the following sense:
DEFINITION 9.1. A Boolean query q is monotone if for every
instance I and subinstance J ⊆ I, if I |= q then J |= q. Given a
monotone query q and instance I, we can define the (possibly
empty) set q̂(I) of minimal subinstances J⊆ I such that J |= q.

Examples of monotone queries are CQs and UCQs.
We now recall the usual definition of commutative semir-

ings (all semirings we consider are commutative), and a cor-
responding notion of circuits:
DEFINITION 9.2. A commutative semiring is a set K with
two binary operations⊕K and⊗K and two distinguished ele-
ments 0K and 1K , such that (K,⊕K) is a commutative monoid
with identity element 0K , (K,⊗K) is a commutative monoid
with identity element 1K , multiplication distributes over addi-
tion, and 0K⊗K a= 0K for all a∈K. We often drop subscripts
for brevity.

A K-circuit for semiring (K,⊕,⊗,0K ,1K) is a circuit with
one domain K (that is, DK = {K}), and whose gates are bi-
nary gates ⊗ and ⊕ corresponding to the two operations of
the semiring (seen as functions, i.e., ⊕,⊗ : K×K→ K) and
constant gates 0 and 1.

The most general possible semiring to consider for semir-
ing provenance is:
DEFINITION 9.3 [30]. We define the positive algebra prove-
nance semiring N[X ] for a set X of variables as the semiring
(N[X ],+,×,0,1) of polynomials with variables in X, with ad-
dition and product on polynomials in the usual sense.

However, by contrast, our definitions and results will be
limited to absorptive semirings:
DEFINITION 9.4. A commutative semiring K is absorptive if,
for every a,b ∈ K, we have a⊕ (a⊗b) = a.

We now define a notion of semiring provenance of a query:
DEFINITION 9.5. For a semiring K, we define K-instances as
instances annotated by K in the usual way (Definition 5.1).

Given an absorptive semiring K, a monotone query q and
a K-instance I, the provenance of q on I for K is defined as
the following value (in K): WK(q, I) =

⊕
J∈q̂(I)

⊗
F∈J α(F).

This definition applies to any monotone query, no matter
the language. It contrasts with the more “operational” semir-
ing provenance constructions which apply to the positive re-
lational algebra, to Datalog, etc. Yet this definition, though
natural, has limitations:
EXAMPLE 9.6. Consider the CQ ∃xyz R(x,y)R(x,z), the in-
stance I = {R(a,b)} whose fact is annotated by x, and K =
N[x]. We have q̂(I) = {I} and WN[x](q, I) = x rather than x⊗x
as would be expected.

To work around this problem, we generalize Definition 9.5
to minimal subinstances which are multisets of facts of the
original instance. This allows us to represent that multiple
“copies” of a fact may be needed to satisfy a query, while
remaining fully general with respect to the query language.
This requires several definitions:
DEFINITION 9.7. A multiset is a function M from a finite
domain (or support) dom(M) to N . We define the relation
M ⊆ M′ if dom(M) ⊆ dom(M′) and for all s ∈ dom(M) we
have M(s)6 M′(s). We write x ∈M to mean that M(x)> 0.

A multi-instance I is a multiset of facts on dom(I). Where
necessary to avoid confusion, we call the ordinary instances
set-instances. A K-multi-instance I is a multi-instance where
every fact F of the support of I is annotated by some value
α(F) ∈ K (in addition to the multiplicity I(F)). A multi-

query q (as opposed to a set-query) is a function from multi-
instances to {t, f}; given a multi-instance I, we write I |= q if
q(I) = t.

We say that J is a multi-subinstance of a multi-instance I
if J ⊆ I (as multisets). We say that J is a multi-subinstance
of a set-instance I if dom(J) is a subset of I. In other words,
the multiplicities of the facts of set-instances should be seen
as arbitrarily large (not equal to 1).

A multi-query q is monotone if for all multi-instances I
and J, I |= q and J ⊇ I imply J |= q. For an instance or
multi-instance I, we define the set (of multi-instances) q̂(I)
as the minimal multi-subinstances J ⊆ I such that J |= q.

We can show using Dickson’s lemma [21]:
LEMMA 9.8. For every (multi-)instance I and monotone multi-
query q, q̂(I) is finite.

In this context, we can restate our definition of provenance:
DEFINITION 9.9. Given an absorptive semiring K, a mono-
tone multi-query q and a K-(multi-)instance I, the provenance
of q on I for K is WK(I,q) =

⊕
J∈q̂(I)

⊗
F∈J αJ(F)J(F), where

the exponent denotes iterated multiplication by ⊗K .
Note that the sum is finite by Lemma 9.8 (and the prod-

uct is finite as well) so there is no need to make assume
anything more about the semiring. The definition of prove-
nance for multi-queries allows us to fix the problem of Exam-
ple 9.6 if we see q as a multi-query which accepts the multi-
subinstance {R(a,b),R(a,b)}, but not {R(a,b)}. (We stress
that the multiplicity of R(a,b) in I must be thought of as infi-
nite, not 1.) However, our restriction to absorptive semirings
still makes our provenance unable to keep track of how many
times, e.g., the query can be derived from the same multi-
subinstance, because absorptivity implies the involutivity of
addition (a⊕a = a, taking b = 1 in the absorptivity axiom).

Of course, if we are willing to impose the involutivity of
product in our semiring K (a⊗ a = a for all a ∈ K) then the
problem of Example 9.6 no longer occurs; and the above def-
inition for a multi-query q becomes essentially equivalent to
Definition 9.5 for an related set-query q.

We now return to an operational definition of provenance
and explain the connection with Definition 9.9. To our knowl-
edge, the most expressive query language that has a well-
established semiring provenance construction is Datalog (see
[30], Definition 5.1); and that definition matches ours:
PROPOSITION 9.10. For any Datalog program P, one can
compute a monotone multi-query qP such that, for every ab-
sorptive semiring K and (multi-)instance I, WK(qP, I) is the
provenance of P on I for K in the sense of [30].

Of course, this result generalizes to more restricted lan-
guages, such as CQs or UCQs, that can be seen as Datalog
programs. However our definition of provenance, while re-
stricted to absorptive semirings, can represent the provenance
of arbitrary monotone multi-queries.

9.2 Main provenance result and consequences
We now prove that our notion of provenance can be ef-

ficiently computed for FTAR multi-queries and absorptive
semirings. Informally (see Appendix for details), FTAR multi-
queries are the queries testable by automata on fctk(σ)-trees
with nodes annotated with multiplicity up to p, for some
fixed p, ensuring that the alphabet is finite.
THEOREM 9.11. Recall Definition 5.1 of K-cc-instances. Let
q be a monotone FTAR multi-query, K an absorptive semir-
ing, and k ∈ N∗. For any K-cc-instance J of treewidth 6 k,
one can compute in time linear in |J| a K-circuit C with
Cinp = Jinp and a distinguished gate g of C such that for any
valuation ν of Jinp, ν(C)(g) =WK(q,ν(J)), and the treewidth
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of C only depends on q and k.
In particular, this result implies that the provenance of q on

a K-instance I can be represented as a bounded-treewidth cir-
cuit (take the K-cc-instance J with a trivial circuit that maps
each fact of I to a dedicated input gate).
Proof sketch. We first connect the monotonicity of q to a
notion of monotonicity for non-deterministic tree automata,
connect multi-subinstances to a notion of subencodings, and
introduce provenance for automata on encodings matching
that of queries on instances. We then construct a provenance
circuit, an analogue of a run circuit that uses only semiring
operations, intuitively introducing one gate per automaton
state and node. We last use Lemmas 5.8 and 5.3 to connect it
with the original cc-instance circuit.

We conclude by answering two natural questions:
Which monotone multi-queries are FTAR? We defer to future
work a more general study, but prove that at least UCQs are,
either when seen as a Datalog program or (equivalently) see-
ing them as the multi-query where a CQ match requires an
instance fact to appear at least as many times as the number
of atoms which match to it. So Theorem 9.11 applies to the
provenance of UCQs (for any absorptive semiring).
PROPOSITION 9.12. Let q be a UCQ. The corresponding
multi-query defined via Proposition 9.10 through a direct en-
coding of q to Datalog is FTAR.

However, when we are not interested in multiplicity and
are ready to impose x⊗ x = x in K, for instance for K =
PosBool[X ] [30], it is clear that all FTAR set-queries are FTAR
when seen as multi-queries that only distinguish multiplici-
ties 0 and > 0. Hence, Theorem 9.11 also applies to mono-
tone FTAR set-queries, for the provenance of Definition 9.5.
For relational instances, this relates to why-provenance [13,
14], as the resulting circuit intuitively describes the minimal
subinstances of I where the query holds.
Which semirings are absorptive? Examples of absorptive
semirings, in addition to PosBool[X ], are the security semir-
ing [5, 23] computing the security clearance required to see
query results, the fuzzy semiring (see e.g. [4]) computing the
minimal fuzziness value that must be tolerated in a fact, and
the tropical semiring (see e.g. [20]) computing the minimal
cost of a multi-subinstance satisfying the query. In all but the
last one, a⊗a = a holds for all a ∈ K.

A key insight [20] is that provenance for any absorptive
semiring can be obtained as the specialization, by a unique
semiring homomorphism, of the provenance for the most gen-
eral semiring Sorp[X ], defined as the quotient of N[X ] by the
smallest equivalence relation that performs absorptivity sim-
plifications. (See Appendix for details.)

10. RELATED WORK
Bounded treewidth. From the original results [17, 22] on
linear-time data complexity of MSO evaluation on bounded
treewidth structures, work such as [6] has investigated count-
ing problems, including applications to probability computa-
tion (there, on graphs). In this context, a recent paper [11] is
perhaps closest to ours, as it shows the linear-time data com-
plexity of evaluating an MSO query on a bounded-treewidth
probabilistic network (analogous to a circuit). The angle is
different, however, as the work thinks of queries over the net-
work, not over an instance annotated with the network, so
the connection to probabilistic database frameworks is not
immediately obvious. Perhaps more importantly, such works
do not decouple the computation of a bounded-treewidth lin-
eage of the query and the application of probabilistic infer-
ence on this lineage, as we do. We argue that this makes

our proof more modular, and that the circuit representation
of the lineage has independent interest, as is shown by our
link with provenance. We also note counting results from an-
other approach [45] on bounded-treewidth structures, based
on monadic Datalog, but they do not address probability com-
putation.
Probabilistic databases. A well-known line of work has
investigated the tractability of probabilistic query evaluation
on the tuple-independent (TID) relational model. Follow-
ing [37], a first approach is the “extensional” one, which
evaluates probabilities on the query plan; it is restricted to
safe (or hierarchical) queries [24], which were later charac-
terized [18, 19]. The “intensional” approach is closer to ours:
it computes a lineage of the query and evaluates its proba-
bility via general purpose methods. While applicable to all
databases, it is slower in practice [37], and tractability de-
pends on the resulting lineage. Example of tractable lineage
classes are read-once formulas [49], or more generally those
with bounded expression treewidth [38]; the latter relates to
our setting as the expression treewidth of a formula is the
minimal treewidth of a circuit that represents it. Such works
give conditions to ensure tractability of the lineage [38, 39],
but only based on the query (e.g., the safe queries), not the in-
stance; and they are limited to the TID model, and to CQs or
UCQs. Of course, if the lineage of an arbitrary query hap-
pens to be tractable on the instance, this can be useful in
practice [49]; both [49] and [47] propose characterizations,
dependent on the data, for CQ without self-joins to have read-
once lineage on the TID model. Our approach deals with a
much larger class of queries, and a much richer probabilis-
tic model, and proposes efficient probability evaluation even
when the lineage is not read-once but bounded-treewidth. We
leave for future work to investigate how our results relate to
those of [49] and [47].

Other works [48] have considered probabilistic database
models annotated with graphical models. Those are very re-
lated to pcc-instances, as circuits can be seen as a special case
of graphical models; but once again there are no guarantees
of tractability of the lineage from conditions on the data.
Provenance. Our study of provenance is inspired by the
usual context of semiring provenance [30]. The closest work
that we are aware of, which introduces the Sorp[X ] semiring
and circuits for provenance, is [20]. However, to our knowl-
edge, our definition of absorptive provenance for expressive
query languages is new, as is our study of provenance for
bounded-treewidth instances.

11. CONCLUSION
The main lesson of the current work is that, by the sim-

ple mechanism of automaton instrumentation, we are able
to combine existing techniques for tree decomposition of in-
stances, compilation of queries to automata, and probabilis-
tic inference on bounded-treewidth networks. Further, we
have illustrated a connection between provenance in absorp-
tive semirings and our circuit representation of the possible
worlds where the query holds, shedding light on how prove-
nance can be understood when evaluating queries on tree de-
compositions using tree automata.
Future work. A first direction for future work would be to
investigate whether boundedness for our notion of treewidth
is in some sense “necessary” for tractability, or if it is also im-
plied by weaker assumptions such as bounded clique-width
or hypertree width [27].

Our tractability results could be refined in multiple ways:
a more subtle analysis of the complexity of enumeration for
non-Boolean queries, as in [22], or finer combined complex-
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ity results if we follow existing work and assume restrictions
on the query [39]. We could also, e.g., study combined com-
plexity for XML documents and automata, to try to capture
and generalize the corresponding results of [16].

Last, the practical relevance of our work should be inves-
tigated. To which extent is the treewidth real-world proba-
bilistic data smaller than the instance size? Is it possible to
combine existing practical techniques to compile query to au-
tomata, compute tree decompositions of instances, and per-
form fast, possibly approximate, belief propagation? We ex-
pect that such techniques would in practice run much faster
than the theoretical bounds (i.e., not compute the entire au-
tomaton, find quickly a tree decomposition of non-minimal
width, use sampling, etc.); it would be interesting to deter-
mine whether “on the fly” automaton instrumentation could
be performed in such contexts.
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APPENDIX
A. PROOFS FOR SECTION 3 (TECHNICAL PRELIMINARIES)
LEMMA 3.4. From a tree decomposition T of width k of a σ -structure I, one can compute in linear time a tree encoding E of
width k of I with a bijection from the facts of I to the non-empty nodes of E.

Proof. Fix the σ -structure I and its tree decomposition T of width k. Informally, we build E by walking through the decompo-
sition T and copying it by enumerating the new facts in the domain of each bag of T as a chain of nodes in E, picking the labels
in fctk(σ) so that the elements shared between a bag and its parent in T are retained, and the new elements are chosen so as not
to overlap with the parent node. Overlaps between one node and a non-parent or non-child node are irrelevant.

Formally, we proceed as follows. We start by precomputing a mapping that indicates, for every tuple a of I such that some fact
R(a) holds in I, the topmost bag node(a) of T such that a⊆ dom(node(a)). This can be performed in linear time by Lemma 3.1
of [FFG02]. Then, we label the tree decomposition T with the facts of I as follows: for each fact F = R(a) of I, we add F to the
label of node(a).

Now, to encode a bag b of T , consider bp the parent of b in T and partition dom(b) = do tdn where do are the old elements
already present in dom(bp), and dn are the new elements that did not appear in dom(bp). (If b is the root, then do = /0 and
dn = dom(b).) Under a specific node (dp,np) in E, with a bijection fp from dom(bp) to dp, choose a domain d of size |dom(b)|
over the fixed a1, . . . ,a2k+2 whose intersection with fp(dom(bp)) is exactly fp(do) (this is possible, as there are 2k+2 elements
to choose from and

∣∣dom(bp)
∣∣ 6 k+ 1) and extend the bijection fp to f so that it maps dom(b) to d. At the root, choose an

arbitrary bijection. Now, encode b as a chain of nodes in E labeled with (d,si) where each si encodes one of the facts in the label
of b (thus defining the bijection from I to the non-empty nodes of E). If there are zero such facts, create a (d, /0) zero-fact node
instead, rather than creating no node. Recursively encode the children of b (if any) in T , under this chain of nodes in E. Add
zero-fact ( /0, /0) child nodes so that each non-leaf node has exactly two children. We assume that all arbitrary choices are done
in a consistent manner so that the process is deterministic.

B. PROOFS FOR SECTION 4 (GENERAL MODEL AND MAIN RESULT)
PROPOSITION 4.2. For any (p)c-instance J, one can compute in linear time a (p)cc-instance J′ whose inputs are the variables
X of J, such that for any valuation ν of X, ν(J) = ν(J′) (and, for the probabilistic version, PrJ(ν) = PrJ′(ν)).

Proof. We first show the result for c-instances. Create one input gate gx per variable x, and create for each tuple a Boolean
circuit that represents the formula that annotates that tuple (in linear time in the annotation of the tuple). Map the tuple to the
distinguished function gate of this circuit. It is clear that for a valuation ν the possible world of J and J′ is the same. The same
argument applies to pc-instances, taking π ′J(gx) ··= πJ(x) for every variable x.

PROPOSITION 4.14. There is a fixed CQ q such that the probabilistic query evaluation for q is #P-hard even when input pcc-
instances J = (I,C,ϕ,π) are restricted by imposing w(I) = w(C) = 1.

Proof. We show a reduction from the problem of determining the probability of a propositional formula given as a monotone
2-DNF (disjunctive normal form with only positive literals, and two variables per disjunct). This problem itself is hard by
an immediate (Turing) reduction from #MONOTONE-2SAT, the same problem for monotone 2-CNF formulae: to compute
the probability of a 2-CNF F , build its 2-DNF negation using de Morgan’s rule, replace each literal ¬x by x and change the
probability of each variable from p to 1− p. The resulting negation has probability 1−P, where P is the probability of the
original formula F , and it is a 2-DNF of positive literals.

Consider a monotone 2-DNF formula F =
∨

16i6n(c
1
i ∧ c2

i ), and the fixed conjunctive query q : ∃xyz A(x,y)∧B(y,z). We
encode F to a pc-instance: let dom(Î) be a, bi and ci for 1 6 i 6 n, create one Boolean variable ex per variable x in F with the
same probability as the variable, and let Î be one fact A(a,bi) with annotation ec1

i
and one fact B(bi,ci) with annotation ec2

i
for

1 6 i 6 n. It is immediate that to each valuation ν of the variables of F corresponds a valuation ν ′ of the events of Î with the
same probability, and we have ν(F) = t iff c1

i ∧ c2
i is true for some i which occurs iff some A(a,bi),B(bi,ci) occurs in ν ′(IF),

i.e., ν ′(Î) |= q, so that the probability of F is q(Î). Now, use the construction of the proof of Proposition 4.2 to encode Î into a
pcc-instance J = (I,C,ϕ,π). The circuit C has treewidth 1: indeed, it does not contain any wire, just input gates. The instance I
has treewidth 1 as it is a tree.

C. PROOFS FOR SECTION 5 (PROOF OF MAIN RESULT)
Lifting to annotated relations. Theorem 4.13 is stated for cc-instances, but for the proof we see them as {t, f}-cc-instances.
However, those two notions of instances differ as in the first case the “false” facts are removed whereas in the second they are
kept (and annotated with “false”). We start by showing that this difference is inessential.
DEFINITION C.1. For any k-fact τ = (d,s) ∈ fctk(σ), we define the neutered k-fact τ = (d, /0). In particular, if s = /0 then τ = τ .
For τ ∈ fctk(σ) and b ∈ {t, f}, we write τb to be τ if b is t and τ if b is f.

Given a {t, f}-tree-encoding E, we define its evaluation ε(E) as the (non-annotated) tree encoding that has same skeleton,
where for every node n ∈ E with corresponding node n′ in ε(E), letting λ (n) = (τ,b) ∈ fctk(σ)×{t, f}, we have λ (n′) = τb.
LEMMA C.2. For any bDTA A on fctk(σ), one can compute in linear time a bDTA A′ on fctk(σ)×{t, f} such that E |= A′ iff
ε(E) |= A.
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Proof. Let A = (Q,F, ι ,δ ). We construct the bDTA A′ = (Q,F, ι ′,δ ′) as follows: ι ′((τ,b)) ··= ι(τb) while δ ′((τ,b),q1,q2) ··=
δ (τb,q1,q2) for all b ∈ {t, f}, τ ∈ fctk(σ), and q1,q2 ∈ Q. The process is clearly in linear time in |A|. Now, it is immediate that
both automata are in the same state when reading E and ε(E) respectively.

CC-encodings
LEMMA 5.3. Given a K-cc-instance J = (I,C,ϕ) and a tree decomposition T of J of mixed width (kI ,kC), one can compute a
K-cc-encoding E ′ = (E,C′,T ′,χ) of width (kI ,kC), with C =C′, such that for any valuation ν of Cinp, ν(C)(E ′) is an encoding
of ν(J). The computation is in O(|T |+ |C|).

Proof. We process the tree decomposition T of J to construct E and T ′. We adapt the construction described in Lemma 3.4.
Whenever we process a bag b ∈ T , the mapping precomputed with J (see Lemma 3.4) is used to obtain all facts F of I for

which b is the topmost node where domain dom(F)⊆ dom(b) and ϕ(F) ∈ dom(b).
For every such fact F , we create one bag b′ in T ′ labeled with all elements of dom(b) that are gates of G, and one node n

in E which is the encoding of F (considering only the domain dom(b)∩ dom(I)) as for a normal relational instance. Set the
distinguished gate χ(b′) ··= ϕ(F) (which is in dom(b′) by the condition according to which we chose to consider fact F).

Because T was a tree decomposition of J, it is immediate that the resulting tree T ′ is indeed a tree decomposition of width kC
of C and that E is a tree encoding of width kI of I. By construction T ′ and E have same skeleton, and clearly the process is in
linear time in |T |+ |J|.

It remains to check the last condition. Consider a valuation ν of the inputs of C with domain K. Consider the K-instance ν(J)
and its tree decomposition derived from T . It is clear that when one computes a tree encoding of ν(J) following T , one obtains
an encoding which is exactly E except that each node n has an additional annotation in K which is that of the corresponding
node in ν(C). Hence, the result is proven.

Run circuits
LEMMA 5.6. Assume that K is finite. Let k ∈ N∗, and A be (fctk(σ)×K)-bDTA with state space Q. Let V = {K,Q,{t, f}}.
There exists a function set F such that, for any tree encoding E of width k, one can compute in O(|E| · |A|) a run (V,F)-circuit
(C,T,ξ ,go) of A on E such that w(T ) = 4.

Proof. Fix k, A = (Q,F, ι ,δ ), and D.
We define F to consist of the function Final : Q→ {t, f} and of the functions Initτ : K→ Q and Transτ : Q×Q×K→ Q for

all τ ∈ fctk(σ). The function Final maps q ∈ Q to t if q ∈ F and f otherwise. The function Initτ maps k ∈ K to ι(τ,k). The
function Transτ maps (q1,q2,k) to δ ((τ,k),q1,q2).

We create circuit C to have, for every node n of E, one input gate gi
n with value set K and one gate gq

n with value set Q which is
a function gate of type Initλ (n) with input gi

n if n is a leaf, and a function gate of type Transλ (n) with inputs (gi
n,g

q
Ch (n),g

q
Ch (n))

if n is an internal node. We add one more gate go to be a function gate of type Final connected to gq
r , where r is the root node of

E. This construction can clearly be performed in linear time: for every node n of E, the number of operations that we perform
is in O(|A|).

We first build a tree decomposition T of circuit C with same skeleton as E and with width 4. Indeed, take T to have same
skeleton as E and:
• for every node n of E with corresponding bag b in T , add gates ξ (b) ··= gi

n and gq
n to b;

• for every non-root node n of E with parent n′ with corresponding bag b′ in T , add gate gq
n to b′;

• for the bag br of T corresponding to the root node of E, add go to br.

Clearly each bag b of T corresponding to node n of E contains at most 5 nodes (gi
n, gq

n, optionally gq
Ch (n) and gq

Ch (n), and

optionally go). We now check that every function gate of C is covered in T : go is covered at the root bag, gi
n is covered in the

node where it occurs, and, for every node n of E, gq
n is covered in the bag b of T corresponding to n as all inputs of gq

n are present
in this bag). Last, it is clear that the occurrences of all gates in T form a connected subtree (the gi

n’s and go only occur in one
bag, the gq

n’s occur in one bag or in two parent-child bags).
We then argue that C is indeed a run circuit of A on E. Consider a function f : E → K, and ν the corresponding valuation of

the inputs of C. Consider the run of A on f (E) and, for every node n of E, call qn the state of A at the corresponding node of
f (E). We show by a bottom-up induction on E that ν(C)(gq

n) = qn for all n ∈ E.
Base case: if n is a leaf, then the corresponding node of f (E) has label (λ (n), f (n)) so that qn = ι(λ (n), f (n)) and, because

ν(C)(gi
n) = ν(gi

n) = f (n), we have ν(C)(gq
n) = Initλ (n)(ν(C)(gi

n)) = ι(λ (n), f (n)) = qn so the result holds.
Induction: if n is an internal node, then the corresponding node of f (E) has label (λ (n), f (n)) and we have:

qn = δ ((λ (n), f (n)),qCh (n),qCh (n)).

Now:

ν(C)(gq
n) = Transλ (n)(ν(gi

n),ν(C)(gq
Ch (n)),ν(C)(gq

Ch (n)))

By induction hypothesis, we have ν(C)(gq
Ch (n)) = qCh (n) and ν(C)(gq

Ch (n)) = qCh (n), and we have ν(gi
n) = f (n), so that by

unfolding the definition of Transλ (n) we get ν(C)(gq
n) = qn, so the result holds.

We conclude by observing that, because ν(C)(gq
r ) = qr, by definition of Final, we have ν(C)(go) = t iff qr ∈ F , that is, iff A

accepts f (E). This concludes the proof.
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Circuit stitching. The fundamental property of stitching is:
LEMMA C.3. For any stitchable circuits C and C′, for any gate g of C′ and valuation ν of Cinp, letting ν ′ be the restriction of
ν(C) to C′inp, we have: ν ′(C′)(g) = ν(C ◦C′)(g).

Proof. Fix C, C′, g, and ν . As C and C ◦C′ share the same inputs, ν is a valuation for both of them. Now, first note that for any
gate g of C, ν(C)(g) = ν(C ◦C′)(g). Hence, in particular, for any input gate g of C′, as it is a gate of C because C and C′ are
stitchable, we have ν(C ◦C′)(g) = ν(C)(g) = ν ′(g). As this equality holds for any input gate g of C′, it inductively holds for
any gate of C′, which proves the result.

DEFINITION C.4. Given two tree decompositions T and T ′ with same skeleton, the sum of T and T ′ (written T +T ′) is the tree
decomposition T with same skeleton where every bag b′′ is the union of the corresponding bags b and b′ in T and T ′.

The following is immediate:
LEMMA C.5. Given two tree decompositions with same skeleton T and T ′ of fixed width k and k′ for a V-circuit C and a V ′-
circuit C′, T +T ′ can be computed in linear time in T and T ′ and has width 6 k+k′+1 with 6 k+1 nodes from V and 6 k′+1
nodes from V ′ in each bag.
LEMMA 5.8. Let C and C′ be stitchable circuits with tree decompositions T and T ′ with same skeleton (with witnessing bijec-
tion ψ). Assume that for any g ∈ C′inp and bag b of T ′ with g ∈ dom(b), we have g ∈ dom(ψ−1(b)). Then T + T ′ is a tree
decomposition of C ◦C′.

Proof. We consider IC◦C′ and show that T +T ′ is a tree decomposition of it:
1. Let g be a gate of C ◦C′. If g is not a gate of C∩C′, then its occurrences in T +T ′ are only its occurrences in T or in T ′, so

that they form a connected subtree of T +T ′ as they did in T or T ′. If it is a gate of C∩C′, then it is an input gate of C′ because
C and C′ are stitchable, and by the hypothesis, its occurrences in T ′ are a subset of its occurrences in T , so its occurrences in
T +T ′ are its occurrences in T , and they also form a connected subtree.

2. Let g be a tuple occurring in a fact of IC◦C′ . Clearly g occurs either in IC or in IC′ , so that it is covered by the bag bg that
covers all elements of g in T or in T ′.

Concluding. We are now ready to prove Theorem 4.13. Fix the input signature σ , the input cc-instance J = (I,C,ϕ) and its
tree decomposition T of width (kI ,kC). Set K = {t, f} (which is finite). Fix the bDTA A = (Q,F, ι ,δ ). Lift it in linear time to a
bDTA A′ on fctkI (σ)×{t, f} by Lemma C.2. Fix V = {K,Q}, and see J as a K-cc-instance.

Use Lemma 5.3 on J and T to compute in time O(|T |+ |J|) a cc-encoding E ′ = (E,C,T ′,χ) of width (kI ,kC) of J such that
for any valuation ν of Cinp, ν(E ′) is a K-tree-encoding of ν(J).

Now, use Lemma 5.6 on A′ and E to compute, in time O(|E| · |A′|), a function set F depending only on A′, a run (V,F)-circuit
(C′′,T ′′,ξ ,go) of A′ on E.

Now, rename C′′inp: for every node n of E with corresponding bag b′ in T ′ and b′′ in T ′′ (remember that both T ′ and T ′′ have
same skeleton as E), rename ξ (b′′) to χ(b′). This renaming is performed both in C′′ and in T ′′. This ensures that C and C′′
are stitchable, so we compute in time linear in |C| and |C′′| the stitching C′′′ =C ◦C′′ (which is a (V,F)-circuit), and, because
the tree decompositions T ′ and T ′′ satisfy the conditions of Lemma 5.8, T ′′′ = T ′+ T ′′ is a tree decomposition of C′′′. By
Lemma C.5 it has width kC + 5, and each bag contains at most kC + 6 nodes of value set K and 5 nodes of value set Q (the
counting by value set requires an immediate strengthening of Lemma C.5).

It remains to check that, picking as distinguished gate of C′′′ the distinguished function gate go of C′′, for any valuation ν of
Jinp, A′ accepts a tree encoding Eν of ν(J) iff ν(C′′′)(g) = t.

Fix such a valuation ν . By Lemma C.3, fixing ν ′′ to be the restriction of ν(C) to C′′i np, we have ν(C′′′)(go) = ν ′′(C′′)(go).
Now, by definition of run circuits, this value describes whether f (E) |= A′ where f is the annotation function corresponding to
ν ′′. So we have ν ′′(C′′)(go) = t iff f (E) |= A′, that is, iff ε( f (E)) |= A. Now we know by Lemma 5.3 that f (E) is an annotated
encoding of ν(J) (seen as a K-cc-instance), so that ε( f (E)) is an annotated encoding of ν(J) (seen as a cc-instance). Now as A
is encoding-invariant, for any tree encoding Eν of ν(J), Eν |= A iff ν(C′′′)(go) = t. Hence, Theorem 4.13 is proven.

It is now easy to see that Theorem 4.13 implies its simplified version, Theorem 4.8. The first thing to notice is that from an
input cc-instance J of treewidth assumed to be k, we can compute in time linear in |J| a tree decomposition T of width (k,k) of
J.

The second thing to notice is that multivalued gates over the domain Q (which does not depend on the instance) can be encoded
as a tuple of gates with domain {t, f}, encoding explicitly with Boolean gates the functions ofF . As this is instance-independent,
it can be performed in linear-time in the instance, and the treewidth remains independent on the instance.

Note that the complexity bound of |A| · |J| in Theorem 4.13 could be tightened by noticing that Lemma 5.6 performs for each
node of E a number of operations which is in O(|Q|2) (up to polylogarithmic factors); the size of fctkI (σ) does not intervene.
Hence, performing the lifting operation of Lemma C.2 online rather than on the entire automaton, it could be shown that the
exponential blowup kI only intervenes in the automaton compilation phase, but that, if the number of states of the result is small,
it does not intervene in the instrumentation result. In fact, the |Q|2 factor could further be bounded by the number of states which
are “useful” (reachable) on the provided encoding. We leave these considerations for future work.

D. PROOFS FOR SECTION 6 (REWRITING QUERIES TO AUTOMATA)
THEOREM 6.1. Constant-free MSO sentences are FTAR.
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Proof. Let us fix k ∈ N∗. We denote by [m] be the the set {1, · · · ,m} and by nσ the number of relations in σ . Lemma 4.10 of
[FFG02] shows that for a certain finite alphabet Γ(σ ,k), for any MSO formula ϕ over the signature σ , there exists an MSO
formula ϕ∗ such that for any Γ(σ ,k)-tree t representing an instance I, t satisfies ϕ∗ iff I satisfies ϕ . More precisely, one can
define a partial 〈·〉′ function on Γ(σ ,k)-trees such that for every instance I of treewidth 6 k there is a Γ(σ ,k)-tree t such that
〈T 〉′ is well-defined and isomorphic to I and for every Γ(σ ,k)-tree T , we have T |= ϕ∗ iff 〈T 〉′ is well-defined and 〈T 〉′ |= ϕ .

We first describe the alphabet Γ(σ ,k). A letter of Γ(σ ,k) is of the form (γ1,γ2, · · · ,γnσ+2). The element γ1 belongs to 2[k]
2

and
describes the equalities between the elements inside a bag; the element γ2 belongs to 2[k]

2
and describes the equalities between

the elements from this bag and its parents; For i > 3, γi belongs to 2karity(Ri) and describes the tuples belonging to the relation Ri.
In the Γ(σ ,k)-trees , the encoding of equalities between values of the bags and its parents are described explicitely (by γ2) rather
than implicitly (by element reuse between parent and child, as in our encoding).

We next describe for which Γ(σ ,k) trees T is their encoding operation 〈T 〉′ well-defined, and how it is then computed. We
say that T is well-formed if 〈T 〉′ is well-defined. We accordingly say that a fctk(σ)-tree T is well-formed if 〈T 〉 is well-defined,
namely, different from ⊥.

For a Γ(σ ,k)-tree T , 〈T 〉′ is well-defined iff for each node n with γ ··= λ (n) and each child n′ ∈ {Ch (n),Ch (n)} with
γ ′ ··= λ (n′):
• γ1 is closed by transitive closure, i.e., if (i, j) and ( j,e) belong to γ1 then (i,e) belongs to γ1

• γ2 is closed by transitive closure (to check this, we need to consider paths, rather than the mere pair n and n′) γ2 is closed
by transitive closure.
• for each (i, j) in γ1 and ( j,e) in γ ′2 then (i,e) belongs to γ ′2 (and symmetrically, reversing the roles of n and n′)

• for each pair ( j1, · · · , jl) in γ ′m and if for each b (ib, jb) in γ ′2, then (i1, · · · , il) is in γm (and vice-versa, reversing the roles of
n and n′); a similar condition holds with γ1

Note that these conditions are clearly expressible in MSO. While [FFG02] does not precisely describe the behavior of ϕ∗ on
Γ(σ ,k)-trees which are not well-formed, the above justifies our assumption that ϕ∗ tests well-formedness and rejects the trees
which are not well-formed.

We now define 〈T 〉′ as follows, if T is well-formed. Process E top-down. At each node n ∈ E with γ ··= λ (n) with parent node
n′ ∈ E with γ ′ ··= λ (n′), pick fresh elements in D for the positions j such that there is no pair (i, j) in γ ′2 (at the root, pick all
fresh elements) and if ( j1, j2) belongs to γ ′1 then the same fresh element is assigned for the elements at both positions; if there is
such a pair, pick the existing elements used when decoding n′. These choices define a mapping ν from the positions to the fresh
elements and to existing elements. Now, for each ( j1, · · · , jm) in γi, then the fact Ri(ν( j1), · · · ,ν( jm)) is added to I If we ever
attempt to create a fact that already exists, we ignore it.

We have reviewed the alphabet Γ(σ ,k) of [FFG02], the conditions for the well-definedness of 〈T 〉′ and the semantics of this
operation. Now, Following [TW68, FFG02], with an additional step to determinize the resulting automaton to a bDTA, the
formula ϕ∗ from [FFG02] can be translated into a bDTA AΓ on Γ(σ ,k)-trees such that for any Γ(σ ,k)-tree T , AΓ accepts T iff
T |= ϕ∗, that is, iff 〈T 〉′ is well-defined and satisfies ϕ . Note that this implies that AΓ is encoding-invariant. We now explain
how to translate AΓ to our desired bDTA Afct over fctk(σ) such that for every fctk(σ)-tree T , Afct accepts T iff 〈T 〉 |= ϕ .

We consider the alphabet Σ = fctk(σ)×Γ(σ ,k), and call π1 and π2 the operations on Σ-trees that map them respectively to
fctk(σ) and Γ(σ ,k) trees with same skeleton by keeping the first or second component of the labels. Given a fctk(σ)-tree T1 and
a Γ(σ ,k)-tree T2 with same skeleton, we will write T1×T2 the Σ-tree obtained from them.

We will do this by building a Σ-bDTA At with the following properties:

1. If At accepts T then 〈π1(T )〉 and 〈π2(T )〉′ are well-defined and isomorphic.
2. For every fctk(σ)-tree T1 such that 〈T1〉 is well-defined, there exists a Γ(σ ,k)-tree T2 such that At accepts T1×T2.

Then, we can notice that from AΓ, we can build an Σ-bDTA A′
Γ

such that T is recognized by A′
Γ

iff π2(T ) is accepted by A′
Γ
, and

build Afct as the conjunction of At and A′
Γ
, projected to the first component (accept a fctk(σ)-tree T1 iff there is some Γ-tree T2

such that T1×T2 is accepted, which is possible using non-determinism, and then determinizing). It is now clear that Afct thus
defined accepts a fctk(σ)-tree T1 iff the Σ-tree T1×T2 is accepted, for some Γ(σ ,k)-tree T2, by A′

Γ
and At: if this happens then

T2 is accepted by AΓ and 〈T1〉 is isomorphic to 〈T2〉′ so 〈T2〉 |= ϕ; and conversely, if 〈T1〉 models ϕ , there is some Γ(σ ,k)-tree
T2 such that At accepts T1×T2, and this implies that 〈T2〉′ is isomorphic to 〈T1〉 so (as ϕ , being a constant-free MSO query, is
invariant under isomorphisms) 〈T2〉 satisfies ϕ∗ and A′

Γ
accepts T1×T2. So it suffices to build the Σ-bDTA At with the desired

properties.
We now define a simple encoding from fctk(σ) to Γ(σ ,k) describing what is the tree T2, given a well-formed tree T1, such that

At accepts T1×T2. It will then suffice to see that it is possible, with a MSO formula ψ , to check on a Σ-tree T whether π2(T ) is
the encoding of π1(T ) in this sense. Indeed, we can then compile ψ to a Γ-bDTA using [TW68].

Consider a node n1 ∈ T1 and let (d,s) ··= dom(n). We define the label of the corresponding node n2 ∈ T2. We define γ1 so
that the k+ 1− dom(d) last elements are all equal to the dom(d)-th element (i.e., we complete dom(d) to always have k+ 1
elements, by “repeating” the last element, where “last” is according to an arbitrary order on domain elements). We define γ2 to
indicate which elements of n1 were shared with its parent node, completing it to be consistent with respect to γ1. Last, we define
γ3, . . . ,γnσ+2 to be the tuples of elements in the various relations of σ in 〈T1〉, with repetitions to be consistent according to γ1.

It is clear that this encoding maps every tree T1 such that 〈T1〉 is well-defined to a tree T2 such that 〈T2〉 is well-defined and
isomorphic to 〈T1〉. Now, to justify the existence of ψ , observe that the only non-local condition to check on T is the definition
of the γ3, . . . ,γnσ+2; but we can clearly define by an MSO formula, for a node n ∈ T with (d,s) ··= λ (n), the exact set of facts
stated by T for the elements represented by d (there are only a finite number of such “types”): they are defined to check, for all
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facts of the putative type, to a node with the right fact is reachable following an undirected path where the same elements are
kept along the path. So we can define an MSO formula checking for each node n ∈ T whether the type of π1(n) in π1(T ) in this
sense matches the graph stated in π2(n).

PROPOSITION 6.4. Any frontier-guarded Datalog program can be expressed as a GSO formula.

Proof. We can translate a frontier-guarded Datalog query to an equivalent formula in the guarded negation fragment (GNFP)
[BtCS11], as has been explained in [BtCO12], and the translation of GNFP to GSO is directly inspired of the translation of the
guarded fixed point fragment [GHO02].

Alternatively, for an intuitive argument, notice that any tuple created in an intensional relation when running a frontier-guarded
Datalog program must be a guarded tuple, as it is covered by the match of the body atom that guards the head variables of the
rule where it was created. So a frontier-guarded Datalog program only considers guarded tuples.

THEOREM 6.5. Constant-free GSO sentences are FTAR.

Proof. We recall the definition of [GHO02] of an incidence instance I′ on a signature σ ′ for an instance I on signature σ :
• the signature σ ′ includes a unary relation AR and a binary relation Ri for every relation R in the original signature and

1 6 i 6 arity(R)
• for any fact R(a) of I, we create a new element e and fact AR(e) in I′, and for each 1 6 i 6 arity(R), we create the fact

Ri(e,ai) in I′

Fix the signature σ , k ∈ N∗, and fix q a constant-free GSO sentence. By Proposition 7.1 of [GHO02], there exists a MSO
sentence q′ such that, for any instance I of treewidth k, I |= q iff I′ |= q′, where I′ is the incidence instance of I; besides, from
the proof of this result, q′ is computable from q.

Now, it is clear (this is also mentioned in [GHO02]) that if I has treewidth of k then I′ has treewidth of k+1, as from a tree
encoding of I of width k one can deduce a tree decomposition of I′ with same skeleton with width k+1, creating for each node
a bag containing the domain of the node and the fresh element representing the fact of the node. Moreover, the only propagated
values from a node to another are the ones belonging to the domain of I.

We will now go back to the notion of encoding of [FFG02] as it is more convenient to represent in one bag all the facts of I′
created for a fact of I. In so doing, we will reuse the notations of the proof of Theorem 6.1. Let fctk(σ) and Γk+1(σ

′) be the two
alphabets as defined here and in [FFG02]. We build a bDTA At on Σ ··= fctk(σ)×Γk+1(σ

′) such that:

1. if At accepts a Σ-tree T then I1 = 〈π1(T )〉 and I2 = 〈π2(T )〉′ are well-defined and I2 is isomorphic to the incidence instance
of I1.

2. for any fctk(σ)-tree T , there exists a Γk+1(σ
′) tree T ′ such that T ×T ′ is accepted by At

Having built such an automaton At, as in the proof of Theorem 6.1, we will then be able to perform the intersection of At with a
bDTA that enforces that a tree T ×T ′ is accepted only if 〈T ′〉′ |= q′ (this bDTA being obtained from a bDTA on Γk+1(σ

′) testing
this, which we obtain by encoding q′ to a bDTA using the process of [FFG02] (Lemma 4.10) and encoding to a bDTA [TW68]),
and then build an automaton Aq that tests q as the projection of At on fctk(σ), proving that query q is FTAR.

The automaton At is defined, as in the proof of Theorem 6.1, to check for a certain encoding from fctk(σ) to Γk+1(σ
′), which

we now define: it must be possible to check in MSO whether a Σ-tree follows this encoding, and the encoding must ensure
that the encoding of a fctk(σ)-tree T decodes (with 〈·〉′) to a σ ′-instance which is isomorphic to the incidence instance of the
decoding of T .

Letting n be a node of the fctk(σ)-tree and (d,s) ··= λ (n), the label of the corresponding node n′ of the Γk+1(σ
′)-tree is set by

picking its domain to be elements representing the elements of d, plus, if s is a non-zero fact, an element representing the fresh
element e introduced to represent that fact. The values γ1 and γ2 of λ (n′) are set as in the proof of Theorem 6.1, except for the
fresh element (whose index never occurs in them), and γ3, . . . ,γnσ+2 are defined in the expected way, noting that the AR and Ri
facts that code the fact of s will be reflected in them. This encoding clearly satisfies the desired properties.

COROLLARY 6.6. GSO sentences (resp., queries) are quasi-FTAR (resp., non-Boolean quasi-FTAR).

Proof. Given a GSO sentence q with constants, we can compute the set C of all constants occurring in q, and consider the set
of facts I′ which are Pc(c) for every c ∈C, where Pc is a fresh unary predicate. We can then reduce the problem of evaluating
q on an instance I to evaluating the constant-free GSO sentence q′ on instance I t I′, where q′ is ∀yq′′(y)∧

∧
c∈C Pc(yc), y is a

|C|-tuple of variables, and q′′ is obtained from q by replacing every constant c ∈C by the variable yc. Hence, q is quasi-FTAR.
For a GSO query q, clearly, for any tuple a whose arity is the number of free variables of q, q(a) is a GSO sentence, so it is

FTAR, so we can take qa to be q(a).

PROPOSITION 6.8. [CV92] The rewriting complexity of UCQs is in 2-EXPTIME in |q| and k.
DEFINITION D.1. A bottom-up nondeterministic tree automaton on (binary full) Γ-trees, or Γ-bNTA, is a tuple A = (Q,F, ι ,δ )
of a set Q of states, a subset F ⊆ Q of accepting states, an initial relation ι : Γ→ 2Q determining possible states for leaves
from their label and a transition relation δ : Q2×Γ→ 2Q determining possible states for internal nodes from their label and the
states of their children. |A| is |Q|3 |fctk(σ)| up to polylogarithmic factors (intuitively the size of a table for δ ).

A run of A on a Γ-tree E is a function ρ : E→Q such that for each leaf node n we have ρ(n) ∈ ι(λ (n)), and for every internal
node n we have ρ(n) ∈ δ (ρ(Ch (n)),ρ(Ch (n)),λ (n)). A run is accepting if, for the root nr of E, ρ(nr) ∈ F; and A accepts E
(written E |= A) if there exists some accepting run of A on E.
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Proof. Let q be a UCQ and k be an integer.
This proof relies on the notion of proof trees introduced in [CV92]. The proof trees are intuitively tree encodings of an

unfolding, or expansion tree, of a Datalog program P. An expansion tree of P is a ranked tree (not binary in general) defined
as follows: the node labels are pairs of a fact F of an intentional predicate of σint and an instanciation of the body of a rule
r ∈ P (i.e., the variables are mapped to elements of the instance in a way that satisfies the body of r) such that the corresponding
instantiation of the head of r is F .

Such a a tree is well-formed if for any node n labeled by (F,x) there is a bijection f between the children of n and the
intensional facts of the instanciation x such that for any node n, f (n) is exactly the head fact of n. (In particular, if the same
intensional fact is used multiple times in the rule, then there are as many children as there are occurrences of this fact). We will
require that in the rules of the program P, every body contains either 0 or 2 intensional facts, so that expansion trees are full
binary trees.

From an expansion tree, it is possible to derive a proof tree, which is a Σ(P)-tree for some finite set Σ(P) (for fixed P), as
follows: the alphabet Σ(P) is the set pairs of tuples over some fixed set of 2 |P| values and of a rule of P, and the intuition of
a Σ(P)-tree, just like for our notion of k-facts, is that sharing an element between one node and its parent encodes that it is
the same element, but elements shared between, e.g., siblings, are not necessarily the same element. Note that proof trees, as
expansion trees, are full binary trees.

Having described how to encode an expansion tree to a proof tree, we describe the decoding 〈T 〉′ of a Σ(P)-tree T : first, apply
a process analogous to our own notion of decoding, to obtain an expansion tree T ′; second, consider the extensional facts that
appear in the instanciation of the bodies in the labels of T ′, and define 〈T 〉′ to be the instance formed of those facts. Of course,
if any of these processes fails, or if the intermediate expansion tree is not well-formed, we abort and set 〈T 〉′ =⊥.

Our goal is now to define a datalog program P such that there is a surjective homomorphism from Σ(P) to fctk(σ). Fix σint to
have intensional relations P0, . . . ,Pk+1 of arity 8 0, . . . ,k+1. For every tuples of variables x, y, z1, z2 taken from a set of 3k+aσ

variables denoted by SX (where aσ is the arity of σ ), with the condition y⊆ x, for every relation R of σ , and 0 6 i, j1, j2 6 k+1,
create the rules in P:

Pi(x)← R(y)Pj1(z1)Pj2(z2)

and

P(x)← R(y)
Finally, we create the rules

Pi(x)← Pj1(z1)Pj2(z2)

In terms of size, each rule of the program P contains a number of variables polynomial in k and σ , and the overall size of
the program is exponential in a polynomial of k and σ . Last, the size of Σ(P) is in O(|P| ∗ |P|a(P)), where a(P) is the maximal
arity of the intentional relations. Let β be a set of values of cardinality equal to 2k+2. Then, Σ(P) is equal to the pairs P(a),r
where r is a rule. We define the following homomorphism h from Σ(P) to fctk(σ). Let (Pi(a),r) be a element of Σ(P). If r does
not have an extensional fact then h(Pi(a),r) is equal to (a, /0). Otherwise, the atom R(y) occurs in the body of r, let ν be the
valuation from the variables of r defined according to the head atom Pi(a) (as we imposed y⊆ x above) such that ν(x) is equal to
a: h(P(a),r) is equal to (a,R(ν(y)). h is thus defined from Σ(P)-trees to the fctk(σ), and it is clearly surjective. Furthermore, it
is clear that this application extends to a surjective mapping h′ from Σ(P)-trees to fctk(σ)-trees, with the property that whenever
〈h′(T )〉 is defined then T is well-formed and 〈h′(T )〉 and 〈T 〉′ are isomorphic.

We now explain how we construct our automaton for the query q. Let us first assume that q is a CQ. We consider the Datalog
program P that we constructed above. From the proof of Proposition 5.10 of [CV92], we deduce that we can construct, in time
polynomial in its size, a bNTA AP on Σ(P) whose number of states is in is in O(|Σ(P)| ·2|q|+Vq∗VP). where VP (resp., Vq) is the
maximal number of variables in a rule of P (resp., in q) such that AP recognizes the language of the well-formed Σ(P)-trees T
such that 〈T 〉′ satisfies q. For our program P, the size of AP is therefore exponential in a polynomial of k, σ and |q|.

Because h′ is an surjective homomorphism from Σ(P)-trees to fctk(σ)-trees and AP is on Σ(P) with the Property 1.4.3 of
[CDG+07] that shows that bNTA are closed by homomorphism, we compute in polynomial time in AP a bNTA A′P on fctk(σ)
that has size exponential in a polynomial of σ , |q| and k.

Finally, the determinization of A′P into an equivalent bDTA is performed in exponential time in that bDTA, yielding our 2-
EXPTIME bound, and we intersect it with an bDTA (clearly constructible in 2-EXPTIME) that checks whether a fctk(σ)-tree is
a valid encoding, and rejects otherwise. This yields the final automaton A.

We now check that A tests the query q. Let T be a fctk(σ)-tree. If 〈T 〉 satisfies q, then it is well-defined, Let T ′ be a preimage
of T by h′. By our condition on h′, 〈T ′〉′ is well-defined and isomorphic to 〈T 〉, so (as q features no constants and is thus
preserved by isomorphisms) it satisfies q, and therefore T ′ was accepted by AP, so T is accepted by A. Conversely, if A accepts
T , then let T ′ be a preimage of T by h such that A′ accepts T ′. As 〈T 〉 is well-defined, T ′ is well-defined and 〈T ′〉′ and 〈T 〉 are
isomorphic; but as T ′ is accepted by AP, we must have 〈T ′〉′ |= q, so 〈T 〉 |= q.

The result can be extended to an UCQ q by applying the result to every CQ and taking the union of the resulting automata
(whose size is the sum of the input automata) before we perform the determinization.

PROPOSITION 6.9. [BKR14] The rewriting complexity of frontier-guarded datalog is in 3-EXPTIME in |P| and k.

Proof. [BKR14] defines a query language GQ which is more expressive than frontier-guarded datalog (with global constants
appearing in the rules). The satisfaction of a GQ query q1 on I is defined by first given a valuation ν over the special constants
8While we technically disallowed predicates of arity 0 in our definition of instances, there is clearly no problem in this context.
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over dom(I), applying ν to the special constants of GQ to obtain a frontier-guarded Datalog query q2 and determining as usual
whether I |= q2.

Now, Proposition 9 of [BKR14] states that for any GQ query q1 and a valuation ν of the special constant λ , there exists
an alternating two-way tree automata [CGKV88]. which recognizes proof trees whose decoding (as an instance) satisfies the
frontier-guarded datalog program obtained from q1 by applying the valuation. Moreover, the proof of Proposition 9 of [BKR14]
shows that this construction is exponential in q′. Frontier-guarded datalog programs are GQ without any special constants and
therefore we can conclude from Proposition 9 [BKR14] that for any frontier-guarded Datalog q there exists an exponential
alternating two-way tree automata A which recognizes proof trees whose decoding satisfies q, and (from the proof) that this
construction is polynomial in the size of A. The translation [CGKV88] of this two-way alternating tree automaton A to an
equivalent bNTA A′ is in exponential time in |A|. Therefore, by the same arguments as in the proof of Proposition 6.8, there
exists an bDTA of triple exponential size in |P| and k that recognizes the fctk(σ)-trees T such that 〈T 〉 satisfies the given
frontier-guarded Datalog program (the third exponential coming from the determinization).

PROPOSITION 6.10. Datalog is not FTAR.

Proof. Let σ be the signature including the two binary relations Y and Z and the unary relations Begin and End. Consider the
following program P, where I |= P for an instance I means that the Goal() predicate is derived:

Goal()← S(x,y),Begin(x),End(y)
S(x,y)← Y (x,w),S(w,u),Z(u,y)
S(x,y)← Y (x,w),Z(w,y)

By way of contradiction, let us assume that the program P is FTAR. Fix the treewidth of instances to be 1, and let A be a
fct1(σ)-automaton that tests P.

We consider instances which are chains of facts which are either Y - or Z-facts, and where the first end is the only node labeled
Begin and the other is the only node labeled End. This condition on instances can clearly be expressed in MSO, known to be
FTAR by Theorem 6.1, so there exists an automaton Achain that tests this property. In particular, we can build the automaton A′
which is the intersection of A and Achain, which tests whether instances are of the prescribed form and satisfy property P.

We now observe that such instances must be the instance

Ik = {Begin(a1),Y (a1,a2), . . . ,Y (ak−1,ak),Y (ak,ak+1),Z(ak+1,ak+2), . . . ,Z(a2k−1,a2k),Z(a2k,a2k+1),End(a2k+1)}
for some k ∈ N. Indeed, it is clear that Ik satisfies P for all k ∈ N, as we derive the facts

S(ak,ak+2),S(ak−1,ak+3), . . . ,S(ak−(k−1),ak+2+(k−1)), that is, S(a1,a2k+1),

and finally Goal(). Conversely, for any instance I of the prescribed shape that satisfies P, it is easily seen that the derivation of
Goal justifies the existence of an Ik-chain in I, which by the restrictions on the shape of I means that I = Ik.

We further design a tree automaton Aencode which recognizes tree encodings that form a single branch as follows (given
from leaf to root), for any integer n > 0 and where X may match either Y or Z: ({a1},Start(a1)), ({a1,a2},X(a1,a2)),
({a2,a3},X(a2,a3)), ({a3,a1},X(a3,a1)), . . . , ({an,an+1},X(an,an+1)), ({an+1},End(an+1)), with addition modulo 3, with
dummy nodes (⊥,⊥) added as left children, and left and right children of the leaf node ({a1},Start(a1)) to ensure that the tree
is full. In other words, Aencode enforces that the fct1(σ)-tree encodes the input instance as a chain of consecutive facts with a
certain prescribed alternation pattern for elements, with the Begin end of the chain at the top and the End end at the bottom. We
define A′′ to be the intersection of A′ and Aencode.

It is easily seen that there is exactly one tree encoding of every Ik which is accepted by A′′, namely, the one of the form tested
by Aencode where n = 2k, the first k X are matched to Y and the last k X are matched to Z.

Now, we observe that as A′′ is an automaton which is forced to operate on chains (actually, chains completed to full binary
trees by a specific addition of binary nodes), we can translate it to a deterministic automaton A′′′ on words on the alphabet
Σ = {B,Y,Z,E}, by looking at its behavior in terms of the X-facts. Formally, A′′′ has same state space as A′′, same final states,
initial state δ (ι((⊥,⊥)), ι((⊥,⊥))) and transition function δ (q,x) = δ (ι((⊥,⊥)),q,(s, f )) for every domain s, where f is a fact
corresponding to the letter x ∈ Σ (B stands here for Begin, and E for End). By definition of A′′, A′′′ recognizes the language
{BY kZkE | k ∈ N}. As this language is not regular, we have reached a contradiction. This contradicts our hypothesis about the
existence of automaton A; so the program P is not FTAR.

E. PROOFS FOR SECTION 7 (PROBABILITY EVALUATION)
THEOREM 7.3. Let V be a set of finite value sets, and let k1, . . . ,k|V| be integers. Given a tree decomposition T of a V-circuit
C such that the number of gates of value set Vi in any bag of T is less than ki for all 1 6 i 6 |V|, and given a probabilistic
valuation πg′ for every g′ ∈ Cinp, the probability evaluation problem for C, a gate g, and π can be solved in time ra-linear in
|T |×h(k)+ |π|+ |C|, where h(k) = ∏i |Vi|ki .

Proof. Fix T = (B,Ch ,Ch ,dom) a tree decomposition of a (V,F)-circuit C = (G,W ) (so that for any b ∈ B, dom(b) is
a set of gates of G). We define E ··= Ch ∪Ch and, for g ∈ G, V (g) the value set of g. For e = (b1,b2) ∈ E, we define
dom(e) ··= dom(b1)∩dom(b2), the shared elements between a bag and its parent. We assume an arbitrary order < over G and
see dom(b) as a tuple by ordering elements of dom(b) with < (this ordering taking constant time as the size of bags is bounded
by a constant). If dom(b) = (g1, . . . ,gm), we note V (b) =V (g1)×·· ·×V (gm) (and similarly, for e ∈ E, V (e) is the product over
dom(e)). For every g ∈ G, let β (g) ∈ B be an arbitrary bag containing g and all gates that are inputs of g, that is, all gates g′
such that (g′,g, i) ∈W for some W : such a bag exists by definition of the tree decomposition of circuits (there is a fact in IC
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regrouping g and the g′) and we can precompute such a function in linear time by a traversal of T . In particular, if g is an input
gate, then β (g) is an arbitrary bag containing just g.

We associate to every bag b∈ B (resp., every edge e∈ E) a potential function Φb : V (b)→Q+ (resp., Φe : V (e)→Q+), where
Q+ denotes the nonnegative rational numbers, initialized to the constant 1 function. We will store for each bag and each edge
the full table of values of Φe, i.e., at most h(k) values, each of which has size bounded by |π|.

The functions πg for g ∈Cinp are mappings from V (g) to R+. For a bag b ∈ B with g ∈ dom(b), we define πb
g as the function

that maps every tuple d ∈V (b) to πg(d′) where d′ is the value assigned to g in d.
For g a function gate, let κ(g) be the tuple formed of g and all gates with a wire to g, ordered by <. Let f ∈ F be the function

of g. We see f as a subrelation Rg of V (κ(t)) (the table of values of the function, with columns reordered by applying < on g),
that is, a set of (arity( f )+1)-tuples which represents the graph of the function.

We update the potential function by the following steps, where the product of two functions f and f ′ which have same domain
D denotes pointwise multiplication, that is, ( f × f ′)(x) = f (x)× f ′(x) for all x ∈ D:

1. For every g ∈Cinp, we set Φβ (g) ··= Φβ (g)×π
β (g)
g .

2. For every g ∈ G\Cinp, we set Φβ (g)(d) ··= 0 if the projection of d onto κ(g) is not in Rg, we leave Φβ (g)(t) unchanged
otherwise.

Note that we have now initialized the potential functions in a way which exactly corresponds to that of [HD96], for a straight-
forward interpretation of our circuit with probabilistic inputs as a special case of a belief network where all non-root nodes are
deterministic (i.e., have a conditional distribution with values in {0,1}).

We now apply as is the GLOBAL PROPAGATION steps described in Section 5.3 of [HD96]: if we choose the root of the tree
decomposition as the root cluster X, this consists in propagating potentials from the leaves of the tree decomposition up to the
root, then from the root down to the leaves of the tree. This process is linear in |T | and, at every bag of T , requires a number of
arithmetic operations linear in h(k).

As shown in [LS88, HD96], at the end of the process, the desired probability distribution Prg for gate g can be obtained by
marginalizing Φβ (g):

Prg(d′) = ∑
d∈V (β (g))

dk=d′

Φ
β (g)(d)

where k is the position of g in dom(β (g)).
The whole process is linear in |T |×h(k)+ |C|+ |π| under fixed-cost arithmetic; under real-cost arithmetic, belief propagation

requires multiplying and summing linearly many times O(|T | × h(k)) probability values, each of with size bounded by |π|,
which is polynomial-time in |T |, h(k), |π|.

REMARK E.1. Theorem 7.3 means that we see circuit C as a “lineage” of the query, we can compute its probability efficiently,
by computing a tree decomposition, without remembering anything in this query. This is in contrast with other settings [BLRS14]
where probability evaluation on the lineage (“grounded inference”; or “intensional approach” [JOS10]) is harder than proba-
bility evaluation using the query (“lifted inference”).
THEOREM 7.5. The probabilistic query evaluation problem for FTAR queries on bounded-treewidth pcc-instances can be solved
in ra-linear time data complexity.

Proof. Let J = (I,C,ϕ,π) be a pcc-instance of treewidth k and q a query. We use Theorem 4.8 to construct in linear time a
Boolean circuit C′ of treewidth k′ dependent only on k and q, with distinguished gate g. We build from C′ a tree decomposition
of width k′ in linear time. The probability that q is true in J is Prg(t). We conclude as Theorem 7.3 states that this can be
computed in ra-linear time in |C′|+ |π| for fixed k′.

DEFINITION E.2. Given a fixed query q and uncertainty framework, the query certainty problem (resp. query possibility prob-
lem) is to determine, given an input uncertain instance J, whether all possible worlds of J satisfy q (resp. whether some possible
world of J satisfies q).
COROLLARY 7.6. The query certainty and possibility problems for FTAR queries on bounded-treewidth cc-instances can be
solved in ra-linear time.

Proof. See the cc-instance as a pcc-instance with all probabilities set to 1
2 . The probability of a query is 1 (resp., not 0) on the

pcc-instance if the query is certain (resp. possible) on the underlying cc-instance. We can then apply Theorem 7.5.

F. PROOFS FOR SECTION 8 (APPLICATIONS)
F.1 Relational Models (Section 8.1)
pc-instances.
PROPOSITION 8.2. For any fixed k, given a (p)c-instance J of width 6 k, we can compute in linear time a (p)cc-instance J which
is equivalent in the sense of Proposition 4.2 and has treewidth depending only on k.
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Proof. We first justify that we can compute in linear time from J (p)c-instance J′ with the same events such that for any valuation
ν , we have ν(J) = ν(J′) (and PrJ(ν) = PrJ′(ν)), and the annotations of J′ have size depending only on k.

Indeed, we observe that by our assumption that w(J) 6 k, for any formula F in an annotation, the number of distinct events
occurring in F is at most k. Indeed, there is a Cooc clique between these events in IJ , so that as w(IJ) 6 k (by Lemma 1
of [Gav74]) there must be less than k of them.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for fixed k, to an equivalent formula
whose size depends only on k. Indeed, for every valuation of the input events, which means at most 2k valuations by the above,
we can evaluate the formula in linear time; then we can rewrite the formula to the disjunction of all valuations that satisfy it, each
valuation being tested as the conjunction of the right events and negation of events. So this overall process produces in linear
time an equivalent (p)c-instance J′ where the annotation size depends only on k. So we can assume without loss of generality
that the size of the annotations of J is bounded by a constant.

Consider now the (p)c-instance J, its relational encoding IJ , and a tree decomposition T of IJ . We build a tree decomposition T ′
of a relational encoding IJ of a cc-instance J′ = (I,C,ϕ) designed to be equivalent to J. Start by adding to C the input gates,
which correspond to the events of J.

Now, consider each fact F = R(a) of J. Let e be the set of events used in the annotation AF of F . Note that every pair of
S = at e co-occurs in some fact of IJ : the elements of a co-occur within F , the elements of e co-occur in a Cooc fact, and
any pair of elements from a and e co-occur in some Occ fact. Hence, by Lemma 1 of [Gav74], there is a bag bF ∈ T such that
S⊆ dom(b).

Let CF be a circuit representation of the Boolean function AF on E, whose size depends only on k. Add CF to C, add F to I,
and set ϕ(F) to be the distinguished node of CF . We have thus built J′, which by construction is equivalent to J.

We now build T ′ by making it a copy of T . Now, for each fact F , considering its bag bF , and b′F the corresponding bag in T ′,
we add all elements of CF to b′F . This decomposition clearly covers all facts of IJ′ , and event occurrences form subtrees because
they do in T and the elements that we added to T ′ are always in a single bag only. Last, it is clear that the bag size depends only
on k, as the size of the CF added to the bags depends only on k, and at most k of them are added to each bag (because there are
at most k elements per bag).

We have not talked about probabilities, but clearly if J is a pc-instance the probabilities of the inputs of the pcc-instance J′
should be defined analogously.

THEOREM 8.3. For bounded-treewidth pc-instances, the probabilistic query evaluation problem for Boolean MSO queries can
be solved in ra-linear time data complexity.

Proof. The result is an immediate consequence of Proposition 8.2 and Theorem 4.8 as long as we show that, for any fixed k ∈N∗,
and for every (p)c-instance J of width 6 k, one can compute in linear time a (p)c-instance J′ with the same events such that for
any valuation ν , we have ν(J) = ν(J′) (and PrJ(ν) = PrJ′(ν)), and the annotations of J′ have size depending only on k.

Fix k and J. We observe that by our assumption that w(J)6 k, for any formula Φ in an annotation, the number pΦ of distinct
events occurring in Φ is at most k. Indeed, there is a Cooc clique between these events in IJ and each of them is connected by
the Occ relation to domain elements of the fact F annotated by Φ (there is at least one), so we have in total a (pΦ+1)-clique. By
Lemma 1 of [Gav74], any tree decomposition must have one node containing all these pΦ +1 elements, and therefore pΦ 6 k.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for fixed k, to an equivalent formula
whose size depends only on k. Indeed, for every valuation of the input events, which means at most 2k valuations by the above,
we can evaluate the formula in linear time; then we can rewrite the formula to the disjunction of all valuations that satisfy it,
each valuation being tested as a conjunction of at most k literals. So this overall process produces in linear time an equivalent
(p)c-instance where the annotation size depends only on k.

BID instances.
LEMMA 8.6. For any fixed k ∈ N∗, given a BID instance J with w(J) 6 k, we can compute in ra-linear time an equivalent
pcc-instance J′ where w(J′) depends only on k.

Proof. Fix k and J. First, compute in linear time a tree decomposition T of J of width w(J)6 k.
Without loss of generality, we can assume that probabilities within each block of J are rationals with the same denominator

(if this is not the case, we normalize these probabilities in ra-linear time).
As in the proof of Lemma 3.4, we can assume that every fact of J has been assigned to a bag of T where it is covered (i.e.,

F = R(a) with a ⊆ dom(b) for b the covering bag). Actually, still in the spirit of the proof of Lemma 3.4, we can modify the
decomposition T by copying nodes to create chains, so that we can assume that at most one fact is assigned to each bag. This
preprocessing can be performed in linear time. For every fact F of J we let β (F) be the bag of T to which fact F was assigned.

We compute the pcc-instance J′ = (J,C,ϕ) by building C and ϕ and a tree decomposition T ′ for J′ with same skeleton as T ,
which is initialized as a copy of T . We add the gates of C to T ′ to turn it into a tree decomposition of J′.

Let B be the set of blocks: a key a ∈ B is a pair of a relation symbol and a tuple that is a key in J for that relation. We write Ja
to refer to J restricted to the facts of block a; and |Ia| is the size (not the number of facts!) of this part of the instance (the size
of both the facts and the associated probabilities). It is then clear that ∑a∈B |Ia|= |J|, the size of the original instance.

Now, for every a ∈ B, consider the subset of bags Ta of T that cover a; it is a connected subtree, as it is the intersection for
every element a ∈ a of the occurrence subtree Tk of this element, which are connected subtrees, and it is not empty because the
elements of a must occur together in some fact of J so they also do in some bag of T . What is more, we can precompute in
linear time the roots of all the Ta (by the same precomputation as in the proof of Lemma 3.4). It is also clear that ∑a∈B |Ta| is of
size linear in |J|, as, for fixed σ and k, each bag of T can only occur in a constant number of Ta.

So we prove the result in the following way: for each a∈B, we compute in time O(|Ia|+ |Ta|) a circuit Ca to annotate the facts
of Ia in J′, and we add the gates of Ca to T ′ to obtain a tree decomposition of J′ so far, making sure that we add only a constant
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number of gates to each bag, and only to bags that are in Ta. If we can manage this for every a ∈ B, then the result follows, as
we can process the blocks in J in order (as they are provided); our final pcc-instance has width that is still constant (for each bag
of T can only occur in a constant number of Ta); and by the arguments about the sizes of the sums, the overall running time of
the algorithm is linear in J.

So in what follows we fix a ∈ B and describe the construction of Ca and the associated decomposition.
Using our preprocessed table to find the root of Ta, we can label its nodes by going over it top-down, in time linear in Ta. We

now notice that for every fact F = R(a,v) of Ia, the bag β (F) covers F so it must be in Ta. We write βa for the restriction of the
function β to the facts of Ia.

We now say that a bag b ∈ Ta is an interesting bag either if it is in the image of fa or if it is a lowest common ancestor of some
subset of bags that are in the image of fa. We now observe that the number of interesting bags of Ta is linear in the number of
facts of Ia; indeed, the interesting bags form the internal nodes and leaves of a binary tree whose leaves must all be in the image
of βa, so the number of leaves is at most the number of facts of Ia, so the total number of nodes in the tree is linear in the number
of leaves.

We now define a weight function w on Ta by w(b) = π(F) (the probability of F) for F ∈ Ia and βa(F) = b, if any such F exists;
w(b) = 0 otherwise. We define bottom-up a cumulative weight function w′ on Ta as w(b), plus w′(Ch (b)) if Ch (b) ∈ Ta, plus
w′(Ch (b)) if Ch (b) ∈ Ta. For notational convenience we also extend w′ to anything by saying that w′(b) = 0 if b /∈ Ta or b
does not exist.

Observe now that for a non-interesting bag b, w(b) and w′(b) can be represented either as 0 or as a pointer to some w(b′)
or w′(b′) for an interesting bag b′. Indeed, if b is non-interesting then we must have w(b) = 0. Now we show that if b has a
topmost interesting descendant b′ then it is unique: indeed, the lowest common ancestor of two interesting descendants of b is
a descendant of b and it is also interesting, so there is a unique topmost one. Now this means that either b′ does not exist and
w′(b) = 0, or it does exist and all descendants of b that are in the image of βa are descendants of b′, so that w′(b) = w′(b′) and
we can just make w′(b) a pointer to w′(b′).

Now this justifies that we can compute w and w′ bottom-up in linear time in |Ta|+ |Ia|: observe that we are working on
rationals with the same denominator, so the sums that we perform are sums of integers, whose size always remains less than the
common denominator; as there is a number of interesting bags which is linear in the number of facts of Ia, and those are the only
nodes for which a value (whose size is that of the probabilities in Ia) actually needs to be computed and written, the computation
is performed in time O(|Ta|+ |Ia|) overall.

We now justify that we can encode Ta to a circuit with the correct probabilities. For each bag b ∈ Ta, we create a gate gi
b;

for the root bag b it is an input gate with probability w′(b); for other bags it is a gate whose value is defined by the parent bag.
Intuitively, gi

b describes whether to choose a fact from Fa within the subtree rooted at b.
For every interesting bag b, writing w′(b) = k′/d and w(b) = k/d with d the common denominator, create one input gate gh

b
with probability 1

w′(b)w(b) = k/k′, and one gate gh∧
b which is the AND of gh

b and gi
b. Intuitively, this gate describes whether

to generate the fact assigned at this node, if any. If there is such a fact, set its image by ϕ to be gh∧
b . Now if w′(b) > w(b)

(intuitively: there is still the possibility to generate fact at child nodes), we create one input gate g↔b which has probability
1

w′(b)−w(b)w′(Ch (b)). Once again, this probability simplifies to a rational whose numerator and denominator are < d. We create

a gate gb to be gi
b ∧¬gh

b ∧ g↔b (creating a constant number of intermediate gates as necessary), and gb to be gi
b ∧¬gh

b ∧¬g↔b ,
setting them to be gi

Ch (b) and gi
Ch (b) where applicable (i.e., if Ch (b) and Ch (b) exist and are in Ta).

By contrast, non-interesting bags b just set gi
Ch (b) and gi

Ch (b) (where applicable) to be gi
b, with no input gates.

We now observe that by construction the resulting circuit has a tree decomposition that is compatible with T , so that we can
add its events to T ′ and only add constant width to the nodes of Ta as required. It is also easy to see that the circuit gives the
correct distribution on the facts of Fa, with the following invariant: for any bag b ∈ Ta, the probability that gi

b is t is w′(b), and
gh∧

b , gb and gb are either all f if gi
b is f or, if gi

b is t, exactly one is true and they respectively have marginal probabilities w(b),
w′(Ch (b)), and w′(Ch (b)). Now the circuit construction is once again in time O(|Ia|+ |Ta|), noting that interesting nodes
are the only nodes where numbers need to be computed and written; and we have performed the entire computation in time
O(|Ia|+ |Ta|), so the overall result is proven.

F.2 Probabilistic XML (Section 8.2)
XML documents.
LEMMA 8.11. The relational encoding ID of an XML document D has treewidth 1 and can be computed in linear time.

Proof. Immediate: the relational encoding is clearly computable in linear time and there is a width-1 tree decomposition of the
relational encoding that has same skeleton as the LCRS representation of the XML document.

LEMMA 8.13. For any MSO query q on Λ-documents, one can compute in linear time an MSO query q′ on σΛ such that for any
Λ-document D, D |= q iff ID |= q′.

Proof. We add a constant overhead to q by defining the predicates λ (x) for λ ∈ Λ as Pλ (x), the predicate x < y to be the
transitive closure of NS (¬(x = y)∧∀S(x ∈ S∧ (∀zz′(z ∈ S∧NS(z,z′))⇒ z′ ∈ S)⇒ y ∈ S)), and the predicate x→ y to be
∃z,FC(x,z)∧ (z = y∨ z < y). It is clear that the semantics of those atoms on ID match that of the corresponding atoms on D, so
that a straightforward structural induction on the formula shows that q′ satisfies the desired properties.
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DEFINITION F.1. Given label set Λ, we say that an XML document D on Λt{⊥,det} is a sparse representation of an XML
document D′ on Λ if the root is labeled with an element of Λ, and the XML document obtained from D by removing every ⊥
node and their descendants, and replacing every det node by the collection of its children, in order, is exactly D′.

We say that a σΛt{det} instance I is a weak relational encoding of an XML document D with label set Λ if there exists a sparse
representation D′ of D such that I is the relational encoding of D′ except that P⊥ facts are not written.
PROPOSITION F.2. For any MSO query q on XML documents with (fixed) label set Λ, one can compute in linear time an MSO
query q′ on σΛ such that for any XML document D on label set Λ, if D |= q then I |= q′ for any weak relational encoding I of D;
and conversely if D 6|= q then I 6|= q′ for any weak relational encoding I of D.

Proof. We show that, for any MSO query q on XML documents with (fixed) label set Λ, one can compute in linear time an MSO
query q′ on documents with label in Λt{⊥,det} such that for any XML document D on label set Λ, if D |= q then D′ |= q′ for
any sparse representation D′ of D; and conversely if D 6|= q then D′ 6|= q′ for any sparse representation D′ of D. The result then
follows by Lemma 8.13.

We call regular the nodes with label in Λ. Consider a document D and sparse representation D′ of D with a mapping f from
D to D′ witnessing that D′ is a sparse representation of D. Let us consider a node n ∈ D with children n1, . . . ,nk in order, and
determine what is the relationship between f (n) and the f (ni) in D′.

It is straightforward to observe that f (n) is regular and the f (ni) are topmost regular descendants of f (n) in D′; and for i < j,
there is some node n′ in D′ (intuitively, their lowest common ancestor, which is a descendant of f (n), possibly f (n) itself) such
that n′ is both an ancestor of f (ni) and f (n j), n′ is a descendant of f (n), and n′ has two children n′1 and n′2 such that f (ni) is a
descendant of n′1 (maybe they are equal), f (n j) is a descendant of n′2 (maybe they are equal), and n′1 < n′2 in D′. Note that n′,
n′1 and n′2 are not necessarily regular nodes of D but can be det nodes. In addition, no ⊥ node can be traversed in any of the
ancestor–descendant chains discussed in this paragraph.

It is now clear that we can have MSO predicates→′ and <′ in D′ following these informal definitions (and not depending on
D or D′), defined from predicates →, < and λ (·) on D′, such that for every D and sparse encoding D′ of D, for every nodes
n,n′ ∈ D, we have n→ n′ in D iff f (n)→ f (n′) in D′ (which should only hold between regular nodes, so nodes in the image
of f ), and likewise for <. Last, it is clear that the predicates λ (·) of D can be encoded directly to the same predicates in D′.

Probabilistic XML.
PROPOSITION 8.16. For any MSO query q on Λ-documents, one can compute in linear time an MSO query q′ on σΛ such that
for any PrXMLfie XML document D, for any valuation ν of D, letting ν ′ be the corresponding valuation of JD, we have that
ν(D) |= q iff ν ′(JD) |= q′.

Proof. We prove that for any valuation ν of D, letting ν ′ be the corresponding valuation of JD, we have that ν ′(JD) is a weak
encoding of ν(D) (we see Pfie facts in ν ′(JD) as if they were Pdet facts). The result then follows by Proposition F.2.

We first show that for any valuation ν of D and corresponding valuation ν ′ of JD, for every λ ∈ Λ, n is a node of ν ′(JD) that
is retained in the XML document ν ′(JD) is a sparse representation of iff n is a node which is retained in ν(D), with same labels.
Indeed, for the forward implication, observe that any fact Pλ (n) is created for node n with label λ in n, and it is retained if and
only if all its regular ancestors are retained and the anotation of its parent edge in ν(D) evaluates to t; conversely, if n has label
λ in D then a fact Pλ (n) was created in I and if n is retained in ν(D) then all the conditions on edges in the chain from n to the
root evaluate to t so Pλ (n) does hold and n is retained in ν ′(JD).

We further know that by construction relations FC and NS correspond to the first-child and next-sibling relations in D no
matter the valuation.

So we deduce that JD is the relational encoding of the XML document obtained from D by replacing all nodes not kept in
ν(D) by ⊥ nodes, and removing all edge annotations.

Observe that in this definition of pc-encoding, it is not the case that the possible worlds of JD are the relational encodings
of the possible worlds of D. For instance, the fie nodes are retained as is, and FC- and NS-facts are always retained even if
the corresponding nodes are dropped. The following example shows that it would not be reasonable to ensure such a strong
property:
EXAMPLE F.3. Consider an fie node with k children n1, . . . ,nk, all annotated with independent events with probability 1/2. In
a straightforward attempt to encode this node and its descendants to a pc-instance J (or even to a pcc-instance J), we would
create one domain element ei for each of the ni. But then we would need to account for the fact that, as any pair ni,n j may be
retained individually, the fact NS(ei,e j) would need to occur in a possible world of J, and thus would also occur in J. So this
naïve attempt to ensure that the possible worlds of J are exactly the relational encodings of the possible worlds of D leads to a
pcc-instance of quadratic size and linear treewidth.

PROPOSITION 8.19. For any PrXMLfie document D, we have w(JD)6 ws(D)+1.

Proof. We show how to build a tree decomposition of the relational encoding of JD from the event scopes. Consider the tree
decomposition T of ID that is isomorphic to a LCRS encoding D′ of D: the root node of D′ is coded to an empty bag, and each
node n of the LCRS encoding with parent n′ is coded to {n′,n}.

We now add to T , for each bag b corresponding to a node n, the events of S(n). It is clear that T is of the prescribed width and
that the occurrences of all nodes and events are connected subtrees.

We now argue that it is a tree decomposition of the relational encoding of JD, but this is easily seen: it covers all NS- and FC-
facts represented in JD, and covers all occurrences and co-occurrences by construction of the scopes.

PROPOSITION 8.21. There exists a family of PrXMLfie documents Dn such that w(JDn)6 4 but ws(Dn) is not bounded.
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Proof. Consider the collection of PrXMLfie documents Dn of the following form: a root r with two children c1 and c2 (and no
annotations), and each ci having children ai

j for 1 6 j 6 n with an edge annotated with some event xi. The family Dn does not
have event scope bounded by any finite value, yet the relational encoding of each pc-encoding JDn admits a tree decomposition
of fixed width 6 4: we have a root bag with r, c1, c2, and n other bags with c1, c2, a1

j , a2
j , and x j for 1 6 j 6 n. Hence MSO

query evaluation is in ra-linear time for documents of Dn even though they are not covered by Corollary 8.20.

REMARK F.4. We observe that a limit of both the bounded event scope and the bounded correlation width conditions is that
they can only show tractability for documents where we assume that each edge uses at most a constant number of events in its
annotation (although of course there are tractable documents that would not satisfy this condition).

The PrXMLmux,ind model.
DEFINITION F.5. A PrXMLmux,ind probabilistic document is an XML document D over Λt{ind,mux}, where edges from ind
and mux nodes to their children are labeled with a probability in [0,1], the annotations of outgoing edges of every mux node
summing to 6 1. The semantics JDK of D is obtained as follows: for every ind node, decide to keep or discard each child
according to the indicated probability, and replace the node by the (possibly empty) collection of its kept children; for every
mux node, choose one child node to keep according to the indicated probabilities (possibly keep no node if they sum to < 1),
and replace the mux node by the chosen child (or remove it if no child was chosen). All probabilistic choices are performed
independently. When a node is not kept, its descendants are also discarded. We require the root to have label in Λ.

Observe that in PrXMLmux,ind all probabilistic choices are “local”, in a similar fashion to the TID and BID probabilistic
relational formalisms. As we show later, this helps ensure the tractability of query evaluation.

We use Corollary 8.17 to show the tractability of query evaluation on the PrXMLmux,ind local model, which was already proven
in [CKS09]. We first rewrite input documents to a simpler form:

DEFINITION F.6. Two PrXMLmux,ind documents D1 and D2 are equivalent if for every XML document D, PrD1(D) = PrD2(D).

DEFINITION F.7. We say that a PrXMLmux,ind is in binary form if it is a full binary tree, and the sum of the outgoing probabilities
of every mux node is equal to 1.

The following definition is needed to ensure linear time execution for technical reasons:

DEFINITION F.8. A PrXMLmux,ind document is normalized if for every mux nodes, the rational probabilities that annotate its
child nodes all share the same denominator.
LEMMA F.9. From any normalized PrXMLmux,ind document D, we can compute in linear time in D an equivalent PrXMLmux,ind

document D′ which is in binary form.

Proof. In this proof, for brevity, we use det nodes to refer to ind nodes whose child edges are all annotated with probability 1.
First, rewrite mux nodes whose outgoing probabilities sum up to < 1 by adding a det child for them with the remaining

probability. This operation is in linear time because the corresponding number has same denominator as other children of the
mux node (as the document is normalized), and the numerator is smaller than the denominator.

Next, use det nodes to rewrite the children of regular and ind nodes to a chain so that all regular and ind nodes have at most 2
children. This only causes a constant-factor blowup of the document.

Next, rewrite mux nodes with more than two children to a hierarchy of mux nodes in the obvious way: considering a mux
node n with k children n1, . . . ,nk and probabilities p1, . . . , pk summing to 1, we replace n by a hierarchy n′1, . . . ,n

′
k−1 of mux

nodes: the children of each n′i is ni with probability pi
∑ j<i p j

and n′i+1 with probability 1− pi
∑ j<i p j

; except for n′k−1 whose children
are nk−1 and nk (with the same probabilities). This operation can be performed in linear time as the denominators of the fractions
simplify (by the assumption that the document is normalized), and the sum operations work on operands and results which are
smaller than the numerator.

Now, replace mux nodes with < 2 children by ind nodes (the probabilities are unchanged).
Last, add det children to nodes so that the degree of every node is either 2 or 0.
This process can be performed in linear time and that the resulting document is in binary form; equivalence has been main-

tained through all steps.

Now, we can show:
PROPOSITION F.10. For any PrXMLmux,ind document D in binary form, one can compute in linear time an equivalent PrXMLfie

document whose scopes have size 6 1.

Proof. For every ind node n with two children n1 and n2 with probabilities p1 and p2, introduce two fresh events eind,1
n and eind,2

n

with probabilities p1 and p2, and replace n by a fie node so that its first and second outgoing edges are annotated with eind,1
n and

eind,2
n .
Likewise, for every mux node n with two children n1 and n2 with probabilities p and 1− p, introduce a fresh event emux

n with
probability p and replace n by a fie node so that its first and second outgoing edges are annotated with emux

n and ¬emux
n .

It is immediate that the resulting document D′ is equivalent to D. Now, consider the scope of any node of this document. Only
one event occurs in this node, and the only events that occur more than one time in the document occur exactly twice, on the
edges of two direct sibling nodes, so they never occur in the scope of any other node. Hence all scopes in D have size 6 1.

From this, given that PrXMLmux,ind document can be normalized in ra-linear time, we deduce the tractability of MSO query
evaluation on PrXMLmux,ind:
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PROPOSITION 8.22. The MSO query evaluation problem on PrXMLmux,ind has ra-linear time data complexity.

G. PROOFS FOR SECTION 9 (SEMIRING PROVENANCE)
G.1 Material for Section 9.1 and 9.2
LEMMA 9.8. For every (multi-)instance I and monotone multi-query q, q̂(I) is finite.

Proof. The claim is trivial if I is a multi-instance as the number of multi-subinstances of I is clearly finite. We now consider the
claim where I is a set-instance with n facts.

We consider the order relation⊆ on the multi-subinstances of I, in other words, the infinite set S of multisets whose domain S
is a subset of the facts of I, which is finite. Now, an alternative way to see the partial order (S,⊆) is as the component-wise
ordering (s 6 t iff si 6 ti for all 1 6 i 6 n) on tuples of natural numbers (where the i-th element of the tuple indicates the
multiplicity of the i-th element in some arbitrary ordering on the facts of I).

Now the set of multi-subinstances of I that satisfy q is a subset of S, and using the alternative formulation and Dickson’s
lemma [Dic13] we conclude that it has finitely many minimal elements, that is, q̂(I) is finite.

PROPOSITION 9.10. For any Datalog program P, one can compute a monotone multi-query qP such that, for every absorptive
semiring K and (multi-)instance I, WK(qP, I) is the provenance of P on I for K in the sense of [GKT07].

Proof. We recall the definition of Datalog proof trees from the proof of Proposition 6.8, which we amend slightly to require that
nodes have as many children as the number of facts used in their rules (intensional or extensional), and node labels can be (F, /0)
where F is an instance fact; in other words, the use of instance facts are visible in the proof tree, and the nodes labeled with
instance facts are leaves. This definition matches that of the derivation trees of [GKT07].

We now recall the definition of provenance from [GKT07] (Definition 5.1): For any K-instance I, and Datalog program P, the
provenance of P on I is: ⊕

τ proof tree of P

⊗
l leaf of τ

I(l)

where I(l) is the annotation of fact l in I. This expression is not always defined, but if we assume that K is absorptive, a variant
of Lemma 9.8 would justify that it is.

We now define qP as follows. Given a multi-instance I and Datalog program P, we say that I satisfies qP if there exists a proof
tree of P on I whose multiset of leaves is ⊆ I (we call this the multi-query defined by P). Clearly this multi-query is always
monotone and its provenance according to our definition matches that of [GKT07].

DEFINITION G.1. The set of p-multi k-facts of σ , written fctp
k (σ), is the set fctk(σ)×{1, . . . , p}. A p-multi tree encoding of

width k is a fctp
k (σ)-tree and p-multi K-tree-encodings are (fctp

k (σ)×K)-trees.
A tree decomposition of a (K-)multi-instance I is that of the instance formed by the facts of dom(I) with multiplicity > 0,

and a tree encoding of a (K-)multi-instance of width 6 k is a (fctk(σ)×N)-tree (or (fctk(σ)×N×K)-tree). Note that this
alphabet is not finite. For p ∈ N∗, we accordingly define the p-truncation of a (K-)multi-instance I as the instance I6p ⊆ I
with I6p(F) = min(I(F), p) for every F of I. The p-truncation of a (fctk(σ)×N)-tree E (or (fctk(σ)×N×K)-tree E) is the
fctp

k (σ)-tree (or (fctp
k (σ)×K)-tree) E6p obtained from E by replacing every label (τ, i) for i > p by (τ, p). We generalize 〈E〉

for fctp
k (σ)-trees and (fctp

k (σ)×K)-tree.
We say that a fctp

k (σ)-bDTA (for some p) tests a multi-query q for treewidth k if for any (fctk(σ)×N)-tree E, E6p |= A iff
〈E〉 |= q. We say that q is FTAR if there exists p ∈ N∗ such that, for every k ∈ N∗, one can compute a bDTA Ak on fctp

k (σ) that
tests q for treewidth k.
LEMMA G.2. For any semiring K and monotone FTAR multi-query q tested by a fctp

k (σ)-bDTA, for any K-instance I, we have
WK(q, I) =WK(q, I6p).

Proof. It suffices to show that q̂(I) = q̂(I6p). Let I′ ∈ q̂(I6p). Clearly it is a sub-multi-instance of I that satisfies q, and it
is minimal as any I′′ ( I′ such that I′′ |= q would contradict the minimality of I′ in q̂(I). So it suffices to show the converse
inclusion.

Letting I′ ∈ q̂(I), we show that the multiplicity of every fact in I′ is at most p. Indeed, as there is an automaton A on fctp
k (σ)

that tests q, letting E ′ be fctk(σ)×N be a tree encoding of I′, A accepts E ′6p. As A tests q, this implies that
〈
E ′6p

〉
|= q, and it

is clear that
〈
E ′6p

〉
⊆ I′ and that the multiplicity of every fact in

〈
E ′6p

〉
is at most p. This proves our claim by minimality of I′,

so that I′ ⊆ I6p. Since I′ |= q, and any I′′ ( I′ such that I′′ |= q would contradict the minimality of I′ in q̂(I), I′ ∈ q̂(I6p).

G.2 Proof of Theorem 9.11
Our proof is connected to that of Section 5. We use Lemmas 5.8 and 5.3, and our main problem is to adapt Lemma 5.6 to

compute a provenance; there, however, a different technique is needed.
Before we embark on this, however, we need first to connect the provenance of a multi-query on an instance to a notion of

provenance for automata on tree encodings, for which we need to understand in which sense automata for monotone queries can
be made monotone. We fix throughout the proof a semiring K.

We work with bNTAs rather than bDTAs (recall Definition D.1), as the monotonicity property is simpler to state for them. We
now define our notion of a monotone Γ-bNTA given an order relation on Γ:
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DEFINITION G.3. Given a partial order < on Γ, we say that a Γ-bNTA A = (Q,F, ι ,δ ) is monotone if for every l < l′ in Γ, we
have ι(l)⊆ ι(l′), and for every q1,q2 ∈ Q we have δ (q1,q2, l)⊆ δ (q1,q2, l′).

This syntactic definition of monotonicity implies a semantic consequence, in the following way:
DEFINITION G.4. Any partial order (Γ,<) can be extended to a partial order on Γ-trees by setting T 6 T ′ if T and T ′ have
same skeleton and for every node n in T with label l corresponding to node n′ in T ′ with label l′, we have l 6 l′.
LEMMA G.5. Given a Γ-bNTA A which is monotone for (Γ,<), for any Γ-trees T and T ′, if T 6 T ′ and T ′ |= A then T |= A.

Proof. Immediate as any run of A on T is a run of A on T ′.

In our context, for any p ∈ N, we define the partial order (fctp
k (σ),<) by (τ, i)< (τ ′, j) iff τ = τ ′ and i < j. We say that E ′ is

a subencoding of E if E ′ 6 E, and then:
LEMMA G.6. For every fctp

k (σ)-trees E and E ′, if E 6 E ′ then 〈E〉 ⊆ 〈E ′〉.

Proof. We follow the decoding process and notice that, as the domains of the fctk(σ) node labels in E and E ′ are the same, the
same fresh elements are used throughout, so the only difference between 〈E〉 and 〈E ′〉 is about the multiplicity of the created
facts; and we notice that whenever E 6 E ′ then every fact created in E is created in E ′ with a higher multiplicity.

We can now show that monotone multi-queries can be compiled to monotone bNTAs (and the complexity for this is no higher
than compiling them to bDTAs):
LEMMA G.7. Let k ∈ N, q be a monotone multi-query, and A be a fctp

k (σ)-bDTA for some p ∈ N that tests q for treewidth k.
One can compute in linear time from A a fctp

k (σ)-bNTA A′ that tests q for treewidth k and is monotone for (fctp
k (σ),<).

Proof. Fix k, q, and A = (Q,F, ι ,δ ) the fctp
k (σ)-bDTA. We build the bNTA A′ = (Q,F, ι ′,δ ′) by setting, for all (τ, i) ∈ fctp

k (σ),
ι ′((τ, i)) ··= {ι((τ, j)) | 0 6 j 6 i} and for all q1,q2 ∈ Q, δ ′(q1,q2,(τ, i)) ··= {δ (q1,q2,(τ, j)) | 0 6 j 6 i}.

Clearly A′ is monotone by construction for (fctp
k (σ),<). Besides, for any fctp

k (σ)-tree E, if A accepts E then A′ accepts E, so
to prove the correctness of A′ it suffices to prove the converse implication.

Let us consider such an E, and consider an accepting run ρ of A′ on E. We build a new encoding E ′ whose skeleton is that of
E and where for any leaf (resp. internal node) n′ ∈ E ′ with corresponding node n ∈ E, we set λ (n) in E ′ to be (λ (n), i) for some
i such that ρ(n) = ι((τ, i)) (resp. ρ(n) = δ (ρ(Ch (n)),ρ(Ch (n)),(τ, i))), the existence of such an i being guaranteed by the
definition of ι ′ (resp. δ ′).

We now observe that, by construction, f is a run of A on E ′, and it is still accepting, so that E ′ is accepted by A. Hence,
〈E ′〉 |= q. But now we observe that, once again by construction, for every node n′ of E ′ with label τ ′ and with corresponding
node n in E with label τ , it holds that τ ′ 6 τ . Hence we have E ′ ⊆ E, and, by Lemma G.6, 〈E ′〉 ⊆ 〈E〉, and thus, by monotonicity
of q, we must have 〈E〉 |= P. Thus, A accepts E, proving the desired result.

We now define a notion of provenance for a monotone bNTA A on a (fctp
k (σ)×K)-tree E, to mimic the notion of provenance

of a monotone query on an instance.

DEFINITION G.8. Given a fctp
k (σ)-bNTA A and fctp

k (σ)-tree E, we denote by Â(E) the set of minimal fctp
k (σ)-subtrees E ′ 6 E

(for fctp
k (σ) following Definition G.4) such that E |= A.

Given a monotone bNTA A and a p-multi K-tree-encoding E, the provenance of A on E is:

WK(A,E) =
⊕

E ′∈Â(E)

⊗
n∈E ′

(τ,i,κ)··=λ (n)

κ
i

Of course, we now justify that this notion of provenance for automata relative to encodings corresponds to our notion of
provenance for queries relative to instances.
LEMMA G.9. Let k ∈N∗, let I be a K-multi-instance of width 6 k and E be its p-multi K-tree encoding (for sufficiently large p).
Then for any monotone FTAR multi-query q and monotone fctp

k (σ)-bNTA A that tests q, we have WK(A,E) =WK(q, I).

Proof. Let ψ be the bijection from the support of I to the nodes of E with multiplicity > 0, as obtained in Lemma 3.4. This
mapping defines a bijection ψ̂ from the set of multi-subinstances J of I to the set of subencodings E ′ of E, as follows: ψ̂(J) is
the encoding E ′ where, for every n′ ∈ E ′ with corresponding n ∈ E, writing (τ, i,κ) ··= λ (n), we set λ (n′) ··= λ (n) if n is not in
the image of ψ , and λ (n′) ··= (τ,J(ψ−1(n)),κ) otherwise. It is immediate that for any I′ ⊆ I, ψ̂(I′) is a tree encoding of I′.

Besides, as A tests q, for any I′ ⊆ I, I′ |= q iff ψ̂(I′) is accepted by A. So Â(E) = ψ̂(q̂(I)), and it only remains to see that for
I′ ∈ q̂(I), we have

⊗
F∈I′

α(F)I′(F) =
⊗

n∈ψ̂(I′)
(τ,i,κ)··=λ (n)

κ
i but this is clear by construction of ψ̂ .

We now turn to the proper analogue of Lemma 5.6, introducing the required definitions and stating the lemma. Compare the
following to Definition 5.5:
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DEFINITION G.10. Let k, p ∈ N∗, E be a fctp
k (σ)-tree, and A be a fctp

k (σ)-bNTA. A K-provenance circuit of A on E is a tuple
(C,T,ξ ,go) where C is a K-circuit, T is a tree decomposition of C with same skeleton as E, ξ maps every b ∈ T to ξ (b) ∈Cinp

and the image of ξ covers Cinp, and go is a distinguished gate of C. For any annotation function f : E → K defining a K-
encoding f (E), letting ν be the corresponding valuation of Cinp (for every bag b of T and node n of E corresponding to ξ (b),
ν(ξ (b)) = f (n)), we require that ν(C)(go) =WK(A, f (E)).

The absorptivity of K is used as follows:
LEMMA G.11. Letting k, p ∈ N, for any monotone fctp

k (σ)-bNTA A and fctp
k (σ)-tree E, we have:

WK(A,E) =
⊕

E ′⊆E
E|=A

⊗
n∈E ′

(τ,i,κ)··=λ (n)

κ
i

In other words, we can sum on all subencodings, not just minimal ones.

Proof. By definition of Â(E), for any E ′ ⊆ E such that A accepts E ′, there exists E ′′ ∈ Â(E) such that E ′′ ⊆ E ′. Now as
E ′′ ∈ Â(E), A also accepts E ′′, so the sum in the right-hand size of the equality contains a term TE ′′ for E ′′ as well as the term
TE ′ for E ′. We now argue that TE ′′ ⊕TE ′ = TE ′′ by absorptivity, so the result follows by induction on the number of non-minimal
terms in the

⊕
(intuitively, they can be simplified one by one). But now we only have to observe that TE ′ and TE ′′ are products

and the set of factors of TE ′ is a superset of that of TE ′′ because E ′′ ⊆ E ′. This concludes the proof.

This is the analogue of Lemma 5.6:
LEMMA G.12. Let k, p ∈ N∗ and let A be a monotone fctp

k (σ)-bNTA with state space Q. If K is absorptive, for any p-multi tree
encoding E of width k, one can compute in O(|E| · |A|) a K-provenance circuit C of A on E with a tree decomposition T of width
depending only on k, p and A.

Proof. Fix k, p ∈N, the automaton A = (Q,F, ι ,δ ), and E. We construct the circuit C, distinguished gate go and function ξ . For
the purposes of the construction, we temporarily relax the restriction on circuits that the in-degree of gates matches that of the
function that they compute, in the case of gate functions which are associative (intuitively, those that represents the laws of the
semiring). We later explain how to leverage associativity to rewrite the circuit to an equivalent circuit where such gates have
in-degree two (intuitively, by rewriting each such gate to a chain of gates).

For every node n in E, letting (τn,mn) ··= λ (n), we create |Q| gates gq
n, one input gate gi

n in C, and at most p×|Q| gates gq,i
n

for 0 6 i 6 mn which are ⊗-gates with input gi
n repeated i times.

If n is a leaf node, for each q ∈ Q, we set gq
n to be an ⊕-gate of all the gq,i

n such that q ∈ ι((τn, i)), for 0 6 i 6 mn.
If n is an internal node, for each q ∈ Q:

• for every states q ,q ,q ∈Q, and 0 6 i 6 mn, create an additional gate gq ,q ,q,i
n which is an⊗-gate of gq

Ch (n), gq
Ch (n), and

gq,i;

• for every states q ,q ,q ∈ Q, create a gate gq ,q ,q
n which is the ⊕ of all the gq ,q ,q,i

n such that q ∈ δ (q ,q ,(τn, i)) for
0 6 i 6 mn;
• set gq

n to be the ⊕ of all the gq ,q ,q
n for q ,q ∈ Q.

We add a distinguished gate go which is the
⊕

of all the gq
nr , for q ∈ F and where nr is the root node of E.

To prove the correctness of the construction, we define an additional notion: we define the provenance of A at node n for state
q, for n ∈ E and q ∈ Q, as the provenance of Aq for E|n, where Aq is the automaton obtained from A by setting F = {q} and E|n
is the subtree of E rooted at n.

We now prove for any annotation function f of E, with ν the corresponding valuation of Cinp, the following invariant by a
bottom-up induction on E: for every node n∈ E, and state q∈Q, ν(C)(gq

n) is the provenance of A at node n for state q: formally,
ν(C)(gq

n) =WK(Aq, f (E)|n).

For the base case, let n be a leaf node of E. By Lemma G.11, the provenance of A on f (E)|n at node n for state q is:

WK(Aq, f (E)|n) =
⊕

E ′⊆f (E)|n
E ′|=Aq

⊗
n′∈E ′

(τ,i,κ)··=λ (n′)

κ
i

Now as f (E)|n contains only one node, letting (τn,mn,κn) ··= λ (n′) for n′ the node corresponding to n in f (E), this rewrites to:

WK(Aq, f (E)|n) =
⊕

06i6mn
q∈ι((τn,i))

κ
i
n

Now, let q∈Q, we have ν(C)(gq
n) =

⊕
06i6mn

q∈ι((τ,i))
ν(C)(gi

n), and as κn = ν(C)(gi
n), we have shown that ν(C)(gq

n) =WK(Aq, f (E)|n).
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For the inductive case, let n be an internal node of E. By Lemma G.11, we have:

WK(Aq, f (E)|n) =
⊕

E ′⊆f (E)|n
E ′|=Aq

⊗
n∈E ′

(τ ′,i,κ)··=λ (n)

κ
i

Now, let (τn,mn) ··= λ (n) and partition the terms of the sum depending on the multiplicity of the node corresponding to n in E ′,
which is 0 6 i0 6 mn. For every such i0, we know that we can factor out κ

i0
n from the

⊗
, where κn ··= ν(C)(gi

n). Further, we
can clearly choose E ′ ⊆ f (E)|n, under the condition that the node corresponding to n in E ′ has multiplicity i0, by choosing two
subencodings E ′ and E ′ of f (E)|Ch (n) and f (E)|Ch (n); to respect the condition that A accepts E ′, it is necessary and sufficient
that E ′ and E ′ are accepted by Aq and Aq for some q ,q ∈ Q such that q ∈ δ (q ,q ,(τn, i0)); from which we can split the⊗

in two, and rewrite:

WK(Aq, f (E)|n) =
⊕

06i06mn
q ,q ∈Q

E ′ ⊆f (E)|Ch (n)
E ′ ⊆f (E)|Ch (n)

q∈δ (q ,q ,(τn,i0))
E ′ |=Aq

E ′ |=Aq

κ
i0
n ⊗

 ⊗
n∈E ′

(τ ′,i,κ)··=λ (n)

κ
i

⊗
 ⊗

n∈E ′

(τ ′,i,κ)··=λ (n)

κ
i



Of course the sum on q ,q ∈ Q is not a partition (some terms of the corresponding sum may be counted multiple times), but
this is not a problem as ⊕ is involutive because K is absorptive. Now we use distributivity to regroup the sums and apply
Lemma G.11 (backwards) to rewrite this as:

WK(Aq, f (E)|n) =
⊕

06i06mn
q ,q ∈Q

q∈δ (q ,q ,(τn,i0))

κ
i0
n ⊗WK(Aq , f (E)|n )⊗WK(Aq , f (E)|n )

Now, fix q ∈ Q, and we show that this expression matches ν(C)(gq
n) for q ∈ Q. We have:

ν(C)(gq
n) =

⊕
q ,q ∈Q
06i06mn

q∈δ (q ,q ,(τn,i))

(ν(C)(gi
n))

i0 ⊗ν(C)(gq
Ch (n))⊗ν(C)(gq

Ch (n))

Hence, as ν(C)(gi
n)= κn, and using the induction hypothesis on ν(C)(gq

Ch (n)) and ν(C)(gq
Ch (n)), we have shown that ν(C)(gq

n)=

WK(Aq, f (E)|n).

By applying the invariant to the gq
nr where nr ∈ E is the root of E, we conclude the correctness proof by noticing that we can

use Lemma G.11 and rewrite the resulting expression (using the involutivity of ⊕) as:

WK(A, f (E)) =
⊕
qf∈F

WK(Aqf , f (E))

so that clearly ν(C)(go) =WK(A, f (E)), which concludes the correctness proof.

We now take care of the following technical issue: we have not created a circuit where ⊕- and ⊗-gates necessarily have an
in-degree of two. We show that we can rewrite in linear time such an arity-n circuit to an arity-two circuit that is equivalent.

We say that a circuit is arity-two if its ⊗- and ⊕-gates have in-degree exactly two. It is clear that for any semiring K,
from our K-circuit C = (G,W ) with gates of in-degree higher than two, one can compute in linear time an arity-two K-circuit
C′ = (G′,W ′), using associativity and the axioms about ⊗ and ⊕, with only a constant-factor blowup. First, replace ⊕- and
⊗-gates with arity zero by a 0K-gate, and a 1K-gate, respectively. Next, add to ⊗- and ⊕-gates with in-degree 1 a new gate as
input that is respectively a 1K-gate or a 0K-gate. Next, use associativity of the ⊗ and ⊕ Boolean operations: if g is an ⊗- or
⊕-gate of C with in-degree > 2, and (gi,g) ∈W for 1 6 i 6 n, create new gates g′1, . . . ,g

′
n−2 in G′ of the same type as g, remove

(gi,g) from W for 1 6 i < n, add (g′i,g
′
i+1) to W for 1 6 i 6 n−3, add (g′n−2,g) to W , and add (g1,g′1), and (gi+1,g′i) to W for

all 1 6 i 6 n−2, yielding W ′. It is clear that C′ is equivalent to C and that the process can be performed in linear time.

To justify the overall complexity claim, it suffices to check that at each node n of E, the number of operations performed, up
to logarithmic factors, is in O(|A|). Last, we justify the bound on treewidth by creating the tree decomposition in the same way
as in the proof of Lemma 5.6, where the intermediate gates used to encode gates of the original circuit with more than two inputs
are put in the same bag as the gates for which they were created (this resulting only in a blowup of the size of each bag by a
constant multiplicative factor). We set ξ (b) to be gi

n for the node n of E corresponding to b, for every b in T .
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We are now ready to conclude the proof of Theorem 9.11. Fix the monotone FTAR multi-query q, and k ∈ N∗. Having
computed (in constant time in the query) a bDTA that tests the FTAR query q, compile in constant time the query q to a
monotone bNTA A on fctp

k (σ), for some p ∈ N∗, using Lemma G.7.
Given a K-cc-instance J = (I,C,ϕ) of treewidth 6 k, first compute a tree decomposition T of J (in linear time in |J|), and

apply Lemma 5.3 to J and T to obtain a cc-encoding E ′ = (E,C,T ) of width k of J. Let E ′′ be the fctp
k (σ)-tree obtained from E

by giving each node multiplicity p. Apply Lemma G.12 to A to obtain in time linear in |J| a provenance circuit C′ of A on E ′′
with a tree decomposition T ′ of width depending only on q and k; rename C′′inp as in the proof of Theorem 4.13, yielding the
circuit C′′, so that C and C′′ are stitchable. Now, build C′′′ = C ◦C′′ with tree decomposition T ′′′ = T +T ′ of width depending
only on q and k, with C′′′inp = Cinp and whose distinguished gate is the gate go of C′′. The circuit C′′′ has treewidth depending
only on q and k and the overall process has linear complexity in J.

The only thing left to show is that C′′′ satisfies the desired property. Fix a valuation ν of Jinp, and consider ν(C′′′)(go). By
Lemma C.3, fixing ν ′′ to be the restriction of ν(C) to C′′inp, we have ν(C′′′)(go) = ν ′′(C′′)(go). Now, by Lemma G.12, this
is WK(A, f (E ′′)), where f is the annotation function corresponding to ν ′′, which by Lemma G.9 is WK(q, I′) where I′ is the
K-multi-instance obtained from ν(J) by setting the multiplicity of every fact to p; by Lemma G.2, this is equal to WK(q,ν(J)),
showing the desired result.
G.3 Material for consequences of Theorem 9.11
PROPOSITION 9.12. Let q be a UCQ. The corresponding multi-query defined via Proposition 9.10 through a direct encoding
of q to Datalog is FTAR.

Proof. As a first step, we rewrite query q so that it contains no equality atoms.

We first need to introduce terminology that simplifies reasoning about UCQs seen as multi-queries.
Given a UCQ q =

∨
i qi, the multi-query q′ associated to q is defined as follows: for any multi-instance I, we say that I |= q if

there is a CQ qi such that, seeing the atoms of qi as a multiset (so not identifying, e.g., R(x)R(x) and R(x)), there is a mapping m
from the variables of qi to dom(I) such that for every fact R(a) of I occurring with multiplicity p, considering all the atoms
R(x j) of q j with multiplicity p j such that m(x j

i ) = ai for every i, we have p > ∑ j p j. We call such a mapping a match of q.
This intuitive notion of a “match” of a UCQ with multiplicities is the same as the notion of match of the corresponding Datalog

program. Indeed: for any UCQ q =
∨

i∃xqi(x), letting q′ be the associated multi-query, letting P be the straightforward encoding
of q to Datalog obtained by creating one rule Goal()← qi(x) for every CQ, and qP be the multi-query associated to P, we have
that qP and q′ are the same bag query (i.e., for any multi-instance I, I |= qP iff I |= q′).

We prove this by noticing that for a CQ q it is clear that the matches of q in an instance I are in bijective correspondence with
the sets of leaves of derivation tree of the straightforward Datalog encoding of q. Now the result immediately generalizes to
UCQs, as the derivation trees or matches of a UCQ are the union of derivation trees of matches of the component CQs.

We introduce some more notation. We call CQ 6= the language of CQs which can feature atoms of the form x 6= y, and UCQ 6=

the language of UCQs except the disjuncts are in CQ 6=. We write Vars(q) for the variables of a query q of CQ 6=. We immediately
generalize the above definition of matches to UCQ 6= by adding the condition that the match m from Vars(qi) to dom(I) respects
that m(x) 6= m(y) if x 6= y occurs in qi (the inequality atoms are otherwise ignored; in particular, their multiplicity is irrelevant).

We first note that, writing the UCQ q as the disjunction of CQs qi, if we can show that the resulting multi-query for every qi
is FTAR, then the result clearly follows from q by a product construction on the automata that test qi (to build a fctp

k (σ)-bDTA,
where p = maxi pi and each qi is tested by a fctpi

k (σ)-bDTA). So it suffices to show the result for CQs.
We see a CQ q as an existentially quantified multiset of atoms (the same atom, i.e., the same relation name applied to the same

variables in the same order, can occur multiple times; in other words we distinguish, e.g., ∃xR(x) and ∃xR(x)R(x)). Let Vars(q)
be the set of the variables of q (which are all existentially quantified as q is Boolean). We call Eq the set of all equivalence classes
on Vars(q) (which is of course finite), and for ∼ ∈ Eq we let q/∼ be the query in CQ6= obtained by choosing one representative
variable in Vars(q) for each equivalence class of ∼ and mapping every x ∈ Vars(q) to the representative variable for the class of
x (dropping in the result the useless existential quantifications on variables that do not occur anymore), and adding disequalities
x 6= y between each pair of the remaining variables.

We rewrite a CQ q to the UCQ q′ ··=
∨
∼∈Eq q/∼. We claim that for every multi-instance I, if I |= q then I |= q′, which justifies

that for an instance I′′, considering the subinstances of I′′, WK(q, I′′) = WK(q′, I′′). For the forward implication, assuming that
I |= q, letting m be the witnessing match, we consider the ∼m relation defined by x ∼m y iff m(x) = m(y), and it is easily seen
that I |= q/∼m. For the backward implication, if I |= q/∼ for some ∼∈ Eq, it is immediate that I |= q with the straightforward
match. Hence, using again the argument that we can perform a product construction on the automata, it suffices to show the
result for queries in CQ6= which include inequality axioms between all their variables. We call those forced queries.

We now show that these forced queries are FTAR. To see this, considering such a query q on signature σ , letting p be the sum
of the multiplicities of all atoms in q, let σp be the signature obtained from σ by creating a relation Ri for 1 6 i 6 p, with arity
arity(R), for every relation R of σ , and let q′ be the rewriting of q obtained by replacing every atom R(a) with multiplicity m by
the disjunction

∨
m> j>p R j(a) (and keeping the inequalities), rewritten to a UCQ 6=. We now see q′ as a UCQ 6= in the usual sense

(without multiplicities). We now claim that for any multi-instance I on σ where facts have multiplicity 6 p, letting I′ be the
set-instance obtained by replacing every fact F = R(a) of I with multiplicity m = I(F) by the fact Rm(a), I |= q iff I′ |= q′. To see
why, observe that, as q is a forced query, if q has a match m then every atom A of q must be mapped by m to a fact of I (written
m(A)) and this mapping must be injective (because m is), so that the necessary and sufficient condition is that I(m(A)) > pA
(where pA is the multiplicity of A in q) for every atom A of q; and this is equivalent to I′ |= q′.
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Now, q′ is a UCQ 6= so it is FTAR (as it is expressible in GSO, so we can apply Theorem 6.5); fix k∈N∗ and let Aq′ =(Q,F, ι ,δ )
be a monotone fctk(σ p)-bNTA that tests q′ for width k (this is possible by Lemma G.7 as q′, as a UCQ 6=, is monotone). We build
the following bNTA Aq = (Q,F, ι ′,δ ′) on fctp

k (σ): for every ((d, f ), i) ∈ fctp
k (σ), set f ′ to be either f if f = /0 and f ′ = Ri(a) if

f = R(a), and set ι ′(((d, f ), i)) to be ι((d, f ′)) and δ ′(q ,q ,((d, f ), i)) to be δ (q ,q ,(d, f ′)) for every q ,q ∈ Q.
We now claim that Aq tests q on fctp

k (σ). To see why, it suffices to observe that for any fctkp(σ)-tree E, letting E ′ be the fctk(σ p)-
tree obtained in the straightforward manner, then Aq accepts E iff Aq′ accepts E ′, which is immediate by construction. Now
indeed, as we know that Aq′ accepts E ′ iff 〈E ′〉 |= q′ (as Aq′ tests q′), and (as immediately 〈E ′〉 is the σ p-instance corresponding
to 〈E〉 as I′ corresponds to I above) that 〈E ′〉 |= q′ iff 〈E〉 |= q, so that we have the desired equivalence.

The only thing left is to observe that Aq not only tests q on instances where each fact has multiplicity 6 p. But a straightforward
argument shows that because q matches at most p fact occurrences in the instance I, we have I |= q iff I6p |= q. This concludes
the proof.

Of course, the construction of Proposition 9.12 incurs a blowup, but it does not depend on the instance, so does not influence
data complexity. We conjecture that the same technique (with the same limitation) applies more generally to non-recursive
Datalog programs.
DEFINITION G.13. For any set of variables X, the PosBool[X ] semiring is the semiring (PosBool[X ],∨,∧, f, t) whose elements
are the monotone Boolean functions on variables X. We write the elements of PosBool[X ] as propositional formulae of the
variables of X on the de Morgan basis, but it is important to understand that equivalent ways to express the same function (e.g.,
x∨ x and x) denote the same object.
DEFINITION G.14 [DMRT14]. The Sorp[X ] semiring is the quotient of N[X ] by the smallest equivalence relation ∼ which
identifies polynomials according to absorption.
DEFINITION G.15. A semiring homomorphism is a mapping h : K1 → K2 such that h(0K1) = 0K2 , h(1K1) = 1K2 , and for all
a,b ∈ K1 we have h(a⊕K1 b) = h(a)⊕K2 h(b) and h(a⊗K1 b) = h(a)⊗K2 h(b).

The following is our formal claim, in the context of set-instances. A similar result holds for cc-instances (where inputs rather
than facts are mapped to canonical annotations):
PROPOSITION G.16. For any multi-instance I, let A be a finite set and α be a bijection from the facts of I to A, and let I be the
Sorp[A]-multi-instance obtained by annotating each fact F of I by α(F). For any monotone query q, let W (I,q) ··=WSorp[A](I,q)
be the provenance of q on I. For any absorptive semiring K and valuation function ν to annotate the facts of I, there exists a
unique semiring homomorphism hν : Sorp[A]→ K which extends ν (that is, hν(α(F)) = ν(F) for every fact of I), and we have
WK(ν(I),q) = hν(W (I′,q)).

Proof. By Proposition 4.2 of [GKT07], there exists a unique homomorphism of semirings h′ν : N[A]→ K satisfying the desired
condition. We show that the same holds for Sorp[A], assuming that K is associative. Unicity is immediate by observing that the
definition of hν on A can be extended in at most one way to a homomorphism on Sorp[A], as any element of Sorp[A] can be
written in a minimal way as a (possibly empty) sum of (possibly empty) products of elements of A. For existence, observe that
for any sum hν(a⊕b) for a,b ∈ Sorp[A], any simplifications in a⊕b due to absorptivity can be mimicked in hν(a)⊕hν(b) as
K is absorptive, and likewise for ⊗. This proves our claim about Sorp[A].

Now to prove that the desired property holds, write:

WK(ν(I),q) =
⊕

J∈q̂(ν(I))

⊗
F∈J

ν(F)J(F)

=
⊕

J∈q̂(ν(I))

⊗
F∈J

(hν(α(F)))J(F)

= hν

 ⊕
J∈q̂(ν(I))

⊗
F∈J

(α(F))J(F)


= hν(W (I′,q))

DEFINITION G.17. The security semiring [FGT08,ADT11b] S is defined on the ordered set 1S <C < S < T < 0S (respectively:
always available, confidential, secret, top secret, never available) as ({0,1,C,S,T},max,min,0,1). The provenance of a query
for S denotes the minimal level of security clearance required to see that it holds.

The fuzzy semiring (see e.g. [ADT11a]) is ([0,1],max,min,0,1). The provenance of a query for this semiring is the minimal
fuzziness value that has to be tolerated for facts so that the query is satisfied.

The tropical semiring (see e.g. [DMRT14]) is (Nt{∞},min,+,∞,0). The provenance of a query for this semiring is the
minimal cost of the tuples of a multi-subinstance such that the query holds.
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