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Uncertainty in the Real World



Uncertain data

Numerous sources of uncertain data:

• Measurement errors
• Data integration from contradicting sources
• Imprecise mappings between heterogeneous schemata
• Imprecise automatic process (information extraction, natural
language processing, etc.)

• Imperfect human judgment
• Lies, opinions, rumors
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Use case: Web information extraction

Never-ending Language Learning (NELL, CMU),
http://rtw.ml.cmu.edu/rtw/kbbrowser/

2/49

http://rtw.ml.cmu.edu/rtw/kbbrowser/


Use case: Web information extraction

Google Squared (terminated), screenshot from [Fink et al., 2011] 2/49



Use case: Web information extraction

Subject Predicate Object Confidence

Elvis Presley diedOnDate 1977-08-16 97.91%
Elvis Presley isMarriedTo Priscilla Presley 97.29%
Elvis Presley influences Carlo Wolff 96.25%

YAGO, https://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/yago/
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Other use case: Information extraction from scientific articles
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Other use case: Crowdsourcing
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Other use case: Speech recognition and OCR
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Uncertainty in Web information extraction

• The information extraction system is imprecise
• The system has some confidence in the information extracted,
which can be:

• a probability of the information being true (e.g., from a statistical
or machine learning model)

• an ad-hoc numeric confidence score
• a discrete level of confidence (low, medium, high)

• What if this uncertain information is not seen as something final,
but is used as a source of, e.g., a query answering system?
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Different types of uncertainty

Two dimensions:

• Can be qualitative (NULL) or quantitative (95%, low-confidence,
etc.) uncertainty

• Different types of uncertainty:
• Unknown value: NULL in an RDBMS
• Alternative between several possibilities: either A or B or C
• Imprecision on a numeric value: a sensor gives a value that is an
approximation of the actual value

• Confidence in a fact as a whole: cf. information extraction
• Structural uncertainty: the schema of the data itself is uncertain
• Missing data: we know that some data is missing (open-world
semantics)
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What happens to this uncertainty?

Currently
Forget about uncertainty, or apply a threshold after each computation
step

Objective
Instead of neglecting uncertainty, let’s manage it rigorously throughout
the whole process of answering a query
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How to manage uncertainty

• Represent all different forms of uncertainty
• Use probabilities to represent quantitative information on the
confidence in the data

• Query data and retrieve uncertain results
• Allow adding, deleting, modifying data in an uncertain way
• Ideally: Also keep lineage/provenance information, so as to
ensure traceability
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Why probabilities?

• Not the only option: fuzzy set theory [Galindo et al., 2005],
Dempster-Shafer theory [Zadeh, 1986]

• Mathematically rich theory, nice semantics with respect to traditional
database operations (e.g., joins)

• Some applications already generate probabilities (e.g., statistical
information extraction or natural language probabilities)

• In other cases, we “cheat” and pretend that (normalized) confidence
scores are probabilities: see this as a first-order approximation
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Objective of this course

• Present data models for uncertain data management in general,
and probabilistic data management in particular:

• relational databases (SQL queries)
• XML data

• Present provenance management techniques (next set of slides)
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Probabilistic Models of Uncertainty



Part II: Probabilistic Models of Uncertainty

• Probabilistic Relational Models
• Probabilistic XML
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Possible worlds semantics

Possible world: A regular (deterministic) relational database or XML
tree

Uncertain database: (Compact) representation of a set of possible
worlds

Probabilistic database: (Compact) representation of a probability
distribution over possible worlds, either:

finite: a set of possible worlds, each with their
probability

continuous: more complicated
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Part II: Probabilistic Models of Uncertainty

• Probabilistic Relational Models
• Probabilistic XML
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The relational model

• Data stored into tables
• Every table has a precise schema (type of columns)
• Adapted when the information is very structured

Patient Examin. 1 Examin. 2 Diagnosis

A 23 12 α

B 10 23 β

C 2 4 γ

D 15 15 α

E 15 17 β

15/49



Codd tables, a.k.a. SQL NULLs

Patient Examin. 1 Examin. 2 Diagnosis

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D 15 15 ⊥2

E ⊥3 17 β

• Most simple form of incomplete database
• Widely used in practice, in DBMS since the mid-1970s!
• All NULLs (⊥) are considered distinct
• Possible world semantics: all possible completions of the table
(infinitely many)

• In SQL, three-valued logic, weird semantics:
SELECT * FROM Tel WHERE tel_nr = ’333’ OR tel_nr <> ’333’
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Problem: Codd tables and query evaluation

Appointment

Doctor Patient

D1 A
D2 A

Illness

Patient Diagnosis

A ⊥

Let’s join the two tables...

Appointment ▷◁ Illness

Doctor Patient Diagnosis

D1 A ⊥1

D2 A ⊥2

• We know that ⊥1 = ⊥2, but we cannot represent it
• Simple solution: named nulls aka v-tables
• More expressive solution: c-tables
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C-tables [Imielinski and Lipski, 1984]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D ⊥2 15 ⊥1

E ⊥3 17 β 18 < ⊥3 < ⊥2

• NULLs are labeled, and can be reused inside and across tuples
• Arbitrary correlations across tuples
• Closed under the relational algebra
• Every set of possible worlds can be represented as a database
with c-tables
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Tuple-independent databases (TIDs)
[Lakshmanan et al., 1997, Dalvi and Suciu, 2007]

Patient Examin. 1 Examin. 2 Diagnosis Probability

A 23 12 α 0.9
B 10 23 β 0.8
C 2 4 γ 0.2
C 2 14 γ 0.4
D 15 15 α 0.6
D 15 15 β 0.4
E 15 17 β 0.7
E 15 17 α 0.3

• Allow representation of the confidence in each row of the table
• Impossible to express dependencies across rows
• Very simple model, well understood 19/49



Block-independent databases (BIDs)
[Barbará et al., 1992, Ré and Suciu, 2007]

Patient Examin. 1 Examin. 2 Diagnosis Probability

A 23 12 α 0.9
B 10 23 β 0.8
C 2 4 γ 0.2

}
⊕

C 2 14 γ 0.4
D 15 15 β 0.6

}
⊕

D 15 15 α 0.4
E 15 17 β 0.7

}
⊕

E 15 17 α 0.3

• The table has a primary key: tuples sharing a primary key are
mutually exclusive (probabilities must sum up to ≤ 1)

• Simple dependencies (exclusion) can be expressed, but no more20/49



Probabilistic c-tables [Green and Tannen, 2006]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α w1

B 10 23 β w2

C 2 4 γ w3

C 2 14 γ ¬w3 ∧ w4

D 15 15 β w5

D 15 15 α ¬w5 ∧ w6

E 15 17 β w7

E 15 17 α ¬w7

• The wi’s are independent Boolean random variables
• Each wi has a probability of being true (e.g., Pr(w1) = 0.9)
• Any finite probability distribution of tables can be represented
using probabilistic c-tables
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Part II: Probabilistic Models of Uncertainty

• Probabilistic Relational Models
• Probabilistic XML
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Reminder: The semistructured model and XML

A

B C

D

<a>
<b>...</b>
<c>

<d>...</d>
</c>

</a>

• Tree-like structuring of data
• No (or less) schema constraints
• Allow mixing tags (structured data) and text (unstructured
content)

• Particularly adapted to tagged or heterogeneous content
23/49



Why Probabilistic XML?

• Extensive literature about probabilistic relational
databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]

• Different typical querying languages: conjunctive queries vs XPath and
tree-pattern queries (possibly with joins)

• Cases where a tree-like model might be appropriate:
• No schema or few constraints on the schema
• Documents with uncertain annotations
• Inherently tree-like data (e.g., mailing lists, parse trees) with
naturally occurring queries involving the descendant axis

Remark
Some results can be transferred between probabilistic relational
databases and probabilistic XML [Amarilli and Senellart, 2013]
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Uncertain version control
[Ba et al., 2013]

Use trees with probabilistic annotations to represent the uncertainty
in the correctness of a document under open version control (e.g.,
Wikipedia articles)
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Probabilistic summaries of XML corpora
[Abiteboul et al., 2012a,b]

qq2qq0 qq1

publish
ppublish

next
1-ppublish

present
ppresent

$
1-ppresent

• Transform an XML schema
(deterministic top-down tree
automaton) into a probabilistic
generator (probabilistic tree
automaton) of XML documents

• Probability distribution optimal with
respect to a given corpus

• Application: Optimal
auto-completions in an XML editor
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Simple probabilistic annotations

A

B C

D

0.24

0.70

• Probabilities associated to tree nodes
• Express parent/child dependencies
• Impossible to express more complex
dependencies

• ⇒ some sets of possible worlds are not
expressible this way!
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Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8

w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilstic c-tables
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A general probabilistic XML model
[Abiteboul et al., 2009]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N(70, 4)

sensor

id

i35

mes
e

t

1

vl

mux

17
.6

23
.1

20
.3

• e: event “it did not
rain” at time 1

• mux: mutually
exclusive options

• N(70, 4): normal
distribution

• Compact representation of a set of possible worlds
• Two kinds of dependencies: global (e) and local (mux)
• Generalizes all previously proposed models of the literature
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Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

• •
• • •

D: directory

P

1
0.8

1

0.2

• • • • • •
•

P: person

N T1 1 0.5

1

0.5

• Probabilistic model that extends PXML with local dependencies
• Generate documents of unbounded width or depth
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Incomplete formalisms and
Open-World Query Answering



Incomplete databases

• Another kind of uncertainty is incomplete data, i.e., missing
information
→ For instance, the open-world assumption

• We know some constraints that the true data must satisfy
→ “Every person has a father...” (implies the existence of some

elements)
→ “... and only one father” (... and their uniqueness)

• The possible worlds of the data are all possible completions
satisfying the constraints

• Focus on relational data, but there are also models for
XML [Barceló et al., 2009].
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Open-world query answering (OWQA)

• We have the data, the constraints (in logic), and a query
• Usual evaluation: find all results of the query on the data
• OWQA: find all results of the query that are true on all
completions satisfying the constraints!

Person

Name

Luke
Kylo

Filiation

Son Father

Kylo Han

• “Every person has a father” and “Every father is a person”
• ∀x Person(x) → ∃y Filiation(x, y)
• ∀xy Filiation(x, y) → Person(y)

• Query: “find everyone who has a father” Q(x) : ∃y Filiation(x, y)
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Complexity of OWQA

• OWQA is related to satisfiability in logics:
• Can we satisfy the data, the constaints, and the negation of the
query?

• In OWQA, we want to be tractable in the data
• In general OWQA is undecidable if we allow arbitrary first-order
constraints

• If we restrict the constraint language it can become decidable or
even tractable (↔ description logics)

• Another challenge: handling partial completeness, i.e., where we
know that something is complete, see [Razniewski et al., 2015]
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The chase

• The chase: complete the data by creating all missing values
• Only defined for dependencies, i.e., constraints of the form
“some pattern→ some other pattern”

• In this case the chase is universal: creates a (possibly infinite)
database that only satisfies the certain queries

34/49



Chase example

• ∀x Person(x) → ∃y Filiation(x, y)
• ∀xy Filiation(x, y) → Person(y)

Person

Name

Luke
Kylo

Han
x1
...

Filiation

Son Father

Kylo Han

Luke x1
Han x2
x1 x3
...

...
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Using the chase

• If the chase is finite we can build it
→ Can happen when the constaints are acyclic, e.g.,

∀x Person(x) → ∃y Filiation(x, y)

• If the chase is infinite but has bounded treewidth, we can reason
on it using tree automata methods
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Extensions for OWQA

• If possible, rewrite the query using the constraints to work on the
initial data
→ Q(x) : ∃y Filiation(x, y) rewrites to

Q(x) : Person(x) ∨ ∃y Filiation(x, y) ∨ ∃y Filiation(y, x)
• Advantage: ensures good complexity in the data

• Application: Ontology-Mediated Query Answering (OMQA)
• Another challenge: handle finiteness of the data, i.e., what if we
want to work on all finite completions?
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To go further



Querying and Updating

• Numerous works on the complexity of querying probabilistic
databases, see [Suciu et al., 2011] (relational case) and [Kimelfeld
et al., 2009] (XML case) for surveys

• Hard problem in general (FP#P), some (very few!) tractable cases
• Approximation algorithms [Olteanu et al., 2010, Souihli and Senellart,
2013]: practical solution

• Also important to consider updates [Abiteboul et al., 2009, Kharlamov
et al., 2010]
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Repairs

• Another kind of uncertainty: we know that the database must
satisfy some constraints (e.g., functionality)

• The data that we have does not satisfy it
• Reason about the ways to repair the data, e.g., removing a
minimal subset of tuples

• Can we evaluate queries on this representation? E.g., is a query
true on every maximal repair? See, e.g., [Koutris and Wijsen, 2015].
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Systems

Trio http://infolab.stanford.edu/trio/, useful to
see lineage computation

MayBMS http://maybms.sourceforge.net/, full-fledged
probabilistic relational DBMS, on top of PostgreSQL,
usable for actual applications.

ProApproX http://www.infres.enst.fr/~souihli/
Publications.html to play with various
approximation and exact query evaluation methods for
probabilistic XML.

ProvSQL https://github.com/PierreSenellart/provsql
maintains provenance information while evaluating
queries (see later), and can use this to perform
probabilistic reasoning
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Reading material

• An influential paper on incomplete databases [Imielinski and
Lipski, 1984]

• A book on probabilistic relational databases, focused around TIDs/BIDs
and MayBMS [Suciu et al., 2011]

• An in-depth presentation of MayBMS [Koch, 2009]
• A gentle presentation of relational and XML probabilistic models
[Kharlamov and Senellart, 2011]

• A survey of probabilistic XML [Kimelfeld and Senellart, 2013]
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Research directions

• Demonstrating the usefulness of probabilistic databases over
ad-hoc approach on concrete applications: Web information
extraction, data warehousing, scientific data management, etc.

• Understanding which restrictions on the data (e.g.,
(hyper)tree-width) make query answering tractable.

• Finding more expressive logical formalisms for which open-world
query answering is decidable (in particular on finite completions)

• Connecting probabilistic databases with probabilistic models in
general, e.g., as used in machine learning: Bayesian networks,
Makov logic networks, factor graphs, etc.

• Other operations on probabilistic data: mining, deduplication,
learning, matching, etc.; reasoning with probabilistic constraints
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