
XML
MPRI 2.26.2: Web Data Management

Antoine Amarillia

Friday, December 14th

aBased on slides from the Webdam book by Serge Abiteboul, Ioana
Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart
https://webdam.inria.fr/Jorge/files/sldatamodel.pdf

1/39

https://webdam.inria.fr/Jorge/files/sldatamodel.pdf

Preliminaries

The role of XML

We have seem how Web pages use HTML:

• HTML is appropriate for humans: allows sophisticated output
and interaction with textual documents and images;
• HTML falls short when it comes to software exploitation of data.

XML describes content, and promotes machine-to-machine
communication and data exchange

• XML is a generic data format, apt to be specialized for a wide
range of fields,
⇒ (X)HTML is a specialized XML dialect for data presentation
• XML simplifies data integration, since data from different sources
now share a common format;
• XML comes equipped with many software products, APIs and
tools.

2/39

Semi-structured data model

A data model to represent both regular and irregular data.

Self-describing data. The content comes with its own description;
⇒ contrast with the relational model, where schema and
content are represented separately.

Flexible typing. Data may be typed (i.e., “such nodes are integer
values” or “this part of the graph complies to this
description”); often no typing, or a very flexible one

Serialized form. The XML document is serialized as text, that can be
conveniently stored and exchanged.

3/39

Self-describing data

Starting point: association lists, i.e., records of label-value pairs.

{name: "Alan", tel: 2157786, email: "agb@abc.com"}

Natural extension: values may themselves be other structures:

{name: {first: "Alan", last: "Black"},
tel: 2157786,
email: "agb@abc.com"}

Further extension: allow duplicate labels.

{name: "alan", tel: 2157786, tel: 2498762 }

4/39

Tree-based representation

An XML document is represented as a tree with both labels and
values as vertices

name

Alan

tel

7786

email

agg@abc.com

name

first

Alan

last

Black

tel

7786

email

agg@abc.com

5/39

Representation of regular data

The syntax makes it easy to describe sets of tuples as in:

{ person: {name: "alan", phone: 3127786, email: "alan@abc.com"},
person: {name: "sara", phone: 2136877, email: "sara@xyz.edu"},
person: {name: "fred", phone: 7786312, email: "fd@ac.uk"} }

→ Relational data can be represented
→ For regular data, the semi-structured representation is highly

redundant

6/39

Representation of irregular data

The structure is not fixed and allows missing values, duplicates, etc.

{person: {name: "alan", phone: 3127786, email: "agg@abc.com"},
person: {id: 314,

name: {first: "Sara", last: "Green" },
phone: 2136877,
email: "sara@math.xyz.edu",
spouse: 443 },

person: {id: 443,
name: "fred", Phone: 7786312, Height: 183,
spouse: 314 }}

• Like for relational data, we can use IDs to refer to values
elsewhere in the document

7/39

XML documents

An XML document is a labeled, unranked, ordered tree:

Labeled means that each node has a label
Unranked means that the number of children of a node is

unbounded
Ordered means that there is an order between the children of

each node.

XML specifies nothing more than a syntax: no meaning is attached to
the labels.

A dialect, on the other hand, associates a meaning to labels (e.g.,
title in XHTML).

8/39

XML documents are trees

entry

name

fn

Jean

ln

Doe

work

INRIA address

city

Cachan

zip

94235

email

j@inria.fr

purpose

like to teach

Remark
Some low-level software works on the serialized representation of
XML documents, e.g., SAX (a parser and an API).

9/39

Serialized representation of XML documents

Documents can be serialized, such as, for instance:

<entry><name><fn>Jean</fn><ln>Doe</ln></name><work>INRIA
<email>j@inria.fr</email></work></entry>

or with pretty-printing as:

<entry>
<name>
<fn>Jean</fn>
<ln>Doe</ln>

</name>
<work>
INRIA
<email>j@inria.fr</email>

</work>
</entry>

Use xmllint --format and pygmentize -l xml
10/39

Serialized form, tree form

Typically, an application gets a document in serialized form, parse it
in tree form, and serializes it back at the end.

serialized

form

serialized

form

Application
parser serializer

tree form

• The serialized form is the textual, linear representation of the
tree

• Standardized object-oriented model for the tree form: the
Document Object Model (DOM) which we saw last week. Also
standardizes things relevant to Web browsers.

11/39

XML basic syntax

Four examples of XML documents (separated by blank lines) are:

<document/>

<document>Hello World!</document>

<document>
<salutation>Hello World!</salutation>

</document>

<?xml version="1.0" encoding="utf-8" ?>
<document>
<salutation color="blue">Hello World!</salutation>

</document>

12/39

From serialized to tree form: text and elements

The basic components of an
XML document are element
and text.
Here is an element, whose
content is a text.
<elt_name>
Textual content

</elt_name>

The tree form of the document,
modeled in DOM: each node has a
type, either Document or Text.

Element
elt_name

Text
Text 2

13/39

From serialized to tree form: nesting elements

The content of an element is

1. the part between the opening and closing tags (in serialized
form),

2. the subtree rooted at the corresponding Element node (in DOM).

Example of an element
nested in another element.
<elt1>
Textual content
<elt2>
Another content

</elt2>
</elt1>

Element
elt1

Text
Content 1

Element
elt2

Text
Content 2

14/39

From serialized to tree form: attributes

Attributes are pairs of name/value attached to an element.

1. as part of the opening tag in the serialized form,
2. as special child nodes of the Element node (in DOM).

The content of an attribute is always text (no nesting).

An element with two at-
tributes.
<elt1 att1='12' att2='fr'>
Textual content

</elt1>

Attributes are not ordered,
and no element can have
two attributes with the
same name.

Element
elt1

Attr.
att1: ’12’

Attr.
att2: ’fr’

Text
Text1

15/39

From serialized to tree form: the document root

There may be a prologue, in which case it is the first document line:

<?xml version="1.0" encoding="utf-8" ?>

The document must always be enclosed in one single element root
(= a tree, not a forest)

<?xml version="1.0"
encoding="utf-8" ?>

<elt>
Document content.

</elt>
Note: there may be other syntactic
objects after the prologue
(e.g., processing instructions).

Document

Element
elt

Text
Document Content

16/39

Summary: syntax and vocabulary

Serialized form

• A document may begin with a prologue;
• It has a single root element;
• Each opening tag <name> has a corresponding closing tag
</name>; everything between is either text or properly enclosed
tag content.

Tree form

• A document is a tree with a root node (Document node in DOM),
• The root node has exactly one element child (Element node),
called the element root)

• Each element node is the root of a subtree
17/39

Entities and references

Entities are used for the physical organization of a document.

An entity is declared (in the document type), then referenced.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE a [
<!ENTITY myName "John Doe">
<!ENTITY mySignature SYSTEM "signature.xml">

]>

<a>
My name is &myName;.

&mySignature;
 18/39

Predefined entities

Five predefined entities, which in particular allow escaping:

Declaration Reference Symbol.

<!ENTITY lt "<"> < <
<!ENTITY gt ">"> > >
<!ENTITY amp "&"> & &
<!ENTITY apos "'"> ' '
<!ENTITY quot """> " "

Also numeric character references based on Unicode codepoints:

• * (decimal),
• * (hexadecimal).

19/39

Problem with entities: XML external entity attack

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

→ On badly configured systems, this can exfiltrate /etc/passwd to
an attacker

20/39

Problem with entities: Billion laughs attack

<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

→ This can crash a badly configured XML parser
21/39

Comments and instructions

Comments can be put at any place in the serialized form.

<!-- This is a comment -->

They appear as Comment nodes in the DOM tree (they are typically
ignored by applications).

Processing instructions: specific commands, useful for some
applications, simply ignored by others.

The following instruction requires the transformation of the
document by an XSLT stylesheet

<?xml-stylesheet href="prog.xslt" type="text/xslt"?>
22/39

Literal sections

Problem: what if we do not want the content to be parsed?

<?xml version='1.0'?>
<program>
if ((i < 5) && (j > 6))

printf("error");
</program>

Solution: use entities to escape, or use a literal section.

<?xml version='1.0'?>
<program>
<![CDATA[if ((i < 5) && (j > 6))

printf("error");
]]>
</program>

23/39

Interpreting labels: Namespaces

A particular label, e.g., job, may denote different notions in different
contexts, e.g., a hiring agency or a scheduler.

The notion of namespace is used to distinguish them.

<doc xmlns:hire='https://a.hire.com/schema'
xmlns:sched='https://b.scheduler.com/schema'>

...
<hire:job> ... </hire:job> ...
<sched:job> ... </sched:job> ...

</doc>

24/39

XML dialects and standards

Dialects

• XML is just an abstract syntax with no specific meaning
• An XML dialect specifies the syntax (which elements, attributes,
etc.) and gives it a semantics

• Distinguish:
• Well-formedness: an XML document is well-formed if it conforms
to the XML spec (dialect-independent)

• Valid: an XML document is correct relative to the syntax of a
dialect (as specified, e.g., by a DTD, Schema, etc.)

25/39

Popular XML dialects: SVG

An XML dialect for two-dimensional vector graphics:
<?xml version="1.0" encoding="UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg"

version="1.1">
<rect x="25" y="25" width="200" height="200"

fill="lime" stroke-width="4"
stroke="pink" />

<circle cx="125" cy="125" r="75" fill="orange" />
<polyline points="50,150 50,200 200,200 200,100"

stroke="red" stroke-width="4" fill="none" />
<line x1="50" y1="50" x2="200" y2="200"

stroke="blue" stroke-width="4" />
</svg>

26/39

Popular XML dialects: DocBook

An XML dialect for technical documentation:

<?xml version="1.0" encoding="UTF-8"?>
<book xml:id="simple_book"

xmlns="http://docbook.org/ns/docbook" version="5.0">
<title>Very simple book</title>
<chapter xml:id="chapter_1">

<title>Chapter 1</title>
<para>Hello world!</para>
<para>I hope that your day is proceeding
<emphasis>splendidly</emphasis>!</para>

</chapter>
<chapter xml:id="chapter_2">

<title>Chapter 2</title>
<para>Hello again, world!</para>

</chapter>
</book> 27/39

Popular XML dialects: RSS

An XML dialect for articles to subscribe to websites (also Atom):
<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">
<channel>
<title>RSS Title</title>
<description>This is an example of an RSS feed</description>
<link>http://www.example.com/main.html</link>
<lastBuildDate>Mon, 06 Sep 2010 00:01:00 +0000 </lastBuildDate>
<pubDate>Sun, 06 Sep 2009 16:20:00 +0000</pubDate>
<ttl>1800</ttl>

<item>
<title>Example entry</title>
<description>Here is some description.</description>
<link>http://www.example.com/blog/post/1</link>
<guid isPermaLink="false">7bd204c6-1655-4c27-aeee-53f933c5395f</guid>
<pubDate>Sun, 06 Sep 2009 16:20:00 +0000</pubDate>

</item>
</channel>
</rss> 28/39

Popular XML dialects: OpenDocument and OpenXML

• XML-based open standards for office documents
• OpenXML is used by LibreOffice and OpenXML by Microsoft Office
• A LibreOffice file (e.g., .odt) is actually a zip archive of several
files, including XML documents

29/39

Popular XML dialects: MathML

An XML dialect to describe the semantics and display of
mathematical equations. Example for ax2 + bx+ c:

<math>
<apply>

<plus/>
<apply>

<times/>
<ci>a</ci>
<apply>

<power/> <ci>x</ci> <cn>2</cn>
</apply>

</apply>
<apply> <times/> <ci>b</ci> <ci>x</ci> </apply>
<ci>c</ci>

</apply>
</math> 30/39

Popular XML dialects: SSML

Speech Synthesis Markup Language: annotate text for text-to-speech
<!-- ?xml version="1.0"? -->
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<metadata>
<dc:title xml:lang="en">Telephone Menu: Level 1</dc:title>

</metadata>
<p>
<s xml:lang="en-US">

<voice name="David" gender="male" age="25">
For English, press <emphasis>one</emphasis>.

</voice>
</s>
<s xml:lang="es-MX">

<voice name="Miguel" gender="male" age="25">
Para español, oprima el <emphasis>dos</emphasis>.

</voice>
</s>

</p>
</speak> 31/39

Many more dialects

See https://en.wikipedia.org/wiki/List_of_XML_markup_languages

32/39

https://en.wikipedia.org/wiki/List_of_XML_markup_languages

Example of XML data dumps

• OpenStreetMap: As a Protocolbuffer dump or as XML in a custom
OSM dialect

• Wikimedia: As a Mediawiki dump in XML, with schema
https://www.mediawiki.org/xml/export-0.10.xsd

• Stack Exchange: As a dumb XML encoding of relational data
• data.gouv.fr: 1 347 datasets are in XML (out of 37 147)
• arXiv: The arXiv dump provides metadata information in XML
• DBLP: The DBLP dump is in XML

33/39

https://www.mediawiki.org/xml/export-0.10.xsd

XML Ecosystem

XML standards

SAX (Simple API for XML) gives an API for XML documents
seen as a sequence of tokens (its serialization).

DOM (Document Object Model) gives an API for the tree
representation of HTML and XML documents
(independent from the programming language)

Schema languages Specify the structure of documents in a dialect
(DTD, XML Schema, Relax-NG, etc.) (more to come)

XPath (XML Path Language) is a language for addressing
portions of an XML document (more to come)

XQuery is a query language to extract information from
collections of XML documents

XSLT (Extensible Stylesheet Language Transformations), to
specify how to transform XML documents into other
documents.

34/39

Lesser-known XML standards

XLink Link to other XML documents
XPointer Refer to a specific point in an XML document
XInclude Include XML documents in other documents

XProc Language to define pipelines of XML content
XSL-FO Markup language for documents to be rendered as

paginated documents

35/39

Generic XML tools

• API: XML or SAX
• Parsers and type checkers, e.g., xmllint
• GUI (Graphical User Interfaces)
• Editors
• XML diff
• Etc.

36/39

Dirty tools to work with XML

• xmlstarlet: dirty way to process XML on the command line,
uses libxml
curl -s 'https://dblp.uni-trier.de/db/conf/icdt/icdt2018.xml' |

xmlstarlet sel -t -m '//inproceedings/author/text()' -c . -n

→ Find elements with the XPath //inproceedings/author
and copy their value followed by a newline

→ Actually producing XSLT under the scenes

• xml2 and 2xml: Convert XML to a text-based format and back:
useful to work with CLI utilities

37/39

XML Research

Research about XML

• XML has inspired much theoretical research in the database
theory community
→ E.g., test-of-time award at the PODS conference in 2015 and 2016

• Natural practical applications for theoretical research
• For instance, tree automata (cf later) for validation, querying, etc.

→ See survey by Schwentick, Automata for XML–A survey, JCSS 20071

• Study of query languages such as XPath
→ E.g., Benedikt and Koch, XPath Leashed, ACM Computing Surveys,

20092

• Also other query languages, e.g., tree pattern queries
• A bit out of fashion in favor, e.g., of queries on graph data

1https://www.sciencedirect.com/science/article/pii/S0022000006001085
2https://infoscience.epfl.ch/record/166852/files/25-leashed.pdf

38/39

https://www.sciencedirect.com/science/article/pii/S0022000006001085
https://infoscience.epfl.ch/record/166852/files/25-leashed.pdf

Bibliography

Specifications from the World Wide Web Consortium, w3.org:

• Document Object Model. w3.org/DOM.
• Extensible Markup Language. w3.org/XML.
• XML Schema. w3.org/XML/Schema.
• XML Query (XQuery). w3.org/XML/Query.
• Extensible Stylesheet Language. w3.org/Style/XSL.

Books:

• S. Abiteboul, IṀanolescu, P. Rigaux, M.-C. Rousset, P. Senellart.
Web Data Management. Cambridge University Press, 2011.
http://webdam.inria.fr/Jorge/
• S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From
Relations to Semistructured Data and XML. Morgan-Kaufman,
1999.

39/39

w3.org
w3.org/DOM
w3.org/XML
w3.org/XML/Schema
w3.org/XML/Query
w3.org/Style/XSL
http://webdam.inria.fr/Jorge/

Sources

• Slide 20: https://en.wikipedia.org/wiki/XML_
external_entity_attack

• Slide 21: https:
//en.wikipedia.org/wiki/Billion_laughs_attack

• Slide 26: https://en.wikipedia.org/wiki/File:
SVG_example_markup_grid.svg

• Slide 27: https://en.wikipedia.org/wiki/DocBook
• Slide 28: https://en.wikipedia.org/wiki/RSS
• Slide 30: https://en.wikipedia.org/wiki/MathML
• Slide 31:

https://en.wikipedia.org/wiki/Speech_Synthesis_Markup_Language

https://en.wikipedia.org/wiki/XML_external_entity_attack
https://en.wikipedia.org/wiki/XML_external_entity_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/File:SVG_example_markup_grid.svg
https://en.wikipedia.org/wiki/File:SVG_example_markup_grid.svg
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/RSS
https://en.wikipedia.org/wiki/MathML
https://en.wikipedia.org/wiki/Speech_Synthesis_Markup_Language

	Preliminaries
	Essential XML Syntax

	XML dialects and standards
	XML Ecosystem
	XML Research
	Appendix

