Functional Dependencies and Normalization

DataBases

Slides from CS145 Stanford (2016), Christopher Ré

Functional Dependencies

Functional Dependency

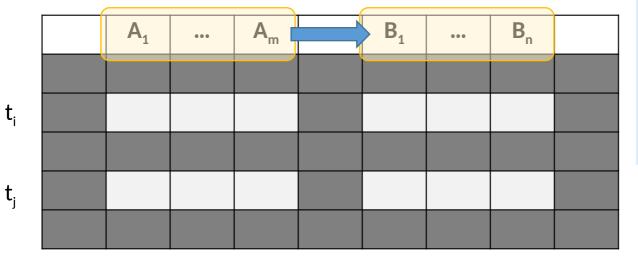
Def: Let A,B be sets of attributes We write A \rightarrow B or say A functionally determines B if, for any tuples t₁ and t₂:

 $t_1[A] = t_2[A]$ implies $t_1[B] = t_2[B]$ and we call $A \rightarrow B$ a <u>functional</u> <u>dependency</u>

A->B means that "whenever two tuples agree on A then they agree on B."

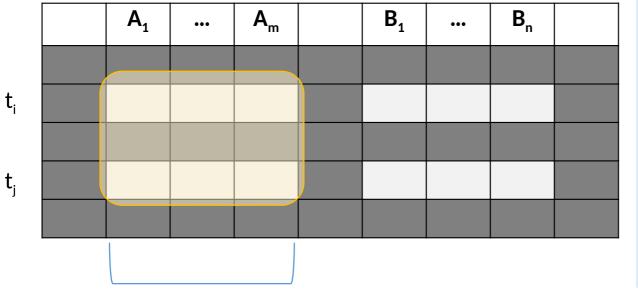
A ₁	 A _m		B ₁	 B _n	
		,			

<u>Defn (again):</u> Given attribute sets $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_n\}$ in R,



<u>Defn (again):</u> Given attribute sets $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_j in R:

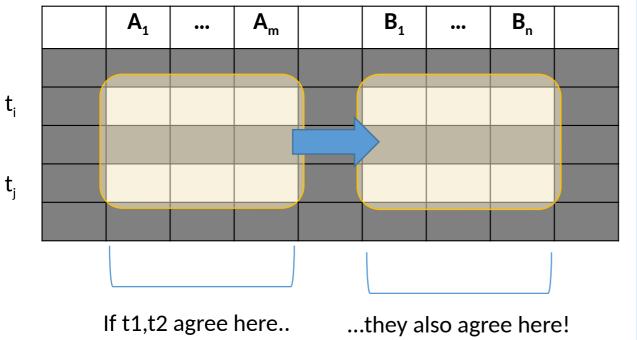


<u>Defn (again):</u> Given attribute sets $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2]$ $AND \dots AND t_i[A_m] = t_j[A_m]$

If t1,t2 agree here..



<u>Defn (again):</u> Given attribute sets $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2]$ AND ... AND $t_i[A_m] = t_j[A_m]$

 $\frac{\text{then}}{t_i[B_1]} = t_j[B_1] \text{ AND}$ $t_i[B_2] = t_j[B_2] \text{ AND} \dots \text{ AND} t_i[B_n] =$ $t_j[B_n]$

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Model its functional dependencies (FDs)
 - 3. Use these to design a better schema \rightarrow One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A **functional dependency** is a form of **constraint**

- Holds on some instances not others.
- Part of the schema, helps define a valid *instance*.

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table Note: The FD {Course} -> {Room} holds on this instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Functional Dependencies as Constraints

Note that:

- You can check if an FD is **violated** by examining a single instance;
- However, you **cannot prove** that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

However, cannot prove that the FD {Course} -> {Room} is part of the schema

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

{Position} \rightarrow {Phone}

More Examples

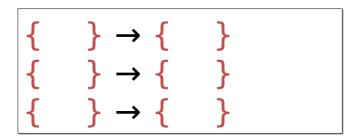
EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer
		•	

but *not* {Phone} \rightarrow {Position}

Exercise

А	В	С	D	E
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least three FDs which are violated on this instance:



"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID \rightarrow Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID \rightarrow Name, Phone, Position is "good FD"

But Position \rightarrow Phone is a "bad FD"

Redundancy!
 Possibility of data anomalies

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- •

Given a set of FDs (from user) our goal is to:1. Find all FDs, and2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its functional dependencies (FDs)
 - 3. Use these to design a better schema \rightarrow One which minimizes possibility of anomalies

This part can be tricky!

- There can be a very **large number** of FDs...
 - How to find them all efficiently?
- We can't necessarily show that any FD will hold **on all instances...**
 - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs must hold?

Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

2. {Category}
$$\rightarrow$$
 {Department}

3. {Color, Category}
$$\rightarrow$$
 {Price}

Given the provided FDs, we can see that {Name, Category} \rightarrow {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

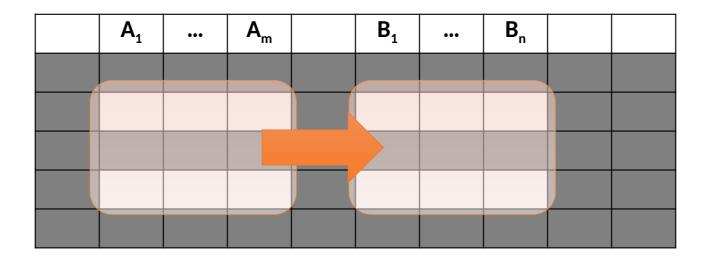
Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong's Rules.

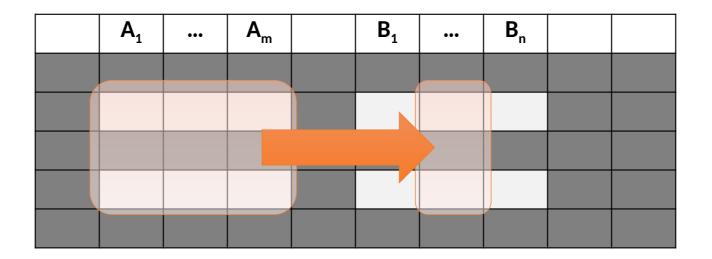
- 1. Reflexivity: *if* Y is included in X *then* $X \rightarrow Y$
- 2. Augmentation: *if* $X \rightarrow Y$ *then* $XZ \rightarrow YZ$
- 3. Transitivity: *if* $X \rightarrow Y$ *and* $Y \rightarrow Z$ *then* $X \rightarrow Z$

1. Split/Combine



$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

1. Split/Combine

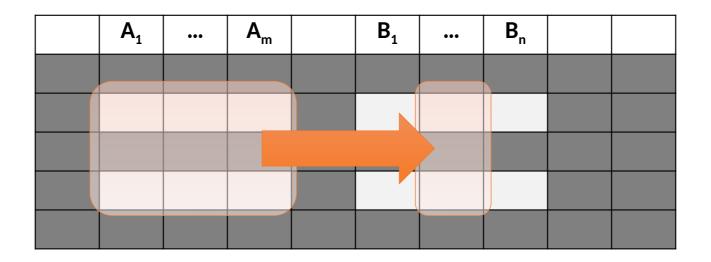


$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1, \dots, A_m \rightarrow B_i$$
 for i=1,...,n

1. Split/Combine

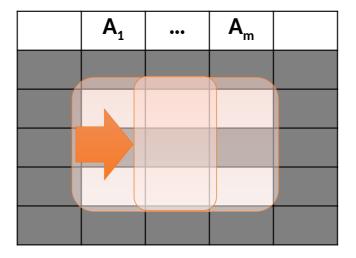


And vice-versa, $A_1, \dots, A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

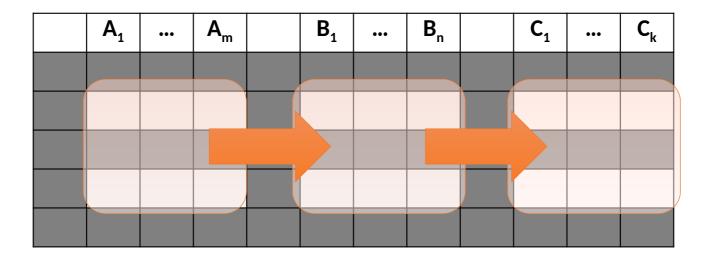
$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

Reduction/Trivial



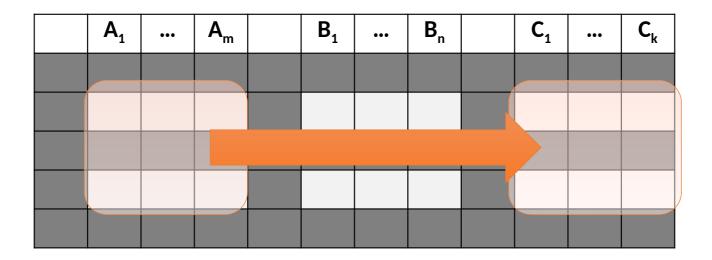
$$A_1, \dots, A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Closure



 $A_1, ..., A_m \rightarrow B_1, ..., B_n$ and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Closure



 $A_{1}, ..., A_{m} \rightarrow B_{1}, ..., B_{n} \text{ and}$ $B_{1}, ..., B_{n} \rightarrow C_{1}, ..., C_{k}$ implies $A_{1}, ..., A_{m} \rightarrow C_{1}, ..., C_{k}$

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} \rightarrow {Color}
- 2. {Category} \rightarrow {Department}
- 3. {Color, Category} \rightarrow {Price}

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} \rightarrow {Name}	?
5. {Name, Category} \rightarrow {Color}	?
6. {Name, Category} \rightarrow {Category}	?
7. {Name, Category} \rightarrow {Color, Category}	?
8. {Name, Category} \rightarrow {Price}	?

Provided FDs:

{Name} → {Color}
 {Category} → {Dept.}
 {Color, Category} →
 {Price}

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} \rightarrow {Name}	Trivial
5. {Name, Category} \rightarrow {Color}	Transitive (4 -> 1)
6. {Name, Category} \rightarrow {Category}	Trivial
7. {Name, Category} \rightarrow {Color, Category}	Split/combine (5 + 6)
8. {Name, Category} \rightarrow {Price}	Transitive (7 -> 3)

Provided FDs:

{Name} → {Color}
 {Category} → {Dept.}
 {Color, Category} →
 {Price}

Can we find an algorithmic way to do this?

Closures

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F: Then the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\} \rightarrow B$ <u>Example:</u> $F = \{name\} \rightarrow \{color\} \}$ $\{category\} \rightarrow \{department\}$

{color, category} \rightarrow {price}

Example Closures: {name} + = {name, color} {name, category} + = {name, category, color, dept, price} {color} + = {color}

Closure Algorithm

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F

While X does not change :

If $\{B_1, ..., B_n\} \rightarrow C$ is in F and B_i is in X for each i

Then add all elements of C to X

Return X as X⁺

Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X. **Return** X as X⁺

 $= \{name\} \rightarrow \{color\}$

```
\{category\} \rightarrow \{dept\}
```

 $\{color, category\} \rightarrow \{price\}$

{name, category}+ =
{name, category}

Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X. **Return** X as X⁺ {name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

 $\{name\} \rightarrow \{color\}$

```
\{category\} \rightarrow \{dept\}
```

 $\{color, category\} \rightarrow \{price\}$

Start with X = {A₁, ..., A_n}, FDs F. Repeat until X doesn't change; do: if {B₁, ..., B_n} \rightarrow C is in F and {B₁, ..., B_n} \subseteq X: then add C to X. Return X as X⁺ {name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

 $\{name\} \rightarrow \{color\}$

 $\{category\} \rightarrow \{dept\}$

 $\{color, category\} \rightarrow \{price\}$

{name, category}+ =
{name, category, color, dept}

Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X. **Return** X as X⁺ {name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

 $\{name\} \rightarrow \{color\}$

```
\{category\} \rightarrow \{dept\}
```

 $\{color, category\} \rightarrow \{price\}$

{name, category}+ =
{name, category, color, dept}

{name, category}+ =
{name, category, color, dept, price}

Example

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\}$$
$$\{A,D\} \rightarrow \{E\}$$
$$\{B\} \rightarrow \{D\}$$
$$\{A,F\} \rightarrow \{B\}$$

}

}

Compute $\{A, F\}^+ = \{A, F, F\}^+$

Example

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\}$$
$$\{A,D\} \rightarrow \{E\}$$
$$\{B\} \rightarrow \{D\}$$
$$\{A,F\} \rightarrow \{B\}$$

}

}

Compute $\{A,B\}^+ = \{A, B, C, D\}^+$

Compute $\{A, F\}^+ = \{A, F, B\}^+$

Example

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\}$$
$$\{A,D\} \rightarrow \{E\}$$
$$\{B\} \rightarrow \{D\}$$
$$\{A,F\} \rightarrow \{B\}$$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

3. Closures, Superkeys & Keys

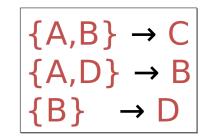
Why Do We Need the Closure?

- With closure we can find all FDs easily
- To check if $X \to A$
 - 1. Compute X⁺
 - 2. Check if $A \in X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^{+} = {A}$ $\{B\}^+ = \{B,D\}$ $\{C\}^+ = \{C\}$ $\{D\}^+ = \{D\}$ ${A,B}^+ = {A,B,C,D}$ ${A,C}^+ = {A,C}$ ${A,D}^+ = {A,B,C,D}$ ${A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D}$ $\{B,C,D\}^+ = \{B,C,D\}$ ${A,B,C,D}^+ = {A,B,C,D}$



Given F =

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \oslash :

 ${A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}$

 $\begin{array}{l} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array}$

Given F =

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \oslash : '

 ${A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}$

 $\begin{array}{l} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array}$

Given F =

"Y is in the closure of X"

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \Diamond :

 ${A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}$

 $\{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D$

Given F =

The FD X → Y is nontrivial

Minimal Cover of a set F of FDs

• Minimal subset of elementary FDs allowing to generate all the others.

- Theorem:
 - Any set of FDs has a minimal cover, that in general is not unique
 - We can construct such a minimal cover in polynomial time
- Formally, F is a Minimal Cover iff:
 - All f in F is **elementary**.
 - There is no f in F such that F {f} is **equivalent** to F.

Minimal Cover of a set F of FD

- $X \rightarrow A$ is an **elementary** FD if:
 - A is an attribute, X is a set of attributes, A is not included in X
 - there is no subset X ' of X such that X ' \rightarrow A in F⁺
- Equivalence
 - Two sets of FDs are equivalent if they have the same transitive closure.

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes A_1 , ..., A_n s.t. for any other attribute B in R, we have $\{A_1, ..., A_n\} \rightarrow B$

i.e. all attributes are functionally determined by a superkey

A <u>key</u> is a minimal superkey

Meaning that no subset of a key is also a superkey

Finding Keys and Superkeys

- For each set of attributes X
 - 1. Compute X⁺

- 2. If X⁺ = set of all attributes then X is a **superkey**
- 3. If X is minimal, then it is a **key**

Do we need to check all sets of attributes? Which sets?

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

What is a key?

Example of Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

{name, category}* = {name, price, category, color}

- = the set of all attributes
- \Rightarrow this is a **superkey**
- \Rightarrow this is a **key**, since neither **name** nor **category** alone is a superkey

Normalization

Normal Forms

- <u>1st Normal Form (1NF)</u> = All tables are flat
- <u>2nd Normal Form</u>
- Boyce-Codd Normal Form (BCNF)
- <u>3rd Normal Form (3NF)</u>

DB designs based on functional dependencies, intended to prevent data **anomalies**

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
•••	•••

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF. In 1st NF

1NF Constraint: Types must be atomic!

A poorly designed database causes anomalies:

anomanes		
Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	• •

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	C12
Sam	CS145	B01
••	••	••

If we update the room number for one tuple, we get inconsistent data = an <u>update</u> anomaly

A poorly designed database causes anomalies:

Student	Course		Room
••	••	•	•
	•		

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

CS229 C12

Similarly, we can't reserve a room without students = an <u>insert</u> <u>anomaly</u>

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145
••	••

Course	Room
CS145	B01
CS229	C12

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

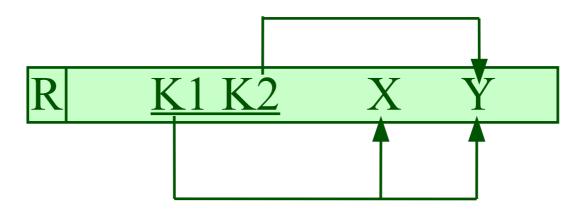
Today: develop theory to understand why this design may be better and how to find this decomposition...

2nd Normal Form (2NF)

Definition

- a relationship is in second normal form iff:
 - it is in the first normal form
 - > any non-key attribute is not dependent on a key part

Schema



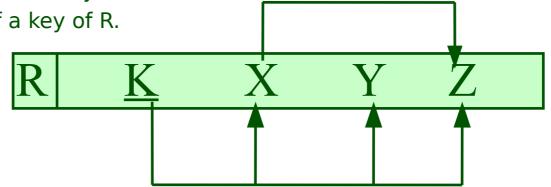
Such a relationship should be broken into R1 (<u>K1, K2</u>, X) and R2 (<u>K2</u>, Y)

Example 2NF

- Example 1:
 - Supplier (name, address, product, price)
 - The key is (name, product)
 - But name \rightarrow address : not second form
- Example 2:
 - R (wine, type, customer, discount)
 - The key is (wine, customer)
 - But wine \rightarrow type: not second form

3rd Normal Form (3NF)

- Definition
 - a relation is in third normal form iff for all nontrivial FD in F (X \rightarrow A) then X is a super key or A is a prime attribute (is part of a key).
 - > 3NF implies 2NF
 - Prohibits FD between non-key attributes (not part of a key)
 - > formally:
 - \succ X \rightarrow A is a nontrivial FD in F and
 - ➢ X contains an R key, or
 - \succ A is part of a key of R.
- Diagram



Such a relationship should be broken into

R1 (\underline{K} X, Y) and R 2 (X, Z)

Example 3rd Form

Example

- Order (orderid, customer, address, product)
- orderid is key
- customer \rightarrow address

Not in 3rd form!

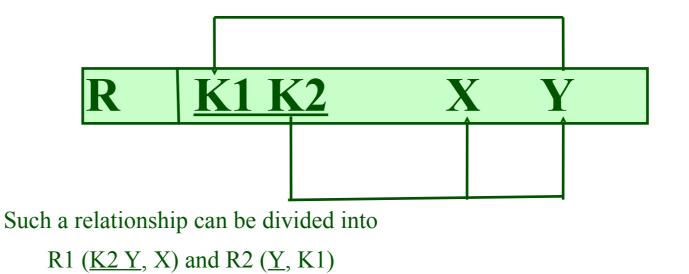
Decomposition: Order (orderid, customer, product) and Customer (customer, address)

Even fewer redundancies: BCNF

Definition

a relationship is in BCNF (Boyce-Codd Normal Form) iff all nontrivial FD in F (X \rightarrow A) X is a super key

Simpler than 3NF, a little stronger (BCNF implies 3NF)



1. Boyce-Codd Normal Form

Back to Conceptual Design

Now that we know how to find FDs, it's a straightforward process:

- 1. Search for "bad" FDs
- 2. If there are any, then *keep decomposing the table into sub-tables* until no more bad FDs
- 3. When done, the database schema is *normalized*

Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
 - $X \rightarrow A$ is a "good FD" if X is a (super)key
 - In other words, if X determines all attributes
 - $X \rightarrow A$ is a "bad FD" otherwise
- We will try to eliminate the "bad" FDs!

Boyce-Codd Normal Form (BCNF)

- Why does this definition of "good" and "bad" FDs make sense?
- If X is *not* a (super)key, it functionally determines *some* of the attributes
 - Recall: this means there is <u>redundancy</u>
 - And redundancy like this can lead to data anomalies!

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if: if $\{A_1, ..., A_n\} \rightarrow B$ is a non-trivial FD in R then $\{A_1, ..., A_n\}$ is a superkey for R

Equivalently: \forall sets of attributes X, either (X⁺ = X) or (X⁺ = all attributes)

In other words: there are no "bad" FDs

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

 $\{SSN\} \rightarrow \{Name, City\}$

This FD is bad because it is <u>not</u> a superkey

 \Rightarrow <u>Not</u> in BCNF

What is the key? {SSN, PhoneNumber}

Example

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Madison

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

 $\{SSN\} \rightarrow \{Name, City\}$

This FD is now good because it is the key

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Now in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^c$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and
X<sup>+</sup> ≠ [all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^c$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

```
if (not found) then Return R
```

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^c$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

If no "bad" FDs found, in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^c$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Let Y be the attributes that X functionally determines (+ that are not in X)

And let Z be the other attributes that it doesn't

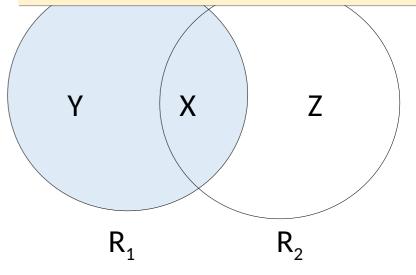
```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^{C}$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Split into one relation (table) with X plus the attributes that X determines (Y)...



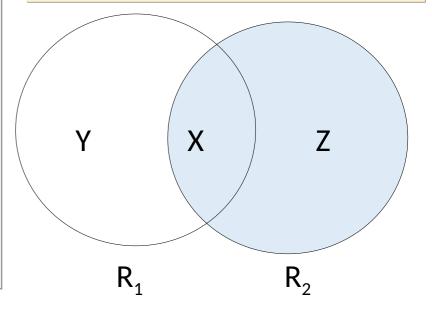
```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^{C}$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

And one relation with X plus the attributes it does not determine (Z)



```
BCNFDecomp(R):

Find a set of attributes X s.t.: X<sup>+</sup> \neq X and

X<sup>+</sup> \neq [all attributes]

<u>if</u> (not found) <u>then</u> Return R

<u>let</u> Y = X<sup>+</sup> - X, Z = (X<sup>+</sup>)<sup>c</sup>

decompose R into R<sub>1</sub>(X \cup Y) and R<sub>2</sub>(X \cup Z)
```

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Proceed recursively until no more "bad" FDs!

Example

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X^+ \neq X and X^+ \neq [all attributes]
```

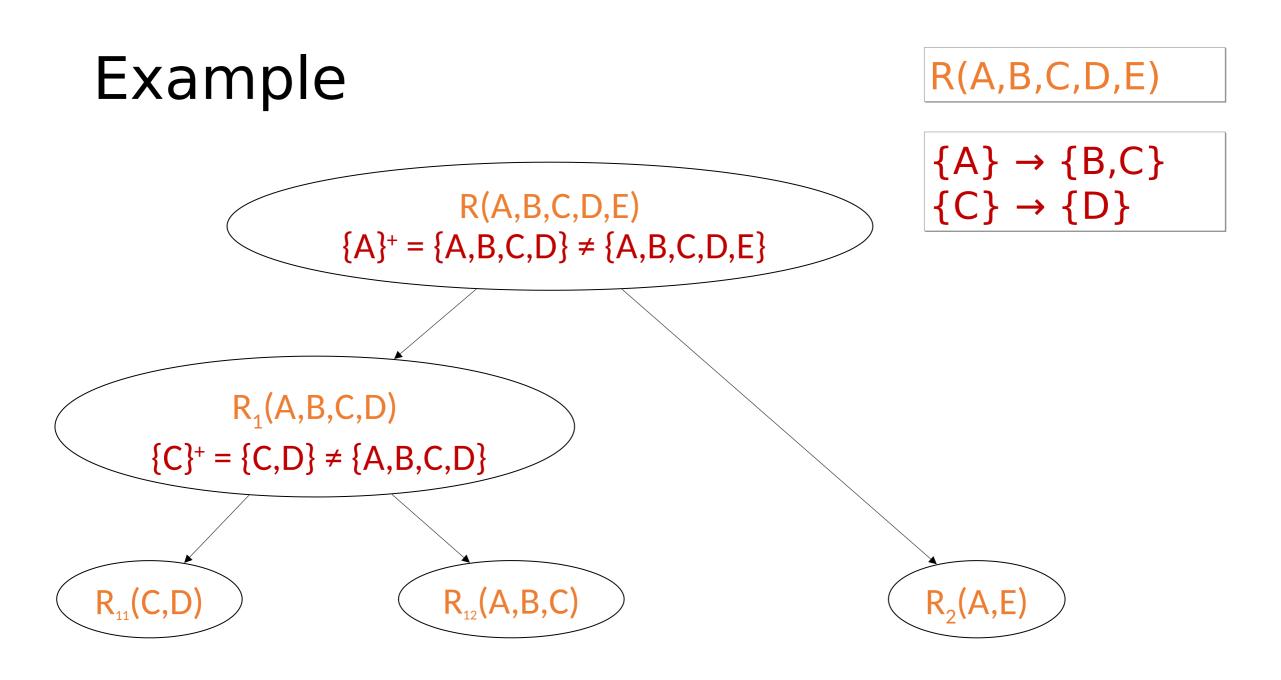
if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^c$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

```
R(A,B,C,D,E)
```

```
\begin{array}{l} \{\mathsf{A}\} \rightarrow \{\mathsf{B},\mathsf{C}\} \\ \{\mathsf{C}\} \rightarrow \{\mathsf{D}\} \end{array}
```



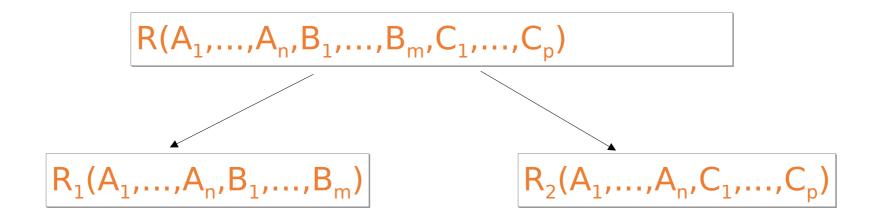
2. Decompositions

Recap: Decompose to remove redundancies

- 1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies
- 2. We developed mechanisms to **detect and remove redundancies by decomposing tables into BCNF**
 - 1. BCNF decomposition is *standard practice* very powerful & widely used!
- 3. However, sometimes decompositions can lead to **more subtle unwanted effects...**

When does this happen?

Decompositions in General

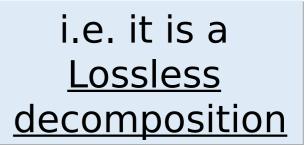


 R_1 = the projection of R on A_1 , ..., A_n , B_1 , ..., B_m R_2 = the projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Theory of Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Sometimes a decomposition is "correct"



Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

	X
Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Lossy Decomposition

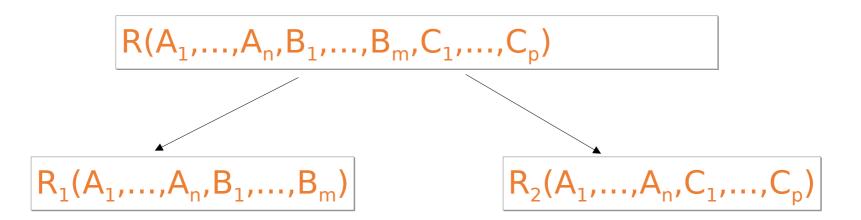
Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

However sometimes it isn't What's wrong here?

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

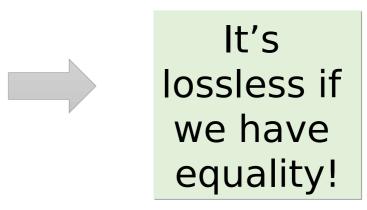
Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossless Decompositions

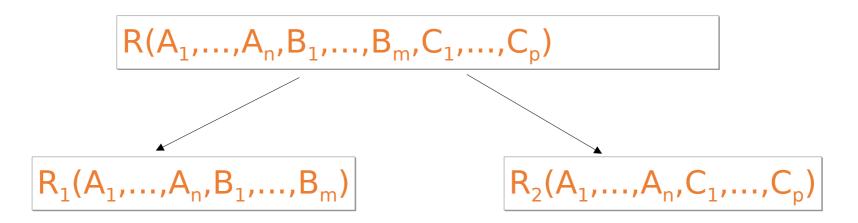


What (set) relationship holds between R1 Join R2 and R if lossless?

Hint: Which tuples of R will be present?



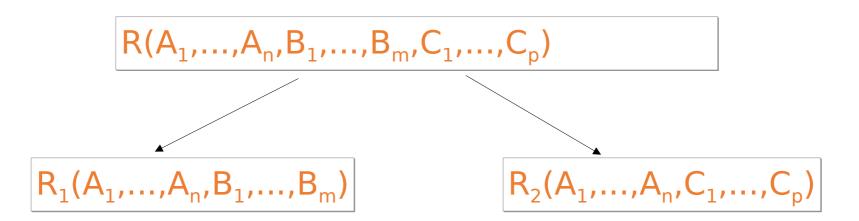
Lossless Decompositions



A decomposition R to (R1, R2) is <u>lossless</u> if R = R1 Join R2

Note: one direction always holds. Which one?

Lossless Decompositions

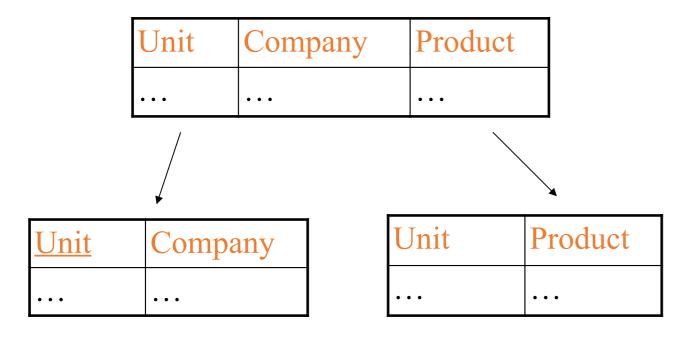


If $\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$ Then the decomposition is lossless $\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$

BCNF decomposition is always lossless. (Why?)

So BCNF = End of Story?

A Problem with BCNF



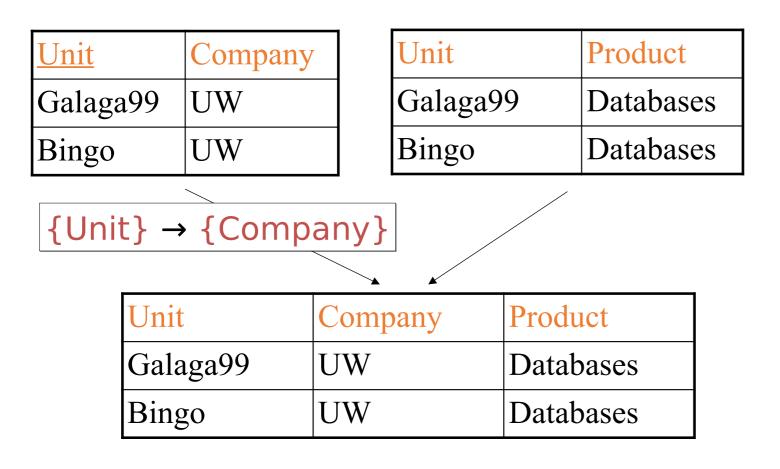
 ${Unit} \rightarrow {Company}$

 ${Unit} \rightarrow {Company} {Company, Product} \rightarrow {Unit}$

We do a BCNF decomposition on a "bad" FD: {Unit}+ = {Unit, Company}

We lose the FD {Company,Product} → {Unit}!!

So Why is that a Problem?



No problem so far. All local FD's are satisfied.

Let's put all the data back into a single table again:

Violates the FD {Company,Product} → {Unit}!!

The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables R₁, R₂, ... with their own FDs F₁, F₂, ...
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD **across** tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—on each insert!

Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
 - For example 3NF : stop short of full BCNF decompositions
 - We can always decompose a relation into 3NF while being lossless and preserving all FDs
 - If there is only one key then 3NF and BCNF are the same
 - Other solution: a weakening of BCNF called Elementary Key Normal Form (EKNF), between 3NF and BCNF