
Functional Dependencies and
Normalization

DataBases

Slides from CS145 Stanford
(2016), Christopher Ré

Functional Dependencies

Functional Dependency

A->B means that
“whenever two tuples agree on A then they

agree on B.”

A->B means that
“whenever two tuples agree on A then they

agree on B.”

Def: Let A,B be sets of attributes
We write A → B or say A functionally
determines B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]
and we call A → B a functional
dependency

Def: Let A,B be sets of attributes
We write A → B or say A functionally
determines B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]
and we call A → B a functional
dependency

A Picture Of FDs

 A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,
…,Am} and B = {B1,…Bn} in R,

 A1 … Am B1 … Bn

A Picture Of FDs

ti

tj

Defn (again):
Given attribute sets A={A1,
…,Am} and B = {B1,…Bn} in R,

The functional dependency A→ B
on R holds if for any ti,tj in R:

A Picture Of FDs
Defn (again):
Given attribute sets A={A1,
…,Am} and B = {B1,…Bn} in R,

The functional dependency A→ B
on R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2]
AND … AND ti[Am] = tj[Am]

 A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here..

A Picture Of FDs
Defn (again):
Given attribute sets A={A1,
…,Am} and B = {B1,…Bn} in R,

The functional dependency A→ B
on R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2]
AND … AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND
ti[B2]=tj[B2] AND … AND ti[Bn] =
tj[Bn]

 A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here.. …they also agree here!

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Model its functional dependencies (FDs)

3. Use these to design a better schema
→ One which minimizes the possibility of anomalies

Functional Dependencies as
Constraints

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Note: The FD {Course} ->
{Room} holds on this
instance

Note: The FD {Course} ->
{Room} holds on this
instance

A functional dependency is a form of
constraint

• Holds on some instances not others.

• Part of the schema, helps define a valid
instance.

Recall: an instance of a schema is a
multiset of tuples conforming to that
schema, i.e. a table

Recall: an instance of a schema is a
multiset of tuples conforming to that
schema, i.e. a table

Functional Dependencies as
Constraints

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

However, cannot prove
that the FD {Course} ->
{Room} is part of the
schema

However, cannot prove
that the FD {Course} ->
{Room} is part of the
schema

Note that:
• You can check if an FD is violated by

examining a single instance;

• However, you cannot prove that an
FD is part of the schema by
examining a single instance.
• This would require checking every

valid instance

More Examples
An FD is a constraint which holds, or does not hold on
an instance:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

{Position} → {Phone}

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 ¬ Salesrep

E1111 Smith 9876 ¬ Salesrep

E9999 Mary 1234 Lawyer

More Examples

EmpID Name Phone Position
E0045 Smith 1234 ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 ® Lawyer

 but not {Phone} → {Position}

More Examples

Exercise
A B C D E

1 2 4 3 6

3 2 5 1 8

1 4 4 5 7

1 2 4 3 6

3 2 5 1 8

Find at least three FDs
which are violated on
this instance:

{ } → { }
{ } → { }
{ } → { }

{ } → { }
{ } → { }
{ } → { }

2. Finding functional
dependencies

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID → Name, Phone,
Position is “good FD”
• Minimal redundancy,

less possibility of
anomalies

Intuitively:

EmpID → Name, Phone,
Position is “good FD”
• Minimal redundancy,

less possibility of
anomalies

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID → Name, Phone,
Position is “good FD”

But Position → Phone is a
“bad FD”
• Redundancy!

Possibility of data
anomalies

Intuitively:

EmpID → Name, Phone,
Position is “good FD”

But Position → Phone is a
“bad FD”
• Redundancy!

Possibility of data
anomalies

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Returning to our original example…
can you see how the “bad FD”
{Course} -> {Room} could lead to an:
• Update Anomaly
• Insert Anomaly
• Delete Anomaly
• …

“Good” vs. “Bad” FDs

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
→ One which minimizes possibility of anomalies

This part can be tricky!This part can be tricky!

Finding Functional Dependencies

• There can be a very large number of FDs…
• How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all instances…
• How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs
must hold?

We will start with this problem:
Given a set of FDs, F, what other FDs
must hold?

Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Finding Functional Dependencies

1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

Name Color Category Dep Price

Gizmo Green Gadget Toys 49

Widget Black Gadget Toys 59

Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!? Which / how many other FDs do?!?

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category} → {Price}
must also hold on any instance…

Example:

Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s Rules.

1. Reflexivity: if Y is included in X then X → Y
2. Augmentation: if X → Y then XZ → YZ
3. Transitivity: if X → Y and Y → Z then X → Z

Answer: Three simple rules called Armstrong’s Rules.

1. Reflexivity: if Y is included in X then X → Y
2. Augmentation: if X → Y then XZ → YZ
3. Transitivity: if X → Y and Y → Z then X → Z

Finding Functional Dependencies

1. Split/Combine

 A1 … Am B1 … Bn

A1, …, Am → B1,…,Bn

1. Split/Combine

 A1 … Am B1 … Bn

A1, …, Am → B1,…,Bn

… is equivalent to the following n FDs…

A1,…,Am → Bi for i=1,…,n

1. Split/Combine

 A1 … Am B1 … Bn

A1, …, Am → B1,…,Bn

… is equivalent to …

And vice-versa, A1,…,Am → Bi for i=1,…,n

Reduction/Trivial
 A1 … Am

A1,…,Am → Aj for any j=1,…,m

3. Transitive Closure

 A1 … Am B1 … Bn C1 … Ck

A1, …, Am → B1,…,Bn and

B1,…,Bn → C1,…,Ck

3. Transitive Closure

 A1 … Am B1 … Bn C1 … Ck

A1, …, Am → B1,…,Bn and

B1,…,Bn → C1,…,Ck

implies

A1,…,Am → C1,…,Ck

Finding Functional Dependencies

1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

Name Color Category Dep Price

Gizmo Green Gadget Toys 49

Widget Black Gadget Toys 59

Gizmo Green Whatsit Garden 99

Which / how many other FDs
hold?

Which / how many other FDs
hold?

Provided FDs:Products

Example:

Finding Functional Dependencies

1. {Name} → {Color}
2. {Category} → {Dept.}
3. {Color, Category} →
{Price}

1. {Name} → {Color}
2. {Category} → {Dept.}
3. {Color, Category} →
{Price}

Which / how many other FDs
hold?

Which / how many other FDs
hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} → {Name} ?

5. {Name, Category} → {Color} ?

6. {Name, Category} → {Category} ?

7. {Name, Category} → {Color, Category} ?

8. {Name, Category} → {Price} ?

Finding Functional Dependencies

1. {Name} → {Color}
2. {Category} → {Dept.}
3. {Color, Category} →
{Price}

1. {Name} → {Color}
2. {Category} → {Dept.}
3. {Color, Category} →
{Price}

Can we find an algorithmic way to
do this?

Can we find an algorithmic way to
do this?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} → {Name} Trivial

5. {Name, Category} → {Color} Transitive (4 -> 1)

6. {Name, Category} → {Category} Trivial

7. {Name, Category} → {Color, Category} Split/combine (5 + 6)

8. {Name, Category} → {Price} Transitive (7 -> 3)

Closures

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t.
{A1, …, An} → B

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t.
{A1, …, An} → B

{name} → {color}
{category} → {department}
{color, category} → {price}

{name} → {color}
{category} → {department}
{color, category} → {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ = {name, category, color, dept, price}
{color}+ = {color}

{name}+ = {name, color}
{name, category}+ = {name, category, color, dept, price}
{color}+ = {color}

Closure Algorithm

Start with X = {A
1
, ..., A

n
} and set of FDs F

While X does not change :

 If {B
1
, ..., B

n
} → C is in F and B

i
 is in X for each i

 Then add all elements of C to X

Return X as X+

Closure Algorithm

{name} → {color}

{category} → {dept}

{color, category} → {price}

{name} → {color}

{category} → {dept}

{color, category} → {price}

F =

{name, category}+ =
{name, category}
{name, category}+ =
{name, category}

Closure Algorithm

{name} → {color}

{category} → {dept}

{color, category} → {price}

{name} → {color}

{category} → {dept}

{color, category} → {price}

F =

{name, category}+ =
{name, category}
{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}
{name, category}+ =
{name, category, color}

Closure Algorithm

{name} → {color}

{category} → {dept}

{color, category} → {price}

{name} → {color}

{category} → {dept}

{color, category} → {price}

F =

{name, category}+ =
{name, category}
{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}
{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}
{name, category}+ =
{name, category, color, dept}

Closure Algorithm

F =

{name, category}+ =
{name, category}
{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color, dept, price}
{name, category}+ =
{name, category, color, dept, price}

{name, category}+ =
{name, category, color}
{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}
{name, category}+ =
{name, category, color, dept}{name} → {color}

{category} → {dept}

{color, category} → {price}

{name} → {color}

{category} → {dept}

{color, category} → {price}

Example

Compute {A,B}+ = {A, B, }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F)R(A,B,C,D,E,F) {A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

{A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

Example

Compute {A,B}+ = {A, B, C, D }

Compute {A, F}+ = {A, F, B }

R(A,B,C,D,E,F)R(A,B,C,D,E,F) {A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

{A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

Example

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F)R(A,B,C,D,E,F) {A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

{A,B} → {C}
{A,D} → {E}
{B} → {D}
{A,F} → {B}

3. Closures, Superkeys &
Keys

Why Do We Need the Closure?

• With closure we can find all FDs easily

• To check if X ® A

1. Compute X+

2. Check if A Î X+

Note here that X is a set of
attributes, but A is a single
attribute. Why does
considering FDs of this
form suffice?

Note here that X is a set of
attributes, but A is a single
attribute. Why does
considering FDs of this
form suffice?

Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

“Y is in
the
closure of
X”

“Y is in
the
closure of
X”

Step 1: Compute X+, for every set of attributes X:

Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D},
{A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ =
{A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ =
{A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

The FD X →
Y is non-
trivial

The FD X →
Y is non-
trivial

Step 1: Compute X+, for every set of attributes X:

Minimal Cover of a set F of FDs

• Minimal subset of elementary FDs allowing to generate all the others.• Minimal subset of elementary FDs allowing to generate all the others.

• Theorem:

• Any set of FDs has a minimal cover, that in general is not unique

• We can construct such a minimal cover in polynomial time

• Formally, F is a Minimal Cover iff:

• All f in F is elementary.

• There is no f in F such that F - {f} is equivalent to F.

Minimal Cover of a set F of FD

• X → A is an elementary FD if:

• A is an attribute, X is a set of attributes, A is not included in X

• there is no subset X ' of X such that X ' → A in F+

• Equivalence

• Two sets of FDs are equivalent if they have the same transitive
closure.

Superkeys and Keys

Keys and Superkeys

A superkey is a set of attributes A1,
…, An s.t.
for any other attribute B in R,
we have {A1, …, An} → B

A superkey is a set of attributes A1,
…, An s.t.
for any other attribute B in R,
we have {A1, …, An} → B

A key is a minimal
superkey
A key is a minimal
superkey

i.e. all attributes
are functionally
determined by a
superkey

i.e. all attributes
are functionally
determined by a
superkey

Meaning that no
subset of a key is
also a superkey

Meaning that no
subset of a key is
also a superkey

Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key
Do we need to check
all sets of attributes?

Which sets?

Do we need to check
all sets of attributes?

Which sets?

Example of Finding Keys

Product(name, price, category, color)Product(name, price, category, color)

{name, category} → price
{category} → color
{name, category} → price
{category} → color

What is a key?

Example of Keys

Product(name, price, category, color)Product(name, price, category, color)

{name, category} → price
{category} → color
{name, category} → price
{category} → color

Normalization

Normal Forms
• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form

• Boyce-Codd Normal Form (BCNF)

• 3rd Normal Form (3NF)

DB designs based on
functional
dependencies,
intended to prevent
data anomalies

1st Normal Form (1NF)

Student Courses

Mary {CS145,CS229}

Joe {CS145,CS106}

… …

Violates 1NF.

1NF Constraint: Types must be atomic!1NF Constraint: Types must be atomic!

Student Courses

Mary CS145

Mary CS229

Joe CS145

Joe CS106

In 1st NF

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

If every course
is in only one
room, contains
redundant
information!

If every course
is in only one
room, contains
redundant
information!

A poorly designed database causes
anomalies:

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

Mary CS145 B01

Joe CS145 C12

Sam CS145 B01

..

If we update
the room
number for one
tuple, we get
inconsistent
data = an
update
anomaly

If we update
the room
number for one
tuple, we get
inconsistent
data = an
update
anomaly

A poorly designed database causes
anomalies:

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

..

If everyone drops the class, we
lose what room the class is in! = a

delete anomaly

If everyone drops the class, we
lose what room the class is in! = a

delete anomaly

A poorly designed database causes
anomalies:

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Similarly, we
can’t reserve
a room
without
students = an
insert
anomaly

Similarly, we
can’t reserve
a room
without
students = an
insert
anomaly

A poorly designed database causes
anomalies:

A poorly designed database causes
anomalies:

… CS229 C12

Constraints Prevent (some)
Anomalies in the Data

Student Course

Mary CS145

Joe CS145

Sam CS145

.. ..

Course Room

CS145 B01

CS229 C12

Today: develop theory to understand why this
design may be better and how to find this

decomposition…

Today: develop theory to understand why this
design may be better and how to find this

decomposition…

Is this form better?

• Redundancy?
• Update

anomaly?
• Delete anomaly?
• Insert anomaly?

Is this form better?

• Redundancy?
• Update

anomaly?
• Delete anomaly?
• Insert anomaly?

R K1 K2 X Y

Such a relationship should be broken into

R1 (K1, K2, X) and R2 (K2, Y)

2nd Normal Form (2NF)
Definition

a relationship is in second normal form iff:
➢ it is in the first normal form
➢ any non-key attribute is not dependent on a key part

Schema

Example 2NF

▪ Example 1:
– Supplier (name, address, product, price)
– The key is (name, product)
– But name → address : not second form

▪ Example 2:
– R (wine, type, customer, discount)
– The key is (wine, customer)
– But wine → type: not second form

R K X Y Z

Such a relationship should be broken into

R1 (K X, Y) and R 2 (X, Z)

3rd Normal Form (3NF)
▪ Definition

– a relation is in third normal form iff for all nontrivial FD in F (X → A)
then X is a super key or A is a prime attribute (is part of a key).

➢ 3NF implies 2NF
➢ Prohibits FD between non-key attributes (not part of a key)
➢ formally:

➢ X→A is a nontrivial FD in F and
➢ X contains an R key, or
➢ A is part of a key of R.

▪ Diagram

Example 3rd Form

▪ Example
– Order (orderid, customer, address, product)
– orderid is key
– customer → address

Not in 3rd form!

Decomposition: Order (orderid, customer, product)
and Customer (customer, address)

R K1 K2 X Y

Such a relationship can be divided into

R1 (K2 Y, X) and R2 (Y, K1)

Even fewer redundancies: BCNF
Definition

a relationship is in BCNF (Boyce-Codd Normal Form) iff all
nontrivial FD in F (X → A) X is a super key

Simpler than 3NF, a little stronger (BCNF implies 3NF)

1. Boyce-Codd Normal
Form

Back to Conceptual Design

Now that we know how to find FDs, it’s a straightforward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

• X → A is a “good FD” if X is a (super)key
• In other words, if X determines all attributes

• X → A is a “bad FD” otherwise

•We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

• Why does this definition of “good” and “bad” FDs make sense?

• If X is not a (super)key, it functionally determines some of the
attributes

• Recall: this means there is redundancy
• And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDsIn other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Example

What is the key?
{SSN, PhoneNumber}
What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

Joe 987-65-4321 908-555-1234 Westfield

{SSN} → {Name,City}{SSN} → {Name,City}

This FD is bad
because it is
not a superkey

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} → {Name,City}{SSN} → {Name,City}

Now in BCNF!Now in BCNF!

This FD is now
good because
it is the key

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

Find a set of
attributes X which
has non-trivial “bad”
FDs, i.e. is not a
superkey, using
closures

Find a set of
attributes X which
has non-trivial “bad”
FDs, i.e. is not a
superkey, using
closures

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

If no “bad” FDs
found, in BCNF!
If no “bad” FDs
found, in BCNF!

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

Let Y be the
attributes that X
functionally
determines (+ that
are not in X)

And let Z be the other
attributes that it
doesn’t

Let Y be the
attributes that X
functionally
determines (+ that
are not in X)

And let Z be the other
attributes that it
doesn’t

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation
(table) with X plus the
attributes that X
determines (Y)…

Split into one relation
(table) with X plus the
attributes that X
determines (Y)…

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X
plus the attributes it
does not determine (Z)

And one relation with X
plus the attributes it
does not determine (Z)

BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2) Proceed recursively

until no more “bad”
FDs!

Proceed recursively
until no more “bad”
FDs!

R(A,B,C,D,E)R(A,B,C,D,E)
BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

BCNFDecomp(R):
 Find a set of attributes X s.t.: X+ ≠ X and
X+ ≠ [all attributes]

 if (not found) then Return R

 let Y = X+ - X, Z = (X+)C
 decompose R into R1(X È Y) and R2(X È Z)

 Return BCNFDecomp(R1), BCNFDecomp(R2)

Example

{A} → {B,C}
{C} → {D}
{A} → {B,C}
{C} → {D}

Example

R(A,B,C,D,E)
 {A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)

 {C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)R(A,B,C,D,E)

{A} → {B,C}
{C} → {D}
{A} → {B,C}
{C} → {D}

2. Decompositions

Recap: Decompose to remove
redundancies
1. We saw that redundancies in the data (“bad FDs”) can lead to data

anomalies

2. We developed mechanisms to detect and remove redundancies by
decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle
unwanted effects…

When does this happen?When does this happen?

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp) R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm)R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp

Theory of Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

i.e. it is a
Lossless

decomposition

i.e. it is a
Lossless

decomposition

Sometimes a
decomposition
is “correct”

Sometimes a
decomposition
is “correct”

Lossy Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

What’s
wrong here?

What’s
wrong here?

However
sometimes it
isn’t

However
sometimes it
isn’t

Lossless Decompositions

What (set) relationship holds
between R1 Join R2 and R if
lossless?

Hint: Which tuples of R will be
present?

It’s
lossless if
we have
equality!

It’s
lossless if
we have
equality!

R(A1,...,An,B1,...,Bm,C1,...,Cp) R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm)R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)R2(A1,...,An,C1,...,Cp)

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R =
R1 Join R2
A decomposition R to (R1, R2) is lossless if R =
R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp) R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm)R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)R2(A1,...,An,C1,...,Cp)

Note: one direction always holds. Which one?

Lossless Decompositions

BCNF decomposition is always lossless. (Why?)BCNF decomposition is always lossless. (Why?)

Note: don’t need
{A1, ..., An} → {C1, ..., Cp}
Note: don’t need
{A1, ..., An} → {C1, ..., Cp}

If {A1, ..., An} → {B1, ..., Bm}

Then the decomposition is lossless
If {A1, ..., An} → {B1, ..., Bm}

Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp) R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm)R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)R2(A1,...,An,C1,...,Cp)

So BCNF = End of Story?

A Problem with BCNF
{Unit} → {Company}
{Company,Product} → {Unit}
{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF
decomposition on a “bad”
FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} → {Unit}!!We lose the FD {Company,Product} → {Unit}!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

{Unit} → {Company}{Unit} → {Company}

So Why is that a Problem?

No problem so
far. All local FD’s
are satisfied.

Unit Company

Galaga99 UW

Bingo UW

Unit Product

Galaga99 Databases

Bingo Databases

Unit Company Product

Galaga99 UW Databases

Bingo UW Databases

Let’s put all the
data back into
a single table
again:

{Unit} → {Company}{Unit} → {Company}

Violates the FD {Company,Product} → {Unit}!!Violates the FD {Company,Product} → {Unit}!!

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their
local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must
reconstruct R—on each insert!

Practical Problem: To enforce FD, must
reconstruct R—on each insert!

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no FDs
lost
• For example 3NF : stop short of full BCNF decompositions
• We can always decompose a relation into 3NF while being lossless and

preserving all FDs
• If there is only one key then 3NF and BCNF are the same
• Other solution: a weakening of BCNF called Elementary Key Normal Form

(EKNF), between 3NF and BCNF

	Functional Dependencies and Normalization
	Slide 2
	Functional Dependencies
	Functional Dependency
	A Picture Of FDs
	A Picture Of FDs
	A Picture Of FDs
	A Picture Of FDs
	FDs for Relational Schema Design
	Functional Dependencies as Constraints
	Functional Dependencies as Constraints
	More Examples
	More Examples
	More Examples
	ACTIVITY
	2. Finding functional dependencies
	“Good” vs. “Bad” FDs
	“Good” vs. “Bad” FDs
	“Good” vs. “Bad” FDs
	FDs for Relational Schema Design
	Finding Functional Dependencies
	Finding Functional Dependencies
	Finding Functional Dependencies
	Finding Functional Dependencies
	1. Split/Combine
	1. Split/Combine
	1. Split/Combine
	Reduction/Trivial
	3. Transitive Closure
	3. Transitive Closure
	Finding Functional Dependencies
	Finding Functional Dependencies
	Finding Functional Dependencies
	Closures
	Closure of a set of Attributes
	Closure Algorithm
	Closure Algorithm
	Closure Algorithm
	Closure Algorithm
	Closure Algorithm
	Example
	Example
	Example
	3. Closures, Superkeys & Keys
	Why Do We Need the Closure?
	Using Closure to Infer ALL FDs
	Using Closure to Infer ALL FDs
	Using Closure to Infer ALL FDs
	Using Closure to Infer ALL FDs
	Minimal Cover of a set F of FD
	Minimal Cover of a set F of FD
	Superkeys and Keys
	Keys and Superkeys
	Finding Keys and Superkeys
	Example of Finding Keys
	Example of Keys
	Normalization
	Normal Forms
	1st Normal Form (1NF)
	Constraints Prevent (some) Anomalies in the Data
	Constraints Prevent (some) Anomalies in the Data
	Constraints Prevent (some) Anomalies in the Data
	Constraints Prevent (some) Anomalies in the Data
	Constraints Prevent (some) Anomalies in the Data
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72
	1. Boyce-Codd Normal Form
	Back to Conceptual Design
	Boyce-Codd Normal Form (BCNF)
	Boyce-Codd Normal Form (BCNF)
	Boyce-Codd Normal Form
	Example
	Example
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	BCNF Decomposition Algorithm
	Slide 87
	Example
	2. Decompositions
	Recap: Decompose to remove redundancies
	Decompositions in General
	Theory of Decomposition
	Lossy Decomposition
	Lossless Decompositions
	Lossless Decompositions
	Lossless Decompositions
	A Problem with BCNF
	So Why is that a Problem?
	The Problem
	Possible Solutions

