(19)

US 20140303973A1

a2y Patent Application Publication o) Pub. No.: US 2014/0303973 A1

United States

Amarilli et al.

(54)

(71)
(72)

(73)

@

(22)

(60)

(1)

MINIMUM BAYESIAN RISK METHODS FOR
AUTOMATIC SPEECH RECOGNITION

Applicant: Google Inc., (US)

Inventors: Antoine Amarilli, Paris (FR); Mehryar
Mohri, Mountain View, CA (US); Cyril
Allauzen, Mountain View, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Appl. No.: 13/771,934

Filed: Feb. 20, 2013

Related U.S. Application Data

Provisional application No. 61/700,098, filed on Sep.
12, 2012.

Publication Classification

43) Pub. Date: Oct. 9, 2014
(52) US.CL

S S SR GI0L 15/26 (2013.01)

101 S SR 704/235
(57) ABSTRACT

A hypothesis space of a search graph may be determined. The
hypothesis space may include n hypothesis-space transcrip-
tions of an utterance, each selected from a search graph that
includes t>n transcriptions of the utterance. An evidence
space of the search graph may also be determined. The evi-
dence space may include m evidence-space transcriptions of
the utterance that are randomly selected from the search
graph, where t>m. For each particular hypothesis-space tran-
scription in the hypothesis space, an expected word error rate
may be calculated by comparing the particular hypothesis-
space transcription to each of the evidence-space transcrip-
tions. Based on the expected word error rates, a lowest
expected word error rate may be obtained, and the particular

Int. Cl. hypothesis-space transcription that is associated with the
G10L 15/26 (2006.01) lowest expected word error rate may be provided.
ACOUSTIC
MODEL
408
A
UTTERANCE FEATURE FEATURE PATTERN TEXT STRING(S)
- ANALYSIS VECTORS [CLASSIFICATION AND
[| d—— J > MODULE o MODULE » CONFIDENCE
402 x 406 LEVEL(S)
A A
404 K
400
414
DICTIONARY LANGUAGE

MODEL

ﬂ m

Patent Application Publication Oct. 9,2014 Sheet1o0f 16 US 2014/0303973 A1

SERVER DEVICE

104

112

106 SERVER DATA

STORAGE

FIG. 1

Patent Application Publication Oct. 9,2014 Sheet2 of 16 US 2014/0303973 A1

SERVER DEVICE 200 214
USER INTERFACE PROCESSOR 206
202
DATA STORAGE 208
COMMUNICATION [INSTEE%(I?I%ANI\Q 210]
INTERFACE 204 <00

[PROGRAM DATA 212]

SERVER CLUSTER SERVER CLUSTER SERVER CLUSTER
206 2208 2068 220B 226c 229C
[SERVER | [SERVER | [SERVER
DEVICES 200A DEVICES 200B DEVICES 200C
[CLUSTER DATA | [CLUSTER DATA | [CLUSTER DATA |
| STORAGE 222A] | STORAGE 222B] | STORAGE 222C]
[cwuster | ||L] cruster |||l cLusTEr
ROUTERS 224A ROUTERS 224B ROUTERS 224C
Y ~ \ / J Y ~ / J g » / / J
228A/O\ (2288 /O\zzac
NETWORK 108

FIG. 2B

US 2014/0303973 Al

Oct. 9,2014 Sheet 3 0f 16

Patent Application Publication

€ Old

008~
BLEN Zhe~
SNOILONYLSNI viva
WYND0Yd e—| ¥0sSSs3IDN0oNUd
zz¢ vivd
waLsas | & NBLEAS a0e’
ONILYYIJO ONILYNEIO0
IOVANILNI
¢ yasn
0ze poe’
SWVHO0Nd | J L o
NOILYDITddV
JOV4NILNI
? NOILVOINNIWNOD
39VHO0LS V1Va
Sfm/ 200/
g0’

US 2014/0303973 Al

Oct. 9,2014 Sheet4 of 16

Patent Application Publication

¥ "Old

F4%, L
1157
13dON
JOVNONY1 AMVNOILLIIA
A%%
K % % oV
(s)13Aan 950F K
JONIAIINOD J1NAON
anv NOILVOIHISSVY1D < SNOLOAN
(S)ONIMLS 1X3L NY3LLVd NN Lyad
80F
713dON
J211SN02Y

F{1)%
IT1NAON
SISATTVNY
FNLVv3d

1)

/

7

JONVYHILIN

Patent Application Publication Oct. 9,2014 SheetSof 16 US 2014/0303973 A1

FIG. 5

500

Patent Application Publication Oct. 9,2014 Sheet 6 of 16 US 2014/0303973 A1

:d’ R
®"TT 0 T T -
Ses3 3@
g © O : O 5

FIG. 6

ae[t]ae
ae[p}#

600

Patent Application Publication Oct. 9,2014 Sheet 7 of 16 US 2014/0303973 A1

a:b/0.4

a0
(0
l9
° o
FIG. 7A
()
FIG. 7B

b:c/0.3

7
704
712

700
710

US 2014/0303973 Al

Oct. 9,2014 Sheet 8 0of 16

Patent Application Publication

g8 'Old

m o/aJe:ale
L/pa)dnuios:paydniiod L/erep:ejep L/2Y1:9y)
7 0/S1:SI

V8 "Old

L/3: 30\@1
h\\swb U
1°0/3:p -0/3:eR _@a% ®
Li3:ye
£'0/3) "0/3:he

~

©

~

<08

008

Patent Application Publication Oct. 9,2014 Sheet9of 16 US 2014/0303973 A1

2

™~
=y
°
v

®
S
Q
@©
N
r— []
=)
3 O
LL
prip

\
a:c/0.

902

A0,
BO

900
~a

US 2014/0303973 Al

Oct. 9,2014 Sheet 10 of 16

Patent Application Publication

QN\..VN i
/@\ 200l

W

/@\ /ccc_‘

US 2014/0303973 Al

Oct. 9,2014 Sheet 11 of 16

Patent Application Publication

gLl 9Old

L3:Zm L3 M
LILM:ZM L LiZM:Lm 0
0/em:Zzm 0/LM:IMm
L/gm:3 LiZMm:3
L/igm:3 L/pMm:3 L/LM:3
L/LM:3

Vil "Old

0/gm:gm
0/LMm:Lm
LIZM:3
L/LM:3
LIM:Zm
LZm:im
L/3:Zm
L/3: LM

)

0oLt

oLl

US 2014/0303973 Al

Oct. 9,2014 Sheet 12 of 16

Patent Application Publication

L1 "OId

L/LM:ZM

.v<z/
LigMm:i LM

14113°

US 2014/0303973 Al

Oct. 9,2014 Sheet 13 of 16

Patent Application Publication

0/gm:Zm
0/LM:LM
L/IMi<s>
L/EM:<S>
L3:<P>
LIM:<I>

L/gm:<I>

daitl "Oid

80L1

0/gm:Zm
0/LM:LMm
LI<S>IIM
L/<S>:ZM
Li<p>:1m
Li<p>:gm
L/<I>:3

90L1

Patent Application Publication Oct. 9,2014 Sheet 14 of 16 US 2014/0303973 A1

A’:A’~(¢g,€)/0

A’:A’-1d/0
A’:A’-Id/N
FIG. 12A

A’:A’~(g,€)/0

1200

US 2014/0303973 Al

Oct. 9,2014 Sheet 15 0of 16

Patent Application Publication

J¢l Old

9021
PL-IvY
0°LIVi<S>
oF:
0°L/3:<p>
- 0°L/3:<p>
PN 0'L/vict>
Mg 0°'LIVi<s>

gcl 'oOld

(o)
t A/NQN_‘

0‘L/<I>13
0°L/<S>¥
0°LI<p>:V
0‘L/PI

[474°

Patent Application Publication Oct. 9,2014 Sheet 16 of 16 US 2014/0303973 A1

SELECT N HYPOTHESIS-SPACE TRANSCRIPTIONS OF AN UTTERANCE FROM
A SEARCH GRAPH THAT INCLUDES T > N TRANSCRIPTIONS OF THE ~
UTTERANCE 1300

RANDOMLY SELECT M EVIDENCE-SPACE TRANSCRIPTIONS OF THE
UTTERANCE FROM THE SEARCH GRAPH, WHEREIN T > M

1302
4
FOR EACH PARTICULAR HYPOTHESIS-SPACE TRANSCRIPTION IN THE
HYPOTHESIS SPACE, CALCULATE AN EXPECTED WORD ERROR RATE BY
COMPARING THE PARTICULAR HYPOTHESIS-SPACE TRANSCRIPTION TO
EACH OF THE EVIDENCE-SPACE TRANSCRIPTIONS 1304
4
BASED ON THE EXPECTED WORD ERROR RATES, DETERMINE A LOWEST
EXPECTED WORD ERROR RATE \1306
L 2
PROVIDE THE PARTICULAR HYPOTHESIS-SPACE TRANSCRIPTION THAT IS
ASSOCIATED WITH THE LOWEST EXPECTED WORD ERROR RATE 1308

FIG. 13

US 2014/0303973 Al

MINIMUM BAYESIAN RISK METHODS FOR
AUTOMATIC SPEECH RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is entitled to the benefit of provi-
sional U.S. patent application Ser. No. 61/700,098, which is
hereby incorporated by reference in its entirety.

BACKGROUND

[0002] Search graphs, or lattices, in automatic speech rec-
ognition (ASR) systems can be used to map an input utterance
to one or more output text strings. Some implementations
attempt to select text string(s) that have a minimal probability
of'having one or more word errors. It may be more accurate to
instead select text strings that have the smallest expected
word error rate (e.g., the smallest edit distance) to a correct
transcription of the utterance. However, doing so can be com-
putationally expensive.

SUMMARY

[0003] In a first example embodiment, n hypothesis-space
transcriptions of an utterance may be selected from a search
graph that includes t>n transcriptions of the utterance. Addi-
tionally, m evidence-space transcriptions of the utterance
may also be randomly selected from the search graph, where
t>m. For particular hypothesis-space transcriptions, an
expected word error rate may be calculated by comparing the
particular hypothesis-space transcription to each of the evi-
dence-space transcriptions. Based on the expected word error
rates, a lowest expected word error rate may be obtained, and
the particular hypothesis-space transcription that is associ-
ated with the lowest expected word error rate may be pro-
vided.

[0004] A second example embodiment may include a non-
transitory computer-readable storage medium, having stored
thereon program instructions that, upon execution by a com-
puting device, cause the computing device to perform opera-
tions in accordance with the first and/or second example
embodiments.

[0005] A third example embodiment may include a com-
puting device, comprising at least a processor and data stor-
age. The data storage may contain program instructions that,
upon execution by the processor, operate in accordance with
the first and/or second example embodiments.

[0006] These as well as other aspects, advantages, and
alternatives will become apparent to those of ordinary skill in
the art by reading the following detailed description with
reference where appropriate to the accompanying drawings.
Further, it should be understood that the description provided
in this summary section and elsewhere in this document is
intended to illustrate the claimed subject matter by way of
example and not by way of limitation.

BRIEF DESCRIPTION OF THE FIGURES

[0007] FIG.1 depicts a distributed computing architecture,
in accordance with an example embodiment.

[0008] FIG. 2A is a block diagram of a server device, in
accordance with an example embodiment.

[0009] FIG. 2B depicts a cloud-based server system, in
accordance with an example embodiment.

[0010] FIG. 3 depicts a block diagram of a client device, in
accordance with an example embodiment.

Oct. 9,2014

[0011] FIG. 4 depicts an ASR system, in accordance with
an example embodiment.

[0012] FIG. 5 depicts aspects of an acoustic model, in
accordance with an example embodiment.

[0013] FIG. 6 depicts an ASR system search graph, in
accordance with an example embodiment.

[0014] FIGS. 7A and 7B depict finite state transducers
(FSTs), in accordance with example embodiments.

[0015] FIGS. 8A and 8B also depict FSTs, in accordance
with example embodiments.

[0016] FIG. 9 depicts another FST, in accordance with an
example embodiment.

[0017] FIGS. 10A and 10B depict additional FSTs, in
accordance with example embodiments.

[0018] FIGS.11A,11B,11C, and 11D depict edit transduc-
ers, in accordance with example embodiments.

[0019] FIGS.12A, 12B, and 12C also depict edit transduc-
ers, in accordance with example embodiments.

[0020] FIG. 13 depicts a flow chart, in accordance with an
example embodiment.
DETAILED DESCRIPTION
1. Overview

[0021] One method of selecting a transcription of an utter-
ance is to use a maximum a posteriori (MAP) technique.
Formally, given an utterance x, MAP techniques attempt to
find a transcription y that maximizes P(ylx), the probability
that the transcription is correct given the utterance.

[0022] However, the MAP technique selects a transcription
that minimizes the likelihood of transcription-level error. This
transcription may be referred to as y, .. For example, ify,.,
is a sentence, the MAP technique minimizes the probability
of'y,,., having at least one word error.

[0023] A potentially more accurate metric of ASR perfor-
mance is word error rate (WER). The WER between a par-
ticular transcription and the correct transcription, y*, may be
defined as the number of edits (substitutions, deletions or
insertions) needed to change the particular transcription into
y*divided by the number of words in y*. This number of edits
may also be referred to as the Levenshtein edit distance.
[0024] Minimizing WER, rather than transcription-level
error, is motivated by the observation that some transcription-
level errors matter more than others. For example, the best
transcription as given by the MAP technique may have more
word errors when compared to a correct transcription of the
utterance than other possible transcriptions with lower prob-
abilities thany,,,. Put another way, WER gives partial credit
for correctly recognizing portions of sentences, whereas
MAP techniques generally do not.

[0025] Minimum Bayesian Risk (MBR) techniques can be
used to take WER (or a more general loss function) into
consideration when selecting a transcription. MBR tech-
niques can be tuned to select a transcription that is optimal
with respect to a loss function that represents a cost when the
ASR system erroneously produces a transcription y instead of
y*. If this loss function is the Levenshtein edit distance, then
the MBR technique selects a transcription that is optimal with
respect to WER.

[0026] Nonetheless, determining a transcription using the
MBR technique is expensive compared to using the MAP
technique. For instance, a sum of weighted probabilities over
the entire language is calculated. Also, each pair of possible
transcriptions in the language is compared and the loss func-

US 2014/0303973 Al

tion between them is determined. For the Levenshtein edit
distance, the running time of the loss function over strings y
and z is O(ly||zD).

[0027] One way of improving the running time of the MBR
technique is to limit the search graph. The embodiments
herein disclose several ways of doing so, and include a num-
ber of ways of representing the search graph that may facili-
tate efficient implementations.

[0028] The above processes, and example embodiments
thereof, will be described in detail in Sections 5, 6, and 7.
However, in order to further embody possible ASR system
implementations, the next four sections describe, respec-
tively, example computing systems and devices that may
support ASR systems, an overview of ASR system compo-
nents and functions, an overview of ASR system operation,
and an overview of speaker adaptation.

2. Example Communication System and Device
Architecture for Supporting Automatic Speech
Recognition

[0029] The methods, devices, and systems described herein
can be implemented using client devices and/or so-called
“cloud-based” server devices. Under various aspects of this
paradigm, client devices, such as mobile phones, tablet com-
puters, and/or desktop computers, may offload some process-
ing and storage responsibilities to remote server devices. At
least some of the time, these client services are able to com-
municate, via a network such as the Internet, with the server
devices. As a result, applications that operate on the client
devices may also have a persistent, server-based component.
Nonetheless, it should be noted that at least some of the
methods, processes, and techniques disclosed herein may be
able to operate entirely on a client device or a server device.
[0030] Furthermore, the “server devices” described herein
may not necessarily be associated with a client/server archi-
tecture, and therefore may also be referred to as “computing
devices.” Similarly, the “client devices” described herein also
may not necessarily be associated with a client/server archi-
tecture, and therefore may be interchangeably referred to as
“user devices.” In some contexts, “client devices” may also be
referred to as “computing devices.”

[0031] This section describes general system and device
architectures for such client devices and server devices. How-
ever, the methods, devices, and systems presented in the
subsequent sections may operate under different paradigms
as well. Thus, the embodiments of this section are merely
examples of how these methods, devices, and systems can be
enabled.

[0032] A.Communication System

[0033] FIG.1 is a simplified block diagram of a communi-
cation system 100, in which various embodiments described
herein can be employed. Communication system 100
includes client devices 102, 104, and 106, which represent a
desktop personal computer (PC), a tablet computer, and a
mobile phone, respectively. Each of these client devices may
be able to communicate with other devices via a network 108
through the use of wireline connections (designated by solid
lines) and/or wireless connections (designated by dashed
lines).

[0034] Network 108 may be, for example, the Internet, or
some other form of public or private Internet Protocol (IP)
network. Thus, client devices 102, 104, and 106 may com-
municate using packet-switching technologies. Nonetheless,
network 108 may also incorporate at least some circuit-

Oct. 9,2014

switching technologies, and client devices 102, 104, and 106
may communicate via circuit switching alternatively or in
addition to packet switching.

[0035] A server device 110 may also communicate via net-
work 108. Particularly, server device 110 may communicate
with client devices 102, 104, and 106 according to one or
more network protocols and/or application-level protocols to
facilitate the use of network-based or cloud-based computing
on these client devices. Server device 110 may include inte-
grated data storage (e.g., memory, disk drives, etc.) and may
also be able to access a separate server data storage 112.
Communication between server device 110 and server data
storage 112 may be direct, via network 108, or both direct and
via network 108 as illustrated in FIG. 1. Server data storage
112 may store application data that is used to facilitate the
operations of applications performed by client devices 102,
104, and 106 and server device 110.

[0036] Although only three client devices, one server
device, and one server data storage are shown in FIG. 1,
communication system 100 may include any number of each
of these components. For instance, communication system
100 may comprise millions of client devices, thousands of
server devices and/or thousands of server data storages. Fur-
thermore, client devices may take on forms other than those in
FIG. 1.

[0037] B. Server Device

[0038] FIG. 2A is a block diagram of a server device in
accordance with an example embodiment. In particular,
server device 200 shown in FIG. 2A can be configured to
perform one or more functions of server device 110 and/or
server data storage 112. Server device 200 may include a user
interface 202, a communication interface 204, processor 206,
and data storage 208, all of which may be linked together via
a system bus, network, or other connection mechanism 214.
[0039] User interface 202 may comprise user input devices
such as a keyboard, a keypad, a touch screen, a computer
mouse, a track ball, a joystick, and/or other similar devices,
now known or later developed. User interface 202 may also
comprise user display devices, such as one or more cathode
ray tubes (CRT), liquid crystal displays (LCD), light emitting
diodes (LEDs), displays using digital light processing (DLP)
technology, printers, light bulbs, and/or other similar devices,
now known or later developed. Additionally, user interface
202 may be configured to generate audible output(s), via a
speaker, speaker jack, audio output port, audio output device,
earphones, and/or other similar devices, now known or later
developed. In some embodiments, user interface 202 may
include software, circuitry, or another form of logic that can
transmit data to and/or receive data from external user input/
output devices.

[0040] Communication interface 204 may include one or
more wireless interfaces and/or wireline interfaces that are
configurable to communicate via a network, such as network
108 shown in FIG. 1. The wireless interfaces, if present, may
include one or more wireless transceivers, such as a BLUE-
TOOTH® transceiver, a Wifi transceiver perhaps operating in
accordance with an IEEE 802.11 standard (e.g., 802.11b,
802.11g, 802.11n), a WiMAX transceiver perhaps operating
in accordance with an IEEE 802.16 standard, a Long-Term
Evolution (LTE) transceiver perhaps operating in accordance
with a 3rd Generation Partnership Project (3GPP) standard,
and/or other types of wireless transceivers configurable to
communicate via local-area or wide-area wireless networks.
The wireline interfaces, if present, may include one or more

US 2014/0303973 Al

wireline transceivers, such as an Ethernet transceiver, a Uni-
versal Serial Bus (USB) transceiver, or a similar transceiver
configurable to communicate via a twisted pair wire, a coaxial
cable, a fiber-optic link or other physical connection to a
wireline device or network.

[0041] Processor 206 may include one or more general
purpose processors (e.g., microprocessors) and/or one or
more special purpose processors (e.g., digital signal proces-
sors (DSPs), graphical processing units (GPUs), floating
point processing units (FPUs), network processors, or appli-
cation specific integrated circuits (ASICs)). Processor 206
may be configured to execute computer-readable program
instructions 210 that are contained in data storage 208, and/or
other instructions, to carry out various functions described
herein.

[0042] Thus, data storage 208 may include one or more
non-transitory computer-readable storage media that can be
read or accessed by processor 206. The one or more com-
puter-readable storage media may include volatile and/or
non-volatile storage components, such as optical, magnetic,
organic or other memory or disc storage, which can be inte-
grated in whole or in part with processor 206. In some
embodiments, data storage 208 may be implemented using a
single physical device (e.g., one optical, magnetic, organic or
other memory or disc storage unit), while in other embodi-
ments, data storage 208 may be implemented using two or
more physical devices.

[0043] Datastorage 208 may also include program data 212
that can be used by processor 206 to carry out functions
described herein. In some embodiments, data storage 208
may include, or have access to, additional data storage com-
ponents or devices (e.g., cluster data storages described
below).

[0044] C. Server Clusters

[0045] Server device 110 and server data storage device
112 may store applications and application data at one or
more places accessible via network 108. These places may be
data centers containing numerous servers and storage
devices. The exact physical location, connectivity, and con-
figuration of server device 110 and server data storage device
112 may be unknown and/or unimportant to client devices.
Accordingly, server device 110 and server data storage device
112 may be referred to as “cloud-based” devices that are
housed at various remote locations. One possible advantage
of'such “cloud-based” computing is to offload processing and
data storage from client devices, thereby simplifying the
design and requirements of these client devices.

[0046] Insome embodiments, server device 110 and server
data storage device 112 may be a single computing device
residing in a single data center. In other embodiments, server
device 110 and server data storage device 112 may include
multiple computing devices in a data center, or even multiple
computing devices in multiple data centers, where the data
centers are located in diverse geographic locations. For
example, FIG. 1 depicts each of server device 110 and server
data storage device 112 potentially residing in a different
physical location.

[0047] FIG. 2B depicts a cloud-based server cluster in
accordance with an example embodiment. In FIG. 2B, func-
tions of server device 110 and server data storage device 112
may be distributed among three server clusters 220A, 220B,
and 220C. Server cluster 220A may include one or more
server devices 200A, cluster data storage 222A, and cluster
routers 224A connected by a local cluster network 226A.

Oct. 9,2014

Similarly, server cluster 220B may include one or more server
devices 200B, cluster data storage 222B, and cluster routers
224B connected by a local cluster network 226B. Likewise,
server cluster 220C may include one or more server devices
200C, cluster data storage 222C, and cluster routers 224C
connected by a local cluster network 226C. Server clusters
220A, 220B, and 220C may communicate with network 108
via communication links 228A, 228B, and 228C, respec-
tively.

[0048] In some embodiments, each of the server clusters
220A, 220B, and 220C may have an equal number of server
devices, an equal number of cluster data storages, and an
equal number of cluster routers. In other embodiments, how-
ever, some or all of the server clusters 220A, 220B, and 220C
may have different numbers of server devices, different num-
bers of cluster data storages, and/or different numbers of
cluster routers. The number of server devices, cluster data
storages, and cluster routers in each server cluster may
depend on the computing task(s) and/or applications assigned
to each server cluster.

[0049] In the server cluster 220A, for example, server
devices 200A can be configured to perform various comput-
ing tasks of server device 110. In one embodiment, these
computing tasks can be distributed among one or more of
server devices 200A. Server devices 200B and 200C in server
clusters 220B and 220C may be configured the same or simi-
larly to server devices 200A in server cluster 220A. On the
other hand, in some embodiments, server devices 200A,
200B, and 200C each may be configured to perform different
functions. For example, server devices 200A may be config-
ured to perform one or more functions of server device 110,
and server devices 200B and server device 200C may be
configured to perform functions of one or more other server
devices. Similarly, the functions of server data storage device
112 can be dedicated to a single server cluster, or spread
across multiple server clusters.

[0050] Cluster data storages 222A, 222B, and 222C of the
server clusters 220A, 220B, and 220C, respectively, may be
data storage arrays that include disk array controllers config-
ured to manage read and write access to groups of hard disk
drives. The disk array controllers, alone or in conjunction
with their respective server devices, may also be configured to
manage backup or redundant copies of the data stored in
cluster data storages to protect against disk drive failures or
other types of failures that prevent one or more server devices
from accessing one or more cluster data storages.

[0051] Similar to the manner in which the functions of
server device 110 and server data storage device 112 can be
distributed across server clusters 220A, 220B, and 220C,
various active portions and/or backup/redundant portions of
these components can be distributed across cluster data stor-
ages 222A, 222B, and 222C. For example, some cluster data
storages 222A, 222B, and 222C may be configured to store
backup versions of data stored in other cluster data storages
222A, 222B, and 222C.

[0052] Cluster routers 224A, 224B, and 224C in server
clusters 220A, 220B, and 220C, respectively, may include
networking equipment configured to provide internal and
external communications for the server clusters. For example,
cluster routers 224A in server cluster 220A may include one
or more packet-switching and/or routing devices configured
to provide (i) network communications between server
devices 200A and cluster data storage 222A via cluster net-
work 226A, and/or (i) network communications between the

US 2014/0303973 Al

server cluster 220A and other devices via communication link
228A to network 108. Cluster routers 224B and 224C may
include network equipment similar to cluster routers 224 A,
and cluster routers 224B and 224C may perform networking
functions for server clusters 220B and 220C that cluster rout-
ers 224 A perform for server cluster 220A.

[0053] Additionally, the configuration of cluster routers
224A, 2248, and 224C can be based at least in part on the data
communication requirements of the server devices and clus-
ter storage arrays, the data communications capabilities of the
network equipment in the cluster routers 224 A, 224B, and
224C, the latency and throughput of the local cluster net-
works 226A, 226B, 226C, the latency, throughput, and cost of
the wide area network connections 228A, 228B, and 228C,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efficiency and/or other design
goals of the system architecture.

[0054] D. Client Device

[0055] FIG. 3 is a simplified block diagram showing some
of'the components of an example client device 300. By way of
example and without limitation, client device 300 may be a
“plain old telephone system” (POTS) telephone, a cellular
mobile telephone, a still camera, a video camera, a fax
machine, an answering machine, a computer (such as a desk-
top, notebook, or tablet computer), a personal digital assistant
(PDA), a home automation component, a digital video
recorder (DVR), a digital TV, a remote control, or some other
type of device equipped with one or more wireless or wired
communication interfaces.

[0056] AsshowninFIG. 3, client device 300 may include a
communication interface 302, a user interface 304, a proces-
sor 306, and data storage 308, all of which may be commu-
nicatively linked together by a system bus, network, or other
connection mechanism 310.

[0057] Communication interface 302 functions to allow
client device 300 to communicate, using analog or digital
modulation, with other devices, access networks, and/or
transport networks. Thus, communication interface 302 may
facilitate circuit-switched and/or packet-switched communi-
cation, such as POTS communication and/or IP or other pack-
etized communication. For instance, communication inter-
face 302 may include a chipset and antenna arranged for
wireless communication with a radio access network or an
access point. Also, communication interface 302 may take the
form of a wireline interface, such as an Ethernet, Token Ring,
or USB port. Communication interface 302 may also take the
form of a wireless interface, such as a Wifi, BLUETOOTH®,
global positioning system (GPS), or wide-area wireless inter-
face (e.g., WiMAX or LTE). However, other forms of physi-
cal layer interfaces and other types of standard or proprietary
communication protocols may be used over communication
interface 302. Furthermore, communication interface 302
may comprise multiple physical communication interfaces
(e.g., a Wifl interface, a BLUETOOTH® interface, and a
wide-area wireless interface).

[0058] User interface 304 may function to allow client
device 300 to interact with a human or non-human user, such
as to receive input from a user and to provide output to the
user. Thus, user interface 304 may include input components
such as a keypad, keyboard, touch-sensitive or presence-sen-
sitive panel, computer mouse, trackball, joystick, micro-
phone, still camera and/or video camera. User interface 304
may also include one or more output components such as a
display screen (which, for example, may be combined with a

Oct. 9,2014

presence-sensitive panel), CRT, LCD, LED, a display using
DLP technology, printer, light bulb, and/or other similar
devices, now known or later developed. User interface 304
may also be configured to generate audible output(s), via a
speaker, speaker jack, audio output port, audio output device,
earphones, and/or other similar devices, now known or later
developed. In some embodiments, user interface 304 may
include software, circuitry, or another form of logic that can
transmit data to and/or receive data from external user input/
output devices. Additionally or alternatively, client device
300 may support remote access from another device, via
communication interface 302 or via another physical inter-
face (not shown).

[0059] Processor 306 may comprise one or more general
purpose processors (e.g., microprocessors) and/or one or
more special purpose processors (e.g., DSPs, GPUs, FPUs,
network processors, or ASICs). Data storage 308 may include
one or more volatile and/or non-volatile storage components,
such as magnetic, optical, flash, or organic storage, and may
be integrated in whole or in part with processor 306. Data
storage 308 may include removable and/or non-removable
components.

[0060] Processor 306 may be capable of executing program
instructions 318 (e.g., compiled or non-compiled program
logic and/or machine code) stored in data storage 308 to carry
out the various functions described herein. Therefore, data
storage 308 may include a non-transitory computer-readable
medium, having stored thereon program instructions that,
upon execution by client device 300, cause client device 300
to carry out any of the methods, processes, or functions dis-
closed in this specification and/or the accompanying draw-
ings. The execution of program instructions 318 by processor
306 may result in processor 306 using data 312.

[0061] By way of example, program instructions 318 may
include an operating system 322 (e.g., an operating system
kernel, device driver(s), and/or other modules) and one or
more application programs 320 (e.g., address book, email,
web browsing, social networking, and/or gaming applica-
tions) installed on client device 300. Similarly, data 312 may
include operating system data 316 and application data 314.
Operating system data 316 may be accessible primarily to
operating system 322, and application data 314 may be acces-
sible primarily to one or more of application programs 320.
Application data 314 may be arranged in a file system that is
visible to or hidden from a user of client device 300.

[0062] Application programs 320 may communicate with
operating system 322 through one or more application pro-
gramming interfaces (APIs). These APIs may facilitate, for
instance, application programs 320 reading and/or writing
application data 314, transmitting or receiving information
via communication interface 302, receiving or displaying
information on user interface 304, and so on.

[0063] Insome vernaculars, application programs 320 may
be referred to as “apps” for short. Additionally, application
programs 320 may be downloadable to client device 300
through one or more online application stores or application
markets. However, application programs can also be installed
on client device 300 in other ways, such as via a web browser
or through a physical interface (e.g., a USB port) on client
device 300.

US 2014/0303973 Al

3. Example Automatic Speech Recognition System
Overview

[0064] Before describing speaker adaptation in detail, it
may be beneficial to understand overall ASR system opera-
tion. Thus, this section describes ASR systems in general,
including how the components of an ASR system may inter-
act with one another in order to facilitate speech recognition,
and how some of these components may be trained.

[0065] FIG. 4 depicts an example ASR system. At run time,
the input to the ASR system may include an utterance 400,
and the output may include one or more text strings and
possibly associated confidence levels 414. The components
of'the ASR system may include a feature analysis module 402
that produces feature vectors 404, a pattern classification
module 406, an acoustic model 408, a dictionary 410, and a
language model 412. Pattern classification module 406 may
incorporate various aspects of acoustic model 408, dictionary
410, and language model 412.

[0066] It should be noted that the discussion in this section,
and the accompanying figures, are presented for purposes of
example. Other ASR system arrangements, including difter-
ent components, different relationships between the compo-
nents, and/or different processing, may be possible.

[0067] A. Feature Analysis Module

[0068] Feature analysis module 402 may receive utterance
400. This utterance may include an analog or digital repre-
sentation of human speech, and may possibly contain back-
ground noise as well. Feature analysis module 402 may con-
vert utterance 400 to a sequence of one or more feature
vectors 404. Each of feature vectors 404 may include tempo-
ral and/or spectral representations of the acoustic features of
at least a portion of utterance 400. For instance, a feature
vector may include mel-frequency cepstrum coefficients of
such a portion.

[0069] The mel-frequency cepstrum coefficients may rep-
resent the short-term power spectrum of a portion of utterance
400. They may be based on, for example, a linear cosine
transform ofa log power spectrum on a nonlinear mel scale of
frequency. (A mel scale may be a scale of pitches subjectively
perceived by listeners to be about equally distant from one
another, even though the actual frequencies of these pitches
are not equally distant from one another.)

[0070] To derive these coefficients, feature analysis module
402 may sample and quantize utterance 400, divide it into
overlapping or non-overlapping frames of s milliseconds, and
perform spectral analysis on the frames to derive the spectral
components of each frame. Feature analysis module 402 may
further perform noise removal and convert the standard spec-
tral coefficients to mel-frequency cepstrum coefficients, and
then calculate first-order and second-order cepstral deriva-
tives of the mel-frequency cepstrum coefficients.

[0071] The first-order cepstral coefficient derivatives may
be calculated based on the slopes of linear regressions per-
formed over windows of two or more consecutive frames. The
second-order cepstral coefficient derivatives may be calcu-
lated based on the slopes of linear regressions performed over
windows of two or more consecutive sets of first-order ceps-
tral coefficient derivatives. However, there may be other ways
of calculating the first-order and second-order cepstral coef-
ficient derivatives.

[0072] Insome embodiments, one or more frames of utter-
ance 400 may be represented by a feature vector of mel-
frequency cepstrum coefficients, first-order cepstral coeffi-
cient derivatives, and second-order cepstral coefficient

Oct. 9,2014

derivatives. For example, the feature vector may contain 13
coefficients, 13 first-order derivatives, and 13 second-order
derivatives, therefore having a length of 39. However, feature
vectors may use different combinations of features in other
possible embodiments.

[0073] B. Pattern Classification Module

[0074] Pattern classification module 406 may receive a
sequence of feature vectors 404 from feature analysis module
402 and produce, as output, one or more text string transcrip-
tions 414 of utterance 400. Each transcription 414 may be
accompanied by a respective confidence level indicating an
estimated likelihood that the transcription is correct (e.g.,
80% confidence, 90% confidence, etc.).

[0075] To produce this output, pattern classification mod-
ule 406 may include, or incorporate aspects of acoustic model
408, dictionary 410, and/or language model 412. In some
embodiments, pattern classification module 406 may also use
a search graph that represents sequences of word or sub-word
acoustic features that appear in spoken utterances. The behav-
ior of pattern classification module 406 will be described
below in the context of these modules.

[0076] C. Acoustic Model

[0077] Acoustic model 408 may determine probabilities
that a particular sequence of feature vectors 404 were derived
from a particular sequence of spoken words and/or sub-word
sounds. This may involve mapping sequences of feature vec-
tors to one or more phonemes, and then mapping sequences of
phonemes to one or more words.

[0078] A phoneme may be considered to be the smallest
segment of an utterance that encompasses a meaningful con-
trast with other segments of utterances. Thus, a word typically
includes one or more phonemes. For purposes of simplicity,
phonemes may be thought of as utterances of letters, but this
is not a perfect analogy, as some phonemes may present
multiple letters. An example phonemic spelling for the
American English pronunciation of the word “cat” is /k/ /ae/
/t/, consisting of the phonemes /k/, /ae/, and /t/. Another
example phonemic spelling for the word “dog” is /d/ /aw/ /g/,
consisting of the phonemes /d/, /aw/, and /g/.

[0079] Different phonemic alphabets exist, and these
alphabets may have different textual representations for the
various phonemes therein. For example, the letter “a” may be
represented by the phoneme /ae/ for the sound in “cat,” by the
phoneme /ey/ for the sound in “ate,” and by the phoneme /ah/
for the sound in “beta.” Other phonemic representations are
possible.

[0080] Common phonemic alphabets for American English
contain about 40 distinct phonemes. Each of these phonemes
may be associated with a different distribution of feature
vector values. Thus, acoustic model 408 may be able to esti-
mate the phoneme(s) in a feature vector by comparing the
feature vector to the distributions for each of the 40 pho-
nemes, and finding one or more phonemes that are most likely
represented by the feature vector.

[0081] One way of doing so is through use of a hidden
Markov model (HMM). An HMM may model a system as a
Markov process with unobserved (i.e., hidden) states. Each
HMM state may be represented as a multivariate Gaussian
distribution that characterizes the statistical behavior of the
state. Additionally, each state may also be associated with one
or more state transitions that specify the probability of mak-
ing a transition from the current state to another state.
[0082] When applied to an ASR system, the combination of
the multivariate Gaussian distribution and the state transitions

US 2014/0303973 Al

for each state may define a time sequence of feature vectors
over the duration of one or more phonemes. Alternatively or
additionally, the HMM may model the sequences of pho-
nemes that define words. Thus, some HMM-based acoustic
models may also consider phoneme context when a mapping
a sequence of feature vectors to one or more words.

[0083] FIG. 5 depicts an example HMM-based acoustic
model 500. Acoustic model 500 defines a sequence of pho-
nemes that make up the word “cat.” Thus, each phoneme is
represented by a 3-state HMM with an initial state, a middle
state, and an end state representing the statistical character-
istics at the beginning of phoneme, the middle of the pho-
neme, and the end of the phoneme, respectively. Each state
(e.g., state /k/1, state /k/2, etc.) may represent a phoneme and
may include one or more transitions.

[0084] Acoustic model 500 may represent a word by con-
catenating the respective 3-state HMMs for each phoneme in
the word together, with appropriate transitions. These concat-
enations may be performed based on information in dictio-
nary 410, as discussed below. In some implementations, more
or fewer states per phoneme may be used in an acoustic
model.

[0085] An acoustic model may be trained using recordings
of each phoneme in numerous contexts (e.g., various words
and sentences) so that a representation for each of the pho-
neme’s states can be obtained. These representations may
encompass the multivariate Gaussian distributions discussed
above.

[0086] In order to train the acoustic model, a possibly large
number of utterances containing spoken phonemes may each
be associated with transcriptions. These utterances may be
words, sentences, and so on, and may be obtained from
recordings of everyday speech or some other source. The
transcriptions may be high-accuracy automatic or manual
(human-made) text strings of the utterances.

[0087] Theutterances may be segmented according to their
respective transcriptions. For instance, training of the acous-
tic models may involve segmenting the spoken strings into
units (e.g., using either a Baum-Welch and/or Viterbi align-
ment method), and then using the segmented utterances to
build distributions for each phoneme state.

[0088] Consequently, as more data (utterances and their
associated transcriptions) are used for training, a more accu-
rate acoustic model is expected to be produced. However,
even a well-trained acoustic model may have limited accu-
racy when used for ASR in a domain for which it was not
trained. For instance, if an acoustic model is trained by utter-
ances from a number of speakers of American English, this
acoustic model may perform well when used for ASR of
American English, but may be less accurate when used for
ASR of, e.g., British English.

[0089] Also,ifanacoustic model is trained using utterances
from a number of speakers, it will likely end up representing
each phoneme as a statistical average of the pronunciation of
this phoneme across all of the speakers. Thus, an acoustic
model trained in this fashion may represent the pronunciation
and usage of a hypothetical average speaker, rather than any
particular speaker.

[0090] For purposes of simplicity, throughout this specifi-
cation and the accompanying drawings, it is assumed that
acoustic models represent phonemes as context-dependent
phonemic sounds. However, acoustic models that use other
types of representations are within the scope of the embodi-
ments herein.

Oct. 9,2014
[0091] D. Dictionary
TABLE 1

Word Phonemic Interpretation

cat /k/ fae/ It/

and fay/ /n/ /d/

dog /d/ faw/ /g/
[0092] As noted above, dictionary 410 may define a pre-

established mapping between phonemes and words. This
mapping may include a list of tens or hundreds of thousands
of phoneme-pattern-to-word mappings. Thus, in some
embodiments, dictionary 410 may include a lookup table,
such as Table 1. Table 1 illustrates how dictionary 410 may
list the phonemic sequences that pattern classification module
406 uses for the words that the ASR system is attempting to
recognize. Therefore, dictionary 410 may be used when
developing the phonemic state representations of words that
are illustrated by acoustic model 500.

[0093]

[0094] Language model 412 may assign probabilities to
sequences of phonemes or words, based on the likelihood of
that sequence of phonemes or words occurring in an input
utterance to the ASR system. Thus, for example, language
model 412 may define the conditional probability of w,, (the
nth word in a phrase transcribed from an utterance), given the
values of the pattern of n—1 previous words in the phrase.
More formally, language model 412 may define

E. Language Model

Plw,lwpwy, ..., W1

[0095] In general, a language model may operate on
n-grams, which, for example, may be sequences of n pho-
nemes or words that are represented in pattern classification
module 406. In practice, language models with values of n
greater than 5 are rarely used because of their computational
complexity, and also because smaller n-grams (e.g., 3-grams,
which are also referred to as tri-grams) tend to yield accept-
able results. In the example described below, tri-grams are
used for purposes of illustration. Nonetheless, any value of n
may be may be used with the embodiments herein.

[0096] Language models may be trained through analysis
of a corpus of text strings. This corpus may contain a large
number of words, e.g., hundreds, thousands, millions or
more. These words may be derived from utterances spoken by
users of an ASR system and/or from written documents. For
instance, a language model can be based on the word patterns
occurring in human speech, written text (e.g., emails, web
pages, reports, academic papers, word processing documents,
etc.), and so on.

[0097] From such a corpus, tri-gram probabilities can be
estimated based on their respective number of appearances in
the training corpus. In other words, if C(w,, w,, w;) is the
number of occurrences of the word pattern w,, w,, w5 in the
corpus, then

Clw, wa, w3)
Plws | wi, wp) = W

[0098] Thus, a language model may be represented as a
table of conditional probabilities. Table 2 illustrates a simple

US 2014/0303973 Al

example of such a table that could form the basis of language
model 406. Particularly, Table 2 contains tri-gram conditional
probabilities.

TABLE 2

Tri-gram Conditional Probabilities

P(doglcat,and) = 0.50
P(mouselcat,and) = 0.35
P(birdIcat,and) = 0.14
P(fiddlelcat,and) = 0.01

[0099] For the 2-gram prefix “cat and,” Table 2 indicates
that, based on the observed occurrences in the corpus, 50% of
the time the next 1-gram is “dog.” Likewise, 35% of the time,
the next 1-gram is “mouse,” 14% of the time the next 1-gram
is “bird,” and 1% of the time the next 1-gram is “fiddle.”
Clearly, in a fully-trained ASR system, the language model
would contain many more entries, and these entries would
include more than just one 2-gram prefix.

[0100] Nonetheless, using the observed frequencies of
word patterns from a corpus of speech (and/or from other
sources) is not perfect, as some acceptable tri-grams may not
appear in the corpus, and may therefore be assigned a prob-
ability of zero. Consequently, when given a zero-probability
tri-gram at run time, the language model may attempt to find
another n-gram associated with a non-zero probability.
[0101] In order to address this issue, the language model
may be smoothed so that zero-probability tri-grams have
small non-zero probabilities, and the probabilities of the tri-
grams in the corpus are reduced accordingly. In this way,
tri-grams not found in the corpus can still be recognized by
the language model. Alternatively, the language model may
back off when encountering a zero-probability tri-gram, and
consider a related non-zero-probability bi-gram or uni-gram
instead.

4. Example Automatic Speech Recognition System
Operation

[0102] Once acoustic model 408 and language model 412
are appropriately trained, feature analysis model 402 and
pattern classification module 406 may be used to perform
ASR. Provided with an input utterance, the ASR system can
search the space of valid word sequences from the language
model to find the word sequence with the maximum likeli-
hood of having been spoken in the utterance. A challenge with
doing so is that the size of the search graph can be quite large,
and therefore performing this search may take an excessive
amount of computing resources (e.g., processing time and
memory utilization). Nonetheless, there are some heuristic
techniques that can be used to reduce the complexity of the
search, potentially by one or more orders of magnitude.
[0103] For instance, a finite state transducer (FST) can be
used to compactly represent multiple phoneme patterns that
map to a single word. Some words, such as “data,” “either,”
“tomato,” and “potato,” have multiple pronunciations. The
phoneme sequences for these pronunciations can be repre-
sented in a single FST per word.

[0104] This process of creating efficient phoneme-level
FSTs can be carried out for words in dictionary 410, and the
resulting word FSTs can be combined into sentence FSTs
using the language model 412. Ultimately, a very large net-
work of states for phonemes, words, and sequences of words
can be developed and represented in a compact search graph.

Oct. 9,2014

[0105] FIG. 6 contains an example search graph 600. In
order to be illustrative, search graph 600 is much smaller and
less complex than a search graph that would be used in an
actual ASR system. Particularly, search graph 600 was trained
with only the five input utterances, “catapult,” “cat and
mouse,” “cat and dog,” “cat,” and “cap.”

[0106] Each circle in search graph 600 may represent a
state associated with the processing of an input utterance that
has been mapped to phonemes. For purposes of simplicity,
each phoneme in search graph 600 is represented with a single
state rather than multiple states. Also, self-transitions are
omitted from search graph 600 in order to streamline FIG. 6.
[0107] The states in search graph 600 are named based on
the current phoneme context of the input utterance, using the
format “x[y]z” to indicate that the current phoneme being
considered, v, has a left-context of the phoneme x and a right
context of the phoneme z. In other words, the state “x[y]z”
indicates a point in processing an utterance in which the
current phoneme being considered is y, the previously pho-
neme in the utterance is x, and the next phoneme in the
utterance is z. The beginning of an utterance and the end of an
utterance are represented by the “#” character, and also may
be referred to as null phonemes.

[0108] Terminal states may be represented by a recognized
word or phrase in quotes. Search graph 600 includes five
terminal states, representing recognition of the words or

phrases “catapult,” “cat and mouse,” “cat and dog,” “cat,” and
“cap.”
[0109] Transitions from one state to another may represent

an observed ordering of phonemes in the corpus. For instance,
the state “#[k]ae” represents the recognition of a “k” pho-
neme with a left context of a null phoneme and a right context
of'an “ae” phoneme. There are two transitions from the state
“#|k]ae”—one for which the next phoneme (the phoneme
afterthe “ae”)is a “t” and another for which the next phoneme
isa“p”

[0110] Based on acoustic model 408, dictionary 410, and
language model 412, costs may be assigned to one or more of
the states and/or transitions. For example, if a particular pho-
neme pattern is rare, a transition to a state representing that
phoneme pattern may have a higher cost than a transition to a
state representing a more common phoneme pattern. Simi-
larly, the conditional probabilities from the language model
(see Table 2 for examples) may also be used to assign costs to
states and/or transitions. For instance, in Table 2, given a
phrase with the words “cat and,” the conditional probability
of the next word in the phrase being “dog” is 0.5, while the
conditional probability of the next word in the phrase being
“mouse” is 0.35. Therefore, the transition from state “ae[n]d”
to state “n[d]m” may have a higher cost than the transition
from state “ae[n]d” to state “n[d]d.”

[0111] Search graph 600, including any states, transitions
between states, and associated costs therein, may be used to
estimate text string transcriptions for new input utterances.
For example, pattern classification module 406 may deter-
mine a sequence of one or more words that match an input
utterance based on search graph 600. Formally, pattern clas-
sification module 406 may attempt to find

w¥=argmax, P(alw)P(w)

where a is a stream of feature vectors derived from the input
utterance, P(alw) represents the probability of those feature
vectors being produced by a word sequence w, and P(w) is the
probability assigned to w by language model 412. For

US 2014/0303973 Al

example, P(w) may be based on n-gram conditional prob-
abilities as discussed above, as well as other factors. The
function argmax,, may return the value of w that maximizes
P(alw)P(w).

[0112] To find text strings that may match utterance, pattern
classification module 406 may attempt to find paths from an
initial state in search graph 600 to a terminal state in search
graph 600 based on feature vectors 404. This process may
involve pattern classification module 406 performing a
breadth-first search, depth-first search, beam search, or some
other type of search on search graph 600. Pattern classifica-
tion module 406 may assign a total cost to one or more paths
through search graph 600 based on costs associated with the
states and/or transitions of associated with each path. Some of
these costs may be based on, for instance, a confidence level
that a particular segment of the utterance maps to a particular
sequence of phonemes in the path.

[0113] As an example, suppose that utterance 400 is the
phrase “cat and dog.” In a possible scenario, pattern classifi-
cation module 406 would step through search graph 600
phoneme by phoneme to find the path beginning with initial
state “#[k]ae” and ending with terminal state “cat and dog.”
Pattern classification module 406 may also find one or more
additional paths through search graph 600. For example, pat-
tern classification module 406 may also associate utterance
400 with the path with initial state “#[k]ae” and ending with
terminal state “cat and mouse,” and with the path with initial
state “#[k]ae” and ending with terminal state “catapult.”
Nonetheless, pattern classification module 406 may assign a
lower cost to the path with terminal state “cat and dog” than to
other paths. Consequently, the path with terminal state “cat
and dog” may be selected as the “best” transcription for the
input utterance.

[0114] It should be understood that ASR systems can oper-
ate in many different ways. The embodiments described
above are presented for purposes of illustration and may not
be the only way in which an ASR system operates.

5. Examples of Finite State Transducer
Representations of Search Graphs

[0115] Asnoted above, FSTs may be used to represent both
dictionary 410 and language model 412. Particularly,
weighted FSTs (WFSTs) can be used to represent transitions
and their associated costs (e.g., probabilities) between states.
For sake of simplicity, the term “FST” will be used herein to
refer to both FSTs and WFSTs.

[0116] Formally, an FST can be represented as a type of
finite-state machine, and may include a start state and one or
more final (e.g., terminal) states. Each final state may be
associated with a weight. A transition between two states may
be associated with an input label, an output label, and a
weight. Each input label and each output label may consist of
one or more symbols.

[0117] A path from the start state to the final state includes
a sequence of transitions that represents a sequential mapping
from the input label symbols on the transitions of the path to
the output label symbols on these transitions. For any particu-
lar transition, an input label and/or an output label may be the
empty symbol, E, which indicates that no symbol is con-
sumed and/or produced, respectively, for the particular tran-
sition. The weight of a path may be calculated as the sum (or
product) of the weights on each transition in the path, plus the
weight associated with the final state (if a final state has a
weight of 0, this weight may be omitted from the FST). By

Oct. 9,2014

following a path of an FST, an input symbol sequence can be
mapped to an output symbol sequence, and the weight of the
path may be associated with the mapping.

[0118] In some embodiments, the search graph may
include one or more distinct super-final states. Super-final
states may be included for computational convenience, and
may include one or more incoming transitions with input and
output symbols of €, and the weight of an associated final
state. Super-final states will be discussed in more detail
below.

[0119] Example FSTs are given in FIGS. 7A and 7B. By
convention, the initial state has a bold circle and a final state
has a double circle. Also, a transition is annotated with the
term i:0/w, indicating that input symbol i maps to output
symbol o with weight w. Each weight may represent a prob-
ability, a logarithm of a probability, a cost, etc.

[0120] InFIG.7A,FST 700 includes states AO,Al, A2, and
A3. Transition 702, from state A0 to A1, is labeled with input
symbol a, output symbol b, and weight 0.1. Thus, transition
702 represents a mapping from symbols a to b, associated
with a weight of 0.1. Similarly, transition 704 represents a
mapping from symbols b to a, associated with a weight o 0.2.
State A1 has a self-transition, transition 706, which maps zero
or more instances of symbol ¢ to the same number of
instances of symbol a, each mapping associated with a weight
of0.3.

[0121] When considered as a whole, FST 700 maps the
input symbol string ac*a to the output symbol string ba™a,
where x=0, and the notation s™ represent x instances of the
symbol s. Assuming that path weights are additive, the weight
of'this mappingis 1.1, 1.4, 1.7, etc., depending on the value of
x (e.g., the number of ¢’s in the input symbol string). FST 700
also maps the input symbol string bb to the output symbol
string ab, with a weight of 1.3.

[0122] In FIG. 7B, FST 710 maps the input symbol string
bad' to the output symbol string cbb™ with weights of 1.4, 2.0,
2.6, etc., based on the value of x (again, additive path weights
are assumed). It should be understood that FST 700 and FST
710 are merely simple examples of FSTs. Actual FSTs used in
ASR systems may be much larger and more complex.

[0123] FIGS. 8A and 8B provide simple examples of dic-
tionary and language model FSTs, respectively. FIG. 8A
depicts FST 800, which represents a simple dictionary map-
ping from phonemes to words with probabilities representing
the likelihoods of alternative pronunciations. The string of
phonemes can be read as a path from the start state to a final
state, the path associated with a word string with a particular
weight. The word corresponding to a pronunciation is output
by the transition that consumes the first phone for that pro-
nunciation. The transitions that consume the remaining pho-
nemes output no further symbols, indicated by the empty
symbol, E, as those transitions’ output label.

[0124] As an example, FST 800 in FIG. 8 A maps the pho-
neme strings “/d/ /ay/ /t/ /ah/;” “/d/ /aa/ /t/ /ab/)” “/d/ [ay/ /d/
/ah/.” and “/d/ /aa/ /d/ /ah/” to the text string “data”. FST 800
also maps the phoneme string “/d/ /ew/” to the text string
“dew”. In this case, unlike FST 700 and 710, the weight
associated with each transition is a probability, and the path
weight may be calculated as the product of the weights of
each transition in the path. For instance, FST 800 indicates
that the text string “data” is pronounced as “/d/ /ay/ /t/ /ah/”
15% of the time, *“/d/ /aa/ /t/ /ah/”” 15% of the time, *“/d/ /ay/ /d/

US 2014/0303973 Al

/ah/” 35% of the time, and ““/d/ /aa/ /d/ /ah/” 35% of the time.
On the other hand, there is only one pronunciation of “dew”
that is supported.

[0125] One way of understanding FST 800 is that it trans-
duces a phoneme sequence to a word with a particular weight.
The word corresponding to a pronunciation is output by the
transition that consumes the first phoneme for that pronun-
ciation. The transitions that consume the remaining phoneme
do not output any symbols, as indicated by empty symbol, €,
as the transition’s output label. Since words can be demarked
by output symbol, it may be possible to combine the FSTs for
more than one word without losing track of where each word
begins and ends. Another advantage of FSTs, as can be seen
from FIG. 8A, is that a large ASR dictionary can be repre-
sented in a relatively compact amount of space.

[0126] Additionally, as shown in FIG. 8B, FSTs can also
represent language models. FST 802 represents a grammar
fragment that includes the text strings “the data is corrupted”
and “the data are corrupted”, with associated probabilities of
0.4 and 0.6, respectively.

[0127] Although not shown in FIGS. 8A and 8B, both FST
800 and FST 802 may include weights associated with one or
more of their final states. Also, it should be clear that FSTs
used in ASR systems may be far larger and more complex, for
example including thousands, millions, or billions of states.
The FST examples shown herein are for purposes of illustra-
tion, and therefore have been simplified.

[0128] An additional possible benefit of FSTs is that two or
more FSTs can be combined through a process referred to as
“composition.”” Composition allows, for instance, the dictio-
nary represented by FST 800 to be combined with the gram-
mar represented by FST 802. The resulting search graph may
represent the grammar of FST 802, including the several ways
of pronouncing “data” as represented by FST 800.

[0129] It should be noted that, strictly speaking, the com-
position of FST 800 with FST 802 may result in an empty
FST, because FST 800 does not have paths for “The”, “is”,
“are”, and “corrupted”. Additionally, FST 800 may require a
transition from the final state back to the initial state in order
to have paths corresponding to the sequence of words in FST
802. However, for sake of illustration and simplicity, FST 800
represents just one word.

[0130] Ingeneral, a grammar that contains m words may be
composed with one or more dictionary FSTs that represent
one or more ways of pronouncing each of the m words.
Clearly, such a composition of FSTs, even for a small gram-
mar with few words, can be difficult to visualize.

[0131] In order to illustrate composition using simpler
FSTs, FIG. 9 represents the composition of FSTs 700 and
710. FST 900 maps sequences of symbols that would be valid
input for FST 700 to sequences of symbols that would be valid
output for FST 700 and would be valid input for FST 710.
Then, FST 900 maps this result to sequences of symbols that
valid output for FST 710. In other words, the composition of
two FSTs, T, and T,, (denoted T, oT,) may be thought of as
using the input symbols of FST T, and the output symbols of
FSTT.,.

[0132] Formally, T,0T, has exactly one path mapping
string u to string w for each pair of paths, the first in T,
mapping u to some string v and the second in T, mapping v to
w. The weight of a path in T, 0T, may be computed from the
weights of the two corresponding paths in T, and T, with the
same operation that computes the weight of a path from the
weights of its transitions. If the transition weights represent

Oct. 9,2014

probabilities, that operation may be multiplication. If instead
the weights represent log probabilities or negative log prob-
abilities the operation may be addition.

[0133] InFST 900, each state represents the composition of
two states, one from each of FST 700 and FST 710. Thus, for
instance, state A0, BO is the composition of state A0 from
FST 700 and state BO from FST 710. Each transition is also
a composition of transitions from FST 700 and FST 710.
Thus, each transition includes an input symbol from a state of
FST 700 and an output symbol from FST 710, such that the
input symbol is mapped to an intermediate symbol by FST
700 and that intermediate symbol, when used as the input
symbol in an associated state of FST 710, produces the output
symbol.

[0134] Thus, for transition 902, which is the composition of
transition 702 from FST 700 and transition 712 of FST 710,
the input symbol a is also the input symbol for transition 702.
Transition 702 maps this input symbol a to the output symbol
b, which is the intermediate symbol for transition 902. (By
convention, intermediate symbols do appear in composed
FSTs.) Transition 712 takes the intermediate symbol b as an
input symbol, and maps it to output symbol c. Therefore,
transition 902 maps input symbol a to output symbol c.
[0135] Additionally, transition 702 is associated with a
weight 0of 0.1 and transition 712 is associated with a weight of
0.3. Assuming these weights represent negative log probabili-
ties, the weight associated with transition 902 is 0.4, the sum
of these two weights. Similar logic applies to the other tran-
sitions and states in FST 900.

6. Example Maximum a Posteriori and Minimum
Bayes Risk Techniques for Selecting a Transcription

[0136] Given the components of an ASR system, such as
those described above, one method of selecting a transcrip-
tion of an utterance is to use a maximum a posteriori (MAP)
technique. Formally, given an utterance x, MAP techniques
attempt to find a transcription y that maximizes P(y|x), which
is the probability that the transcription is correct given the
utterance. It should be noted that when describing MAP and
MBR techniques herein, a slightly different notation is used
than introduced in Section 4.

[0137] Bayes’ formula provides that
_ PP)
Plylx) = W
[0138] Therefore, the transcription that maximizes P(y)P

(xly) also maximizes P(ylx). While the values of P(y) and
P(xly) may not be known, they can be approximated.

[0139] Forexample, P(y), the probability of transcription y,
can be estimated from a language model. This estimation may
be based on the observation that some sequences of words are
more likely to appear in a given language than others. For
instance, the sentence, “this sentence is normal” will have a
relatively high probability in the language model, because the
sequence of words follows English grammar rules. However,
the sentence “colorless green ideas sleep furiously” will have
a relatively low probability in the language model, because
each word is unexpected given the previously-observed
words.

[0140] P(xly), the probability of utterance x given tran-
scription y, can be determined by an acoustic model. Doing so

US 2014/0303973 Al

may involve the use of pronunciation dictionaries to map the
word to sequences of phonemes, each associated with a prob-
ability.

[0141] It should be noted that the MAP technique may
select a transcription that minimizes the likelihood of tran-
scription-level error. This transcription will be called y,_,.
For example, if'y,,., is a sentence, the MAP technique mini-
mizes the probability of y,,, having at least one word error.

[0142] However, a potentially more useful metric of ASR
performance is word error rate (WER). The WER between a
particular transcription and the correct transcription, y*, may
be defined as the number of edits (substitutions, deletions or
insertions) needed to change the particular transcription into
y*, divided by the number of words in y*. This number of
edits may also be referred to as the Levenshtein edit distance.
[0143] Minimizing WER, rather than transcription-level
error, is motivated by the observation that some transcription-
level errors matter more than others. For example, the best
transcription as given by the MAP technique may have more
word errors when compared to a correct transcription of the
utterance than other possible transcriptions with lower prob-
abilities than 'y, ,. Put another way, WER gives partial credit
for correctly recognizing portions of sentences.

[0144] Minimum Bayesian Risk (MBR) techniques can
also be used to select a transcription. One possible advantage
of'using MBR techniques is that they can be tuned to select a
transcription that is optimal with respect to a general loss
function, L. It is assumed that the loss function generates a
cost when the system erroneously produces a transcription y
instead of y*. If this loss function is the Levenshtein edit
distance, then the MBR technique selects a transcription that
is optimal with respect to WER.

[0145] Formally, the expected WER for transcription y is

ey =) PRIDLY,)

[0146] And the transcription selected by the MBR tech-
nique, Yz, 18

YmBr=4 ’gminye)
[0147] In other words, the selected transcription exhibits
the lowest expected WER of all transcripts considered.
[0148] Nonetheless, the computation of y, -5 is expensive
compared to using the MAP technique. For instance, a sum of
weighted probabilities over the entire language is calculated.
Also, each pair of transcriptions is compared and the loss
function between them is determined. When the loss function
is the Levenshtein edit distance, the running time of L. (y, z) is
O(lyllzD).
[0149] One way of improving the running time of the MBR
technique is to limit the search graph. Accordingly, the evi-
dence space, W, is defined to be the part of the language over
which the weighted probabilities are calculated. Additionally,
the hypothesis space, W, is the subset of the search graph
(e.g., the language) from which y, 5, is chosen.
[0150] Therefore, the search graph is limited as follows.

e =) PlNLy, 2)

zeWe

Ympr = argminyew, e(y)

Oct. 9,2014

[0151] One way of limiting the hypothesis space is to
restrict W, to an n-best list. In other words, y is selected from
the n best transcriptions of the utterance. The n-best list may
be determined by evaluating the transcriptions based on one
or more metrics such as highest-probability, highest confi-
dence, lowest cost, etc. In some embodiments, the n-best list
may be obtained using a MAP technique.

[0152] Theevidence space may be limited by restricting W,
to sample paths in the search graph. Recall that the search
graph can be interpreted as a probability distribution over
transcripts. Thus, this probability distribution can be sampled
by the following procedure:

1) Push the weights along the edges of the graph toward the initial state
(this operation will be described in more detail below).

2) Start at the initial state of the search graph.

3) Select an outgoing edge from the current state based with a
probability based on the weight of that edge. In other words, the
higher the probability of the outgoing edge, the more likely it is to
be selected. In the cases where the weights are, e.g., log probabilities,
the lower the weight the more likely it is to be selected.

4) Repeat step 2 until a terminal state is reached at which the
search ends.

[0153] Then the MBR calculation can be performed. This
calculation may involve, for each hypothesis path, consider-
ing all evidence paths, computing the sum of the weights on
these paths, and returning the best hypothesis path.

[0154] The following subsections describe, in more detail,
variations and operations that may be involved in embodi-
ments of this procedure.

[0155] A. Semirings

[0156] Some of the operations discussed herein involve the
use of mathematical constructs known as semirings. For-
mally, a semiring R has two binary operators, € and ® called
addition and multiplication, respectively. The properties of a
semiring are that @ is commutative and has identity value 0,
® is associative and has identity value T, ® distributes over
@, and both ® of x by 0 and ® of 0 by x are 0.

[0157] There are several types of semirings, each with
potentially different characteristics. For instance, in the prob-
ability semiring, R is the set of real numbers, @ is normal
addition, and ® is normal multiplication.

[0158] The log semiring is a transform of the probability
semiring, in which each value of x in the probability semiring
takes on a value of —log(x) in the log semiring. The ® opera-
tor denotes normal addition and the & operator is defined
such that xPy=-log(e ™ +e™). Although it is mathematically
equivalent to the probability semiring, the log semiring may
be preferred because it can provide computational efficiency
and numerical stability.

[0159] Thetropical semiring is the same as the log semiring
except that Xy is approximated as min(x,y). This result may
be used for computational efficiency, and is based on the
Viterbi approximation:

-log(e™+e™)=—max(-x,—y)=min(x,y)

[0160] Additionally, the signed log semiring operates over
the set of tuples that have either 1 or -1 as the first element and
a real number as the second element, and is defined by the
following relationships:

(51)D(52/5)=(s1,-logle 51557 i f13

(s1/)D(525)~(s2,-logle 4815567 L /12

US 2014/0303973 Al

(517) B (2 ~(s152115)
0=(1,+)

T=(1,0)

[0161] B. Pushing Weights

[0162] As noted above, the search graph may be prepared
by pushing the weights associated with some transitions
toward the initial state such that the total weight of each path
is unchanged. In some embodiments, this operation provides
that for every state, the sum of all outgoing edges (including
the final weight, which can be seen as an E-transition to a
super-final state) is equal to 1.

[0163] FIG. 10A is an example FST 1000. For sake of
convenience, it includes only four states, SO, S1, S2, and S3,
as well as four transitions, T1, T2, T3, and T4. Each transition
is also labeled with a weight. A weight-pushing algorithm can
be applied to FST 1000 to push the weights of transitions
closer to initial state SO.

[0164] Formally, let d(x) be the sum of weights of all tran-
sitions between state x and a final state, per the appropriate
semiring. Thus, d(S0)=10, d(S1)=5, d(S2)=2, and d (S3)=0.
Also, let w(y) be the weight of transition y. Thus, w(tl)=1,
w(t2)=5, w(t3)=2, and w(t4)=2. Further, let p (y) be the state
at which transition y begins and let q (y) be the state at which
transition y ends. The weight-pushing algorithm re-weights
each transition according to the equation

W) = wy) +d(g(y)
STPICO)
[0165] Applying this algorithm to FST 1000, w'(t1)=6/10,

w'(t2)=1, w'(t3)=4/10, and w'(t4)=1. The result is shown as
FST 1002 in FIG. 10B. Essentially, the weight of transition t2
is pushed to transition t1 and the weight of transition t4 is
pushed to transition t2, and the weights are normalized into
probabilities. For sake of illustration and convenience, in this
example, FST 1002 is converted from being in the log semi-
ring to the probability semiring.

[0166] Ifthis pushing is not performed, the sampling algo-
rithm above would start at state SO and prefer the transition
with the highest weight, t3. This would result in the path
traversing SO, S2, and S3 being taken. However, the path
traversing S0, S1, and S3 has a higher weight and therefore
should be preferable over the path traversing SO, S2, and S3.
The weight pushing algorithm addresses this issue. Further, in
FST 1002, the weights of the outgoing transitions from each
state sum to 1, which implies that from each state paths can be
sampled according to their respective probabilities.

[0167] C. Edit Transducer Factorization in the Tropical
Semiring
[0168] The MBR technique given above computes the Lev-

enshtein distance between every pair of hypothesis and evi-
dence paths. It may be possible to make this technique more
efficient by factoring out the common steps of the computa-
tion, and performing these common steps fewer times (e.g.,
perhaps just once). Doing so may lead to a performance gain,
because even different hypothesis and evidence paths can be
similar to one another.

[0169] FSTs can also be used to efficiently calculate edit
distances. For instance, a set of text strings represented as
unweighted transducers can be composed with an edit trans-

11

Oct. 9,2014

ducer that calculates the edit distance between strings. More
formally, for any two strings sl and s2, assume that their
respective FST representations are S1 and S2. Then, let T be
an edit transducer such that S10ToS2 is a transducer where all
paths have s1 as an input label and s2 as an output label, and
where the shortest path has weight L(s1,s2).

[0170] Anexample edit transducer, T, for the words w1 and
w2 is depicted in FIG. 11A. All transitions in T are self-
transitions and, for sake of convenience and clarity, are pro-
vided to the right of T. Each of these transitions may represent
an edit distance between the input and output symbols. Thus,
transducing w1 to wl and w2 to w2 have an edit distance of 0,
indicating that no edits are required. On the other hand, all
other transitions represent an insertion, substitution or dele-
tion, and therefore have an edit distance of 1. Therefore, given
two sentences s1 and s2 taken from the dictionary consisting
of wl and w2, and given S1 and S2 (the FST representations
of's1 and s2, respectively), the weight of the shortest path of
S10ToS2 is the Levenshtein edit distance between s1 and s2.
[0171] As an example, let S1 be an FST for the sentence
“w1 w2.” Then, the composition of S1cT is shown in FIG.
11B. The FST in FIG. 11B can be used to map an input
sentence to an edit distance between that input sentence and
“w1 w2.” For example, let S2 be an FST for the sentence “w2
w1.” Then, the composition of S10ToS2 represents the edit
distance between “w1 w2” and “w2 w1.” This composition,
S10ToS82, s shown as FST 1104 in FIG. 11C, and provides a
path for each combination of edits (deletion, insertion, sub-
stitution) leading from “w1 w2 to “w2 w1”, with an associ-
ated edit distance. Of course, the minimum edit distance is 2,
representing two substitutions.

[0172] The size of edit transducer T is quadratic with
respect to the number of words in the language. One possible
way of reducing the complexity and size of T is to decompose
T into two transducers T1 and T2. Transducer T1 may repre-
sent the “left half” of T, and may map symbols to edit opera-
tions. Transducer T2 may represent the “right half” of T and
may map edit operations back to symbols. A decomposition
of T is shown as FSTs 1106 and 1108 in FIG. 11D. Note that
for these FSTs, the insert operation is denoted as <i>, the
delete operation is denoted as <d>, and the substitute opera-
tion is denoted as <s>.

[0173] The composition S1oT 0 S2 can now be expressed
as (S1oT1)o(T20S2) due to the associative property of com-
position. Doing so replaces the quadratic-sized T with the
linear-sized T1 and T2.

[0174] This construction may be used to compute the MBR
value of a given path—represented by FST S—in W,. Par-
ticularly, SoToW, can be computed, where W, is the
unweighted version of W,_. The result may accept strings of
W, with a weight equal to the cost of their alignments with the
given path represented by FST S. This results in a compact
representation of the distance of the given path to every path
inW,.

[0175] D. Edit Transducer Factorization in the Log Semir-
ing
[0176] Edit transducer factorization in the log semiring is

similar to that of the edit transducer factorization in the tropi-
cal semiring. However, some possible differences may
include use of a counting transducer as a way to count edit
operations without eliminating alignments, use of a synchro-
nization operation as a way to equate the labels of the various
alignments for each pair of strings, and the use of automata
determinization. This process may involve encoding the input

US 2014/0303973 Al

and output symbols as a pair, determinizing the resulting FST
as a finite-state automaton on a pair of symbols, and decoding
the pairs back to input and output symbols. It should be
understood that determinization of a non-deterministic
automaton results in a deterministic automaton that recog-
nizes exactly the same language.

[0177] Furthermore, unlike the tropical semiring method
which computes the MBR value of only one hypothesis
string, the log semiring method can be used to compute the
values for all hypothesis paths simultaneously.

[0178] FIG. 12A depicts FST 1200, an edit transducer for
the Levenshtein edit distance in the log semiring. The list of
words is denoted by A, and A'=A U {E}. The term

AA'-(e€)

denotes all transitions of the form x:y with x,yeA' except for
the empty transition e:e. Additionally, the term

AA4'-Id

denotes all transitions of the form x:y with x,yeA' and x=y.
[0179] Instead of generating one path for each alignment
with the cost of the alignment as weight, in FST 1200 the path
for each alignment may be generated in multiple copies, so
that the € operation in the log semiring yields the correct cost
for the alignment. As a computational convenience, perfect
alignments may be modeled explicitly, giving them a large
but finite weight N. Otherwise, these alignments might not be
taken into account.

[0180] Likeforthetropical semiring, FST 1200 is quadratic
in the size of the word list A. Thus, it may be beneficial to
factor FST 1200. However, in doing so, complications may
arise because, unlike in the tropical semiring, adding “bogus”
edges for identity substitutions and relying on the b opera-
tion to eliminate them later may not work. Instead, the set of
non-identity substitutions may be modeled explicitly. In par-
ticular, the unneeded edges may be added, but then cancelled
out by adding a negated version of them in the signed log
semiring (see above for a definition of the signed log semir-
ing).

[0181] FIGS. 12A and 12B depict the left half (FST 1202)
and the right half (FST 1204), respectively, of FST 1200 in the
signed log semiring. The composition of FST 1202 and FST
1204 yield an edit transducer that is equivalent to FST 1200.
The value d shown as one of transitions 1206 is a small
positive value.

[0182] For this factorization of FST 1200, let T be FST
1200, T1 be FST 1202 and T2 be FST 1204. Thus, T=T1cT2.
W, and W, may be mapped from the log semiring to the
signed log semiring by converting each weight x to (1,x).
(W,0T1)o(T20W,) may be calculated to determine the edit
distance between multiple evidence and hypothesis strings.
After determinizing to eliminate negative weights, these val-
ues can be mapped back to the log semiring by converting
(1,x) to x.

7. Example Operations

[0183] FIG. 13 is a flow chart of an example embodiment.
The steps illustrated by this flow chart may be carried out by
various computing devices, such as client device 300, server
device 200 and/or server cluster 220A. Aspects of some indi-
vidual steps may be distributed between multiple computing
devices.

[0184] At step 1300, n hypothesis-space transcriptions of
an utterance may be selected from a search graph that

Oct. 9,2014

includes t>n transcriptions of the utterance. Determining the
n hypothesis space transcriptions may involve determining
the n best transcriptions of the utterance according to a maxi-
mum a posteriori (MAP) technique. At step 1302, m evi-
dence-space transcriptions of the utterance may be randomly
selected from the search graph, where t>m.

[0185] The search graph may be implemented as an FST.
This FST may include a composition of a language model
FST and a dictionary FST. Alternatively or additionally, this
FST may include a decomposed edit transducer.

[0186] At step 1304, for each particular hypothesis-space
transcription, an expected word error rate may be calculated
by comparing the particular hypothesis-space transcription to
each of'the evidence-space transcriptions. These comparisons
may involve, for each particular evidence-space transcrip-
tion, further steps of determining a probability that the par-
ticular evidence space transcription is a correct transcription
of the utterance based on the utterance, determining an edit
distance between the particular hypothesis-space transcrip-
tion and the particular evidence space transcription, and cal-
culating a product of the probability and the edit distance. In
some embodiments, the edit distance may be a Levenshtein
edit distance. Additionally, the expected word error rate may
be the sum of each of the products associated with the par-
ticular evidence-space transcriptions.

[0187] Determining the edit distance may involve factoring
an edit transducer in the tropical semiring into a left-half
transducer and a right-half transducer. The edit transducer
may include a finite-state transducer that maps edit operations
to associated costs. At least one of the n hypothesis space
transcriptions may be composed with the left-half transducer
into a first composed transducer. Additionally, the right-half
transducer may be composed with an evidence space trans-
ducer into a second composed transducer. The evidence space
transducer may represent the m evidence-space transcrip-
tions. Then, the first composed transducer may be composed
with the second composed transducer.

[0188] Inotherembodiments, determining the edit distance
may involve factoring an edit transducer in the log semiring
into a left-halftransducer and a right-half transducer. The edit
transducer may include a finite-state transducer that maps edit
operations to associated costs. A hypothesis space transducer
may be composed with the left-half transducer into a first
composed transducer. The hypothesis space transducer may
represent the n hypothesis space transcriptions. Additionally,
the right-half transducer may be composed with an evidence
space transducer into a second composed transducer. The
evidence space transducer may represent the m evidence-
space transcriptions. Then, the first composed transducer may
be composed with the second composed transducer.

[0189] At step 1306, based on the expected word error
rates, a lowest expected word error rate may be determined.
At step 1308, the particular hypothesis-space transcription
that is associated with the lowest expected word error rate
may be provided.

[0190] The search graph may include a directed acyclic
graph, each edge of the directed acyclic graph associated with
a probability. Randomly selecting the evidence-space tran-
scriptions from the search graph may involve traversing the
directed acyclic graph from a source node to a terminal node
by repeatedly selecting edges according to the probability
associated with each edge.

[0191] Someimplementations may include receiving a rep-
resentation of the utterance from a client device. Providing

US 2014/0303973 Al

the particular hypothesis-space transcription that is associ-
ated with the lowest expected word error rate may involve
providing the particular hypothesis-space transcription that is
associated with the lowest expected word error rate to the
client device. Alternatively or additionally, providing the par-
ticular hypothesis-space transcription that is associated with
the lowest expected word error rate may involve providing the
particular hypothesis-space transcription that is associated
with the lowest expected word error rate on an output display
of'a computing device that performs at least one of the steps
of FIG. 13.

8. Conclusion

[0192] The above detailed description describes various
features and functions of the disclosed systems, devices, and
methods with reference to the accompanying figures. In the
figures, similar symbols typically identify similar compo-
nents, unless context indicates otherwise. The illustrative
embodiments described in the detailed description, figures,
and claims are not meant to be limiting. Other embodiments
can be utilized, and other changes can be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

[0193] For situations in which the systems discussed here
collect personal information about users, the users may be
provided with an opportunity to opt in/out of programs or
features that may collect personal information (e.g., informa-
tion about a user’s preferences or a user’s utterances made to
an ASR system). In addition, certain data may be anonymized
in one or more ways before it is stored or used, so that
personally identifiable information is removed. For example,
a user’s identity may be anonymized so that no personally
identifiable information can be determined for the user and so
that any identified user preferences or user interactions are
generalized (for example, generalized based on user demo-
graphics) rather than associated with a particular user.
[0194] With respect to any or all of the message flow dia-
grams, scenarios, and flow charts in the figures and as dis-
cussed herein, each step, block and/or communication may
represent a processing of information and/or a transmission
of information in accordance with example embodiments.
Alternative embodiments are included within the scope of
these example embodiments. In these alternative embodi-
ments, for example, functions described as steps, blocks,
transmissions, communications, requests, responses, and/or
messages may be executed out of order from that shown or
discussed, including in substantially concurrent or in reverse
order, depending on the functionality involved. Further, more
or fewer steps, blocks and/or functions may be used with any
of the message flow diagrams, scenarios, and flow charts
discussed herein, and these message flow diagrams, sce-
narios, and flow charts may be combined with one another, in
part or in whole.

[0195] A step or block that represents a processing of infor-
mation may correspond to circuitry that can be configured to
perform the specific logical functions of a herein-described
method or technique. Alternatively or additionally, a step or
block that represents a processing of information may corre-
spond to a module, a segment, or a portion of program code

Oct. 9,2014

(including related data). The program code may include one
or more instructions executable by a processor for imple-
menting specific logical functions or actions in the method or
technique. The program code and/or related data may be
stored on any type of computer-readable medium, such as a
storage device, including a disk drive, a hard drive, or other
storage media.

[0196] The computer-readable medium may also include
non-transitory computer-readable media such as computer-
readable media that stores data for short periods of time like
register memory, processor cache, and/or random access
memory (RAM). The computer-readable media may also
include non-transitory computer-readable media that stores
program code and/or data for longer periods of time, such as
secondary or persistent long term storage, like read only
memory (ROM), optical or magnetic disks, and/or compact-
disc read only memory (CD-ROM), for example. The com-
puter-readable media may also be any other volatile or non-
volatile storage systems. A computer-readable medium may
be considered a computer-readable storage medium, for
example, or a tangible storage device.

[0197] Moreover, a step or block that represents one or
more information transmissions may correspond to informa-
tion transmissions between software and/or hardware mod-
ules in the same physical device. However, other information
transmissions may be between software modules and/or hard-
ware modules in different physical devices.

[0198] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments will be
apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustration
and are not intended to be limiting, with the true scope and
spirit being indicated by the following claims.

What is claimed is:

1. A method comprising:

selecting, by a computing device, n hypothesis-space tran-

scriptions of an utterance from a search graph that
includes t>n transcriptions of the utterance;

randomly selecting m evidence-space transcriptions of the

utterance from the search graph, wherein t>m;

for each particular hypothesis-space transcription of the n

hypothesis-space transcriptions, calculating an expected
word error rate by comparing the particular hypothesis-
space transcription to the randomly selected m evi-
dence-space transcriptions;

based on the expected word error rates, determining a

lowest expected word error rate; and

providing the particular hypothesis-space transcription

that is associated with the lowest expected word error
rate.

2. The method of claim 1, wherein comparing the particular
hypothesis-space transcription to the randomly selected m
evidence-space transcriptions comprises, for each particular
evidence-space transcription of the selected m evidence-
space transcriptions:

based on the utterance, determining a probability that the

particular evidence space transcription is a correct tran-
scription of the utterance;

determining an edit distance between the particular

hypothesis-space transcription and the particular evi-
dence space transcription; and

calculating a product of the probability and the edit dis-

tance.

US 2014/0303973 Al

3. The method of claim 2, wherein the edit distance is a
Levenshtein edit distance.

4. The method of claim 1, wherein determining the edit
distance comprises:

factoring an edit transducer in the tropical semiring into a

left-half transducer and a right-half transducer, wherein
the edit transducer includes a finite-state transducer that
maps edit operations to associated costs;

composing, into a first composed transducer, at least one of

the n hypothesis space transcriptions with the left-half
transducer;

composing, into a second composed transducer, the right-

half transducer with an evidence space transducer,
wherein the evidence space transducer represents the m
evidence-space transcriptions; and

composing the first composed transducer and the second

composed transducer.

5. The method of claim 1, wherein determining the edit
distance comprises:

factoring an edit transducer in the log semiring into a

left-half transducer and a right-half transducer, wherein
the edit transducer includes a finite-state transducer that
maps edit operations to associated costs;

composing, into a first composed transducer, a hypothesis

space transducer with the left-half transducer, wherein
the hypothesis space transducer represents the n hypoth-
esis space transcriptions;

composing, into a second composed transducer, the right-

half transducer with an evidence space transducer,
wherein the evidence space transducer represents the m
evidence-space transcriptions; and

composing the first composed transducer and the second

composed transducer.

6. The method of claim 2, wherein the expected word error
rate is the sum of each of the products associated with the
particular evidence-space transcriptions.

7. The method of claim 1, wherein selecting the n hypoth-
esis-space transcriptions comprises determining the n best
transcriptions of the utterance according to a maximum a
posteriori (MAP) technique.

8. The method of claim 1, wherein the search graph com-
prises a directed acyclic graph, each edge of the directed
acyclic graph associated with a probability, and wherein ran-
domly selecting the m evidence-space transcriptions from the
search graph comprises traversing the directed acyclic graph
from a source node to a terminal node by repeatedly selecting
edges according to the probability associated with each edge.

9. The method of claim 1 further comprising:

receiving a representation of the utterance from a client

device, wherein providing the particular hypothesis-
space transcription that is associated with the lowest
expected word error rate comprises providing the par-
ticular hypothesis-space transcription that is associated
with the lowest expected word error rate to the client
device.

10. The method of claim 1, wherein providing the particu-
lar hypothesis-space transcription that is associated with the
lowest expected word error rate comprises providing the par-
ticular hypothesis-space transcription that is associated with
the lowest expected word error rate on an output display of the
computing device.

11. The method of claim 1, wherein the search graph com-
prises a search graph finite state transducer (FST), and

Oct. 9,2014

wherein the search graph FST comprises a composition of a
language model FST and a dictionary FST.

12. An article of manufacture including a computer-read-
able medium, having stored thereon program instructions
that, upon execution by a computing device, cause the com-
puting device to perform operations comprising:

selecting n hypothesis-space transcriptions of an utterance

from a search graph that includes t>n transcriptions of
the utterance;

randomly selecting m evidence-space transcriptions of the

utterance from the search graph, wherein t>m;

for each particular hypothesis-space transcription of the

selected n hypothesis-space transcriptions, calculating
an expected word error rate by comparing the particular
hypothesis-space transcription to the randomly selected
m evidence-space transcriptions;

based on the expected word error rates, determining a

lowest expected word error rate; and

providing the particular hypothesis-space transcription

that is associated with the lowest expected word error
rate.

13. The article of manufacture of claim 12, wherein com-
paring the particular hypothesis-space transcription to the
evidence-space transcriptions comprises, for each particular
evidence-space transcription of the selected m evidence-
space transcriptions:

based on the utterance, determining a probability that the

particular evidence space transcription is a correct tran-
scription of the utterance;

determining an edit distance between the particular

hypothesis-space transcription and the particular evi-
dence space transcription; and

calculating a product of the probability and the edit dis-

tance.

14. The article of manufacture of claim 13, wherein the edit
distance is a Levenshtein edit distance.

15. The article of manufacture of claim 13, wherein the
expected word error rate is the sum of each of the products
associated with the particular evidence-space transcriptions.

16. The article of manufacture of claim 12, wherein select-
ing the n hypothesis-space transcriptions comprises deter-
mining the n best transcriptions of the utterance according to
a maximum a posteriori (MAP) technique.

17. The article of manufacture of claim 12, wherein the
search graph comprises a directed acyclic graph, each edge of
the directed acyclic graph associated with a probability, and
wherein randomly selecting the evidence-space transcrip-
tions from the search graph comprises traversing the directed
acyclic graph from a source node to a terminal node by
repeatedly selecting edges according to the probability asso-
ciated with each edge.

18. A computing device comprising:

at least one processor;

data storage; and

program instructions stored in the data storage that, when

executed by the processor, cause the computing device

to perform operations comprising:

selecting n hypothesis-space transcriptions of an utter-
ance from a search graph that includes t>n transcrip-
tions of the utterance;

randomly selecting m evidence-space transcriptions of
the utterance from the search graph, wherein t>m;

for each particular hypothesis-space transcription of the
selected n hypothesis-space transcriptions, calculat-

US 2014/0303973 Al Oct. 9,2014
15

ing an expected word error rate by comparing the
particular hypothesis-space transcription to the ran-
domly selected m evidence-space transcriptions;

based on the expected word error rates, determining a
lowest expected word error rate; and

providing the particular hypothesis-space transcription
that is associated with the lowest expected word error
rate.

19. The computing device of claim 18, wherein comparing
the particular hypothesis-space transcription to each of the
evidence-space transcriptions comprises, for each particular
evidence-space transcription of the selected m evidence-
space transcriptions:

based on the utterance, determining a probability that the

particular evidence space transcription is a correct tran-
scription of the utterance;

determining an edit distance between the particular

hypothesis-space transcription and the particular evi-
dence space transcription; and

calculating a product of the probability and the edit dis-

tance.

20. The computing device of claim 18, wherein the search
graph comprises a directed acyclic graph, each edge of the
directed acyclic graph associated with a probability, and
wherein randomly selecting the evidence-space transcrip-
tions from the search graph comprises traversing the directed
acyclic graph from a source node to a terminal node by
repeatedly selecting edges according to the probability asso-
ciated with each edge.

#* #* #* #* #*

