Probabilistic Models for Uncertain Data

MPRI 2.26.2: Web Data Management

Antoine Amarilli, Pierre Senellart Friday, January 18th

Uncertainty in the Real World

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment
- Lies, opinions, rumors

Recently-Learned Facts witter

Refresh

instance	iteration	date learned	confidence
oliguric_phase is a non-disease physiological condition	1111	06-jul-2018	97.5 🏠 ኛ
alaska_airlines is an organization	1114	25-aug-2018	100.0 🏖 ኛ
heating_insurance_policies is a physical action	1111	06-jul-2018	90.4 🏠 🖏
n98_12 is a term used by physicists	1111	06-jul-2018	94.2 🖓 🖏
dragonball_zsuper_butoden_2 is software	1111	06-jul-2018	100.0 🏖 🖑
general_motors_corp_ is a company headquartered in the city detroit	1116	12-sep-2018	100.0 🍰 ኛ
the companies herald and la compete with eachother	1111	06-jul-2018	99.6 🗳 ኛ
stanford hired montgomery	1111	06-jul-2018	98.4 💪 ኛ
<u>kimn</u> is a radio station <u>in the city denver</u>	1116	12-sep-2018	100.0 🗇 ኛ
radisson_sas_portman_hotel is a park in the city central_london	1116	12-sep-2018	100.0 🍃 🖑

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/

Use case: Web information extraction

G	008	e squared	comedy movies	3	Square it Adv
com	edy movi	ies			
	Item Nar	ne 💌	Language	VX	Director Release Date
×	The Mas	k	English		Chuck Russell 29 July 1994
×	Scary M	English Ianguage for th www.infibeam.c	e mask om - all 9 sourc	es »	Chuck Russell directed by for The Mask www.infibeam.com - all 9 sources »
		Other possible values		-	Other possible values
×	Superba	English Langu language for Ma www.freebase.com	lage Low confider ask :om	nce	John R. Dilworth Low confidence director for The Mask www.freebase.com
×	Music	english, frencl languages for t www.dvdreview	h Low confidence he mask .com		Fiorella Infascelli Low confidence directed by for The Mask www.freebase.com - all 2 sources »
X	Knocked	Italian Langua language for Th www.freebase.co	ge Low confidenc ne Mask com	e	Charles Russell Low confidence directed by for The Mask www.freebase.com - all 2 sources »
		Search for more va	ues »		Search for more values »

Google Squared (terminated), screenshot from [Fink et al., 2011]

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, https://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/yago/

Other use case: Crowdsourcing

All HITs

1-10 of 2751	Results			
Sort by: HITs /	Available (r	most first) 🔹 🥺	Show all details Hide all details	1 <u>2 3 4 5 > Next</u> >> <u>Last</u>
Transcribe data	1			View a HIT in this group
Requester:	p9r	HIT Expiration Date:	Nov 18, 2015 (23 hours 59 minutes) Reward: \$0.03
		Time Allotted:	45 minutes	
Description:	Please tra	anscribe the data from th	e following images	
Keywords:	transcribe	e, <u>handwriting</u> , <u>data en</u> l	try	
Qualification	s Require	ed:		
HIT approval	rate (%) is	greater than 90		
Classify Receip	ţ			View a HIT in this group
Classify Receip	t Jon Brelig	HIT Expiration Da	te: Nov 24, 2015 (6 days 23 hours	View a HIT in this group ;) Reward: \$0.02
Classify Receip Requester:	<u>t</u> Jon Brelig	HIT Expiration Da	te: Nov 24, 2015 (6 days 23 hours 20 minutes	View a HIT in this group
<u>Classify Receip</u> Requester: Description:	t Jon Brelig Looking a	HIT Expiration Da Time Allotted: at a receipt image, identif	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt	View a HIT in this group
Classify Receip Requester: Description: Keywords:	Jon Brelig Looking a <u>image</u> , <u>r</u> gualificati	HIT Expiration Da Time Allotted: at a receipt image, identii eccipt, categorize, trans ion, ion, brelig, prod	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt scribe, extract, data, entry, transcri	View a HIT in this group) Reward: \$0.02 ption, text, easy,
Classify Receip Requester: Description: Keywords: Qualification	t Jon Brelig Looking a <u>image</u> , <u>r</u> <u>gualificati</u> s Require	HIT Expiration Da Time Allotted: at a receipt image, identif eccipt, categorize, trans- ion, ion, brelig, prod ad:	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt scribe, extract, data, entry, transcri	View a HIT in this group
Classify Receip Requester: Description: Keywords: Qualification Total approve	t Jon Brelig Looking a <u>image</u> , <u>r</u> <u>gualificati</u> s Require d HITs is n	HIT Expiration Da Time Allotted: at a receipt image, identif eccipt, categorize, tran- ion, ion, brelig, prod ad: not less than 1000	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt scribe, extract, data, entry, transcri	View a HIT in this group
Classify Receip: Requester: Description: Keywords: Qualification Total approve HIT approval	Looking a image, ro qualificati s Require d HITs is n rate (%) is	HIT Expiration Da Time Allotted: at a receipt image, identif eccipt, categorize, tran- ion, jon, brelig, prod ad: not less than 1000 a not less than 97	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt scribe, extract, data, entry, transcri	View a HIT in this group
Classify Receip Requester: Description: Keywords: Qualification Total approve HIT approval Location is US	Jon Brelig Looking a <u>image</u> , rr gualificati is Require d HITs is n rate (%) is	HIT Expiration Da Time Allotted: at a receipt image, identif eccipt, categorize, tran- ion, ion, brelig, prod ad: not less than 1000 a not less than 97	te: Nov 24, 2015 (6 days 23 hours 20 minutes fy the business of the receipt scribe, extract, data, entry, transcri	View a HIT in this group

Other use case: Speech recognition and OCR

- The information extraction system is imprecise
- The system has some confidence in the information extracted, which can be:
 - a probability of the information being true (e.g., from a statistical or machine learning model)
 - an ad-hoc numeric confidence score
 - a discrete level of confidence (low, medium, high)
- What if this uncertain information is not seen as something final, but is used as a source of, e.g., a query answering system?

Two dimensions:

- Can be qualitative (NULL) or quantitative (95%, low-confidence, etc.) uncertainty
- Different types of uncertainty:
 - Unknown value: NULL in an RDBMS
 - Alternative between several possibilities: either A or B or C
 - Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
 - Confidence in a fact as a whole: cf. information extraction
 - Structural uncertainty: the schema of the data itself is uncertain
 - Missing data: we know that some data is missing (open-world semantics)

Currently

Forget about uncertainty, or apply a threshold after each computation step

Currently

Forget about uncertainty, or apply a threshold after each computation step

Objective

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

- Represent all different forms of uncertainty
- Use probabilities to represent quantitative information on the confidence in the data
- Query data and retrieve uncertain results
- Allow adding, deleting, modifying data in an uncertain way
- Ideally: Also keep lineage/provenance information, so as to ensure traceability

- Not the only option: fuzzy set theory [Galindo et al., 2005], Dempster-Shafer theory [Zadeh, 1986]
- Mathematically rich theory, nice semantics with respect to traditional database operations (e.g., joins)
- Some applications already generate probabilities (e.g., statistical information extraction or natural language probabilities)
- In other cases, we "cheat" and pretend that (normalized) confidence scores are probabilities: see this as a first-order approximation

- Present data models for uncertain data management in general, and probabilistic data management in particular:
 - relational databases (SQL queries)
 - XML data
- Present provenance management techniques (next set of slides)

Probabilistic Models of Uncertainty

- Probabilistic Relational Models
- Probabilistic XML

Possible world: A regular (deterministic) relational database or XML tree

Uncertain database: (Compact) representation of a set of possible worlds

Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability

continuous: more complicated

- Probabilistic Relational Models
- Probabilistic XML

The relational model

- Data stored into tables
- Every table has a precise schema (type of columns)
- Adapted when the information is very structured

Patient	Examin. 1	Examin. 2	Diagnosis
А	23	12	α
В	10	23	eta
С	2	4	γ
D	15	15	α
Е	15	17	eta

Codd tables, a.k.a. SQL NULLS

Patient	Examin. 1	Examin. 2	Diagnosis
А	23	12	α
В	10	23	\perp_1
С	2	4	γ
D	15	15	\perp_2
Е	\perp_3	17	eta

- Most simple form of incomplete database
- Widely used in practice, in DBMS since the mid-1970s!
- · All NULLs (\perp) are considered distinct
- Possible world semantics: all possible completions of the table (infinitely many)
- In SQL, three-valued logic, weird semantics:

SELECT * FROM Tel WHERE tel_nr = '333' OR tel_nr <> '333'

Appointment			Ill	ness
Doctor	Patient		Patient	Diagnosis
Dı	А		А	\perp
D2	А			

Let's join the two tables...

Appoir	ntment	III	ness
Doctor	Patient	Patient	Diagnosis
D1	А	А	Ţ
D2	А		

Let's join the two tables...

Appointment ⋈ Illness

Doctor Patient Diagnosis

Appoir	ntment	III	ness
Doctor	Patient	Patient	Diagnosis
D1	А	А	Ţ
D2	А		

Let's join the two tables...

Appointment ⋈ Illness

Doctor	Patient	Diagnosis
D1	А	\perp_1
D2	А	\perp_2

Appoir	ntment		ness
Doctor	Patient	Patient	Diagnosis
D1	А	А	Ţ
D2	А		

Let's join the two tables...

Appointment ⋈ Illness

Doctor	Patient	Diagnosis
Dı	А	\perp_1
D2	А	\perp_2

- We know that $\perp_1 = \perp_2$, but we cannot represent it
- Simple solution: named nulls aka v-tables
- More expressive solution: c-tables

Patient	Examin. 1	Examin. 2	Diagnosis	Condition
А	23	12	α	
В	10	23	\perp_1	
С	2	4	γ	
D	\perp_2	15	\perp_1	
Е	\perp_3	17	eta	$18 < \bot_3 < \bot_2$

- NULLs are labeled, and can be reused inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra
- Every set of possible worlds can be represented as a database with c-tables

Tuple-independent databases (TIDs) [Lakshmanan et al., 1997, Dalvi and Suciu, 2007]

Patient	Examin. 1	Examin. 2	Diagnosis	Probability
А	23	12	α	0.9
В	10	23	β	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4
D	15	15	α	0.6
D	15	15	eta	0.4
E	15	17	β	0.7
Е	15	17	α	0.3

- · Allow representation of the confidence in each row of the table
- Impossible to express dependencies across rows
- Very simple model, well understood

Block-independent databases (BIDs) [Barbará et al., 1992, Ré and Suciu, 2007]

<u>Patient</u>	Examin. 1	Examin. 2	Diagnosis	Probability
А	23	12	α	0.9
В	10	23	β	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4 ∫ [⊕]
D	15	15	eta	0.6)
D	15	15	α	0.4∫ [™]
E	15	17	eta	0.7
E	15	17	α	0.3 ∫ [™]

- The table has a <u>primary key</u>: tuples sharing a primary key are mutually exclusive (probabilities must sum up to ≤ 1)
- Simple dependencies (exclusion) can be expressed, but no more

Probabilistic c-tables [Green and Tannen, 2006]

Patient	Examin. 1	Examin. 2	Diagnosis	Condition
А	23	12	α	W_1
В	10	23	eta	W_2
С	2	4	γ	W_3
С	2	14	γ	$\neg W_3 \land W_4$
D	15	15	β	W_5
D	15	15	α	$\neg W_5 \land W_6$
E	15	17	β	W_7
E	15	17	α	$\neg W_7$

- The w_i's are independent Boolean random variables
- Each w_i has a probability of being true (e.g., $Pr(w_1) = 0.9$)
- Any finite probability distribution of tables can be represented using probabilistic c-tables

- Probabilistic Relational Models
- Probabilistic XML

Reminder: The semistructured model and XML

<a> ... <c> <d>...</d> </c>

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- · Particularly adapted to tagged or heterogeneous content

- Extensive literature about probabilistic relational databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]
- Different typical querying languages: conjunctive queries vs XPath and tree-pattern queries (possibly with joins)
- Cases where a tree-like model might be appropriate:
 - \cdot No schema or few constraints on the schema
 - Documents with uncertain annotations
 - Inherently tree-like data (e.g., mailing lists, parse trees) with naturally occurring queries involving the descendant axis

Remark

Some results can be transferred between probabilistic relational databases and probabilistic XML [Amarilli and Senellart, 2013]

Uncertain version control [Ba et al., 2013]

Use trees with probabilistic annotations to represent the uncertainty in the correctness of a document under open version control (e.g., Wikipedia articles)

Probabilistic summaries of XML corpora [Abiteboul et al., 2012a,b]

- Transform an XML schema (deterministic top-down tree automaton) into a probabilistic generator (probabilistic tree automaton) of XML documents
- Probability distribution optimal with respect to a given corpus
- Application: Optimal auto-completions in an XML editor

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
- → some sets of possible worlds are not expressible this way!

- Expresses arbitrarily complex dependencies
- Obviously, analogous to probabilstic c-tables

A general probabilistic XML model [Abiteboul et al., 2009]

- *e*: event "it did not rain" at time 1
- mux: mutually exclusive options
- N(70,4): normal distribution
- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (mux)
- Generalizes all previously proposed models of the literature

<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)>

- Probabilistic model that extends PXML with local dependencies
- · Generate documents of unbounded width or depth

Incomplete formalisms and Open-World Query Answering

- Another kind of uncertainty is incomplete data, i.e., missing information
 - \rightarrow For instance, the open-world assumption
- We know some constraints that the true data must satisfy
 - → "Every person has a father..." (implies the existence of some elements)
 - \rightarrow "... and only one father" (... and their uniqueness)
- The possible worlds of the data are all possible completions satisfying the constraints
- Focus on relational data, but there are also models for XML [Barceló et al., 2009].

Open-world query answering (OWQA)

- $\cdot\,$ We have the data, the constraints (in logic), and a query
- Usual evaluation: find all results of the query on the data
- OWQA: find all results of the query that are true on all completions satisfying the constraints!

Open-world query answering (OWQA)

- \cdot We have the data, the constraints (in logic), and a query
- $\cdot\,$ Usual evaluation: find all results of the query on the data
- OWQA: find all results of the query that are true on all completions satisfying the constraints!

Person	Filiation
Name	Son Father
Luke	Kylo Han
Kylo	

- "Every person has a father" and "Every father is a person"
 - $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
 - $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$
- Query: "find everyone who has a father" Q(x) : $\exists y$ Filiation(x, y)

Complexity of OWQA

- OWQA is related to satisfiability in logics:
 - Can we satisfy the data, the constaints, and the negation of the query?
- In OWQA, we want to be tractable in the data
- In general OWQA is **undecidable** if we allow arbitrary first-order constraints
- If we restrict the constraint language it can become decidable or even tractable (\leftrightarrow description logics)
- Another challenge: handling partial completeness, i.e., where we know that something is complete, see [Razniewski et al., 2015]

- The chase: complete the data by creating all missing values
- Only defined for dependencies, i.e., constraints of the form "some pattern \rightarrow some other pattern"
- In this case the chase is universal: creates a (possibly infinite) database that only satisfies the certain queries

- $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
- $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$

Person	Fili	ation
Name	Son	Father
Luke	Kylo	Han
Kylo		

- $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
- $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$

Person		Filiation		
Name		Son	Father	
Luke		Kylo	Han	
Kylo		Luke	X_1	
Han				

- $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
- $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$

Person	Filiation	
Name	Son	Father
Luke	Kylo	Han
Kylo	Luke	X_1
Han		
X_1		

- $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
- $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$

Person	Fili	Filiation			
Name	Son	Father			
Luke Kylo	Kylo Luke	Han X ₁			
Han	Han	X_2			
<i>X</i> ₁	X_1	<i>X</i> 3			

- $\forall x \operatorname{Person}(x) \to \exists y \operatorname{Filiation}(x, y)$
- $\forall xy \ \mathsf{Filiation}(x, y) \rightarrow \mathsf{Person}(y)$

Person	Fili	Filiation			
Name	Son	Father			
Luke	Kylo	Han			
Kylo	Luke	X_1			
Han	Han	X_2			
X_1	X_1	<i>X</i> 3			
÷	÷	÷			

- $\cdot\,$ If the chase is finite we can build it
 - → Can happen when the constaints are acyclic, e.g., $\forall x \operatorname{Person}(x) \rightarrow \exists y \operatorname{Filiation}(x, y)$
- If the chase is infinite but has bounded treewidth, we can reason on it using tree automata methods

- If possible, rewrite the query using the constraints to work on the initial data
 - $\rightarrow Q(x)$: $\exists y$ Filiation(x, y) rewrites to
 - Q(x): Person $(x) \lor \exists y$ Filiation $(x, y) \lor \exists y$ Filiation(y, x)
 - Advantage: ensures good complexity in the data
- Application: Ontology-Mediated Query Answering (OMQA)
- Another challenge: handle finiteness of the data, i.e., what if we want to work on all finite completions?

To go further

- Numerous works on the complexity of querying probabilistic databases, see [Suciu et al., 2011] (relational case) and [Kimelfeld et al., 2009] (XML case) for surveys
- Hard problem in general ($FP^{\#P}$), some (very few!) tractable cases
- Approximation algorithms [Olteanu et al., 2010, Souihli and Senellart, 2013]: practical solution
- Also important to consider updates [Abiteboul et al., 2009, Kharlamov et al., 2010]

- Another kind of uncertainty: we know that the database must satisfy some constraints (e.g., functionality)
- The data that we have does not satisfy it
- Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
- Can we evaluate queries on this representation? E.g., is a query true on every maximal repair? See, e.g., [Koutris and Wijsen, 2015].

Systems

- Trio http://infolab.stanford.edu/trio/, useful to
 see lineage computation
- **MayBMS** http://maybms.sourceforge.net/, full-fledged probabilistic relational DBMS, on top of PostgreSQL, usable for actual applications.

ProApproX http://www.infres.enst.fr/~souihli/
 Publications.html to play with various
 approximation and exact query evaluation methods for
 probabilistic XML.

ProvSQL https://github.com/PierreSenellart/provsql maintains provenance information while evaluating queries (see later), and can use this to perform probabilistic reasoning

- An influential paper on incomplete databases [Imielinski and Lipski, 1984]
- A book on probabilistic relational databases, focused around TIDs/BIDs and MayBMS [Suciu et al., 2011]
- An in-depth presentation of MayBMS [Koch, 2009]
- A gentle presentation of relational and XML probabilistic models [Kharlamov and Senellart, 2011]
- A survey of probabilistic XML [Kimelfeld and Senellart, 2013]

Research directions

- Demonstrating the usefulness of probabilistic databases over ad-hoc approach on concrete applications: Web information extraction, data warehousing, scientific data management, etc.
- Understanding which restrictions on the data (e.g., (hyper)tree-width) make query answering tractable.
- Finding more expressive logical formalisms for which open-world query answering is decidable (in particular on finite completions)
- Connecting probabilistic databases with probabilistic models in general, e.g., as used in machine learning: Bayesian networks, Makov logic networks, factor graphs, etc.
- Other operations on probabilistic data: mining, deduplication, learning, matching, etc.; reasoning with probabilistic constraints

References

- Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre Senellart. On the expressiveness of probabilistic XML models. *VLDB Journal*, 18(5):1041–1064, October 2009.
- Serge Abiteboul, Yael Amsterdamer, Daniel Deutch, Tova Milo, and Pierre Senellart. Finding optimal probabilistic generators for XML collections. In *Proc. ICDT*, pages 127–139, Berlin, Germany, March 2012a.
- Serge Abiteboul, Yael Amsterdamer, Tova Milo, and Pierre Senellart. Auto-completion learning for XML. In *Proc. SIGMOD*, pages 669–672, Scottsdale, USA, May 2012b. Demonstration.

Antoine Amarilli and Pierre Senellart. On the connections between relational and XML probabilistic data models. In *Proc. BNCOD*, pages 121–134, Oxford, United Kingdom, July 2013.

- M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Uncertain version control in open collaborative editing of tree-structured documents. In *Proc. DocEng*, Florence, Italy, September 2013.
- Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The management of probabilistic data. *IEEE Transactions on Knowledge and Data Engineering*, 4(5):487–502, 1992.
- Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incomplete information: models, properties, and query answering. In *Proc. PODS*, pages 237–246, New York, NY, 2009. ACM.

Michael Benedikt, Evgeny Kharlamov, Dan Olteanu, and Pierre Senellart. Probabilistic XML via Markov chains. *Proceedings of the VLDB Endowment*, 3(1):770–781, September 2010. Presented at the VLDB 2010 conference, Singapore.

Nilesh Dalvi, Chrisopher Ré, and Dan Suciu. Probabilistic databases: Diamonds in the dirt. *Communications of the ACM*, 52(7), 2009.

Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In *VLDB*, pages 864–875, 2004.

Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. *VLDB Journal*, 16(4), 2007.

Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. SPROUT²: a squared query engine for uncertain web data. In *SIGMOD*, 2011.

José Galindo, Angelica Urrutia, and Mario Piattini. *Fuzzy Databases: Modeling, Design And Implementation*. IGI Global, 2005.

- Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. In *Proc. EDBT Workshops, IIDB*, Munich, Germany, March 2006.
- Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. *Journal of the ACM*, 31(4):761–791, 1984.
- Evgeny Kharlamov and Pierre Senellart. Modeling, querying, and mining uncertain XML data. In Andrea Tagarelli, editor, *XML Data Mining: Models, Methods, and Applications*. IGI Global, 2011.
- Evgeny Kharlamov, Werner Nutt, and Pierre Senellart. Updating probabilistic XML. In *Proc. Updates in XML*, Lausanne, Switzerland, March 2010.
- Benny Kimelfeld and Pierre Senellart. Probabilistic XML: Models and complexity. In Zongmin Ma and Li Yan, editors, *Advances in Probabilistic Databases for Uncertain Information Management*, pages 39–66. Springer-Verlag, May 2013.

Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Query evaluation over probabilistic XML. *VLDB J.*, 2009.

- Christoph Koch. MayBMS: A system for managing large uncertain and probabilistic databases. In Charu Aggarwal, editor, *Managing and Mining Uncertain Data*. Springer-Verlag, 2009.
- Paraschos Koutris and Jef Wijsen. The data complexity of consistent query answering for self-join-free conjunctive queries under primary key constraints. In *Proc. SIGMOD*, pages 17–29. ACM, 2015.
- Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrahmanian. ProbView: A flexible probabilistic database system. *ACM Transactions on Database Systems*, 22(3), 1997.
- Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence computation in probabilistic databases. In *Proc. ICDE*, 2010.

Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivastava. Identifying the extent of completeness of query answers over partially complete databases. In *Proc. SIGMOD*, 2015.

- Christopher Ré and Dan Suciu. Materialized views in probabilistic databases: for information exchange and query optimization. In *Proc. VLDB*, 2007.
- Asma Souihli and Pierre Senellart. Optimizing approximations of DNF query lineage in probabilistic XML. In *Proc. ICDE*, pages 721–732, Brisbane, Australia, April 2013.
- Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Morgan & Claypool, 2011.
- Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage. In *Proc. CIDR*, Asilomar, CA, USA, January 2005.

Lotfi A. Zadeh. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. *AI Magazine*, 7(2), 1986.