Internet and HTTP
MPRI 2.26.2: Web Data Management

Antoine Amarilli
Friday, December 7th

TELECOM
ParisTech

— 3 4 |

1/32

- Several scales (local vs global)
- Stack of protocols
- Embedded messages

To: 01:23:45:67:89:ab

To: 12.34.56.78

Page: 1 of 3

<html>
<head>
</head>
<body> ...

2/32

0S| model

Layer Examples Features

7 Application HTTP, FTP, SMTP high level task

4 Transport TCP, UDP, ICMP sessions, reliable data,
fragmentation

3 Network IPvy, IPV6 routing, addressing
2 Link Ethernet, 80211 local addresses
1 Physical Ethernet, 80211 physical exchange, unreliable

— The outermost envelopes are for the lowest layers

3/32

Table of Contents

Low layers

4132

IP (Internet Protocol), layer 3

- Gives addresses to computers
- Routes packets between these addresses

- Can get approximate geographic location for an IP

Year Example Addresses Traffic
IPv4 1981 208.80.152.201 < 232 77%
IPv6 1998 2620:0:860:ed1a::1 < 2'8 23%'

- Network Address Translation to get more IPv4 addresses

— We can send messages to an address

1
https://www.google.com/intl/en/ipv6/statistics.html, May 2018
5/32

https://www.google.com/intl/en/ipv6/statistics.html

DNS (Domain Name System) - side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
- gTLDs, registrars, costs, effective TLDs

6/32

DNS (Domain Name System) - side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.

- gTLDs, registrars, costs, effective TLDs

- Caching at several layers

- Security problems (authentication, poisoning)

- Special characters (IDN, Punycode...) and problems
- Useful indirection layer:
- Several addresses per domain name
(multiple services, load balancing)
- Multiple domain names per address (virtual host)

6/32

DNS (Domain Name System) - side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.

- gTLDs, registrars, costs, effective TLDs

- Caching at several layers

- Security problems (authentication, poisoning)

- Special characters (IDN, Punycode...) and problems
- Useful indirection layer:
- Several addresses per domain name
(multiple services, load balancing)
- Multiple domain names per address (virtual host)
— Political implications
— Public DNSes, alternative roots, decentralized alternatives
(Namecoin...)

— We can send messages to a named machine.
6/32

TCP (Transmission Control Protocol), layer 4

- IPis not reliable
— TCP provides delivery receipts

- IP limits the packet size
— TCP can fragment large data

- IP can mix packets
— TCP ensures in-order delivery

- IP is not multiplexed
— TCP has sessions and ports (e.g. 80 for the Web)

— We can have a two-way communication channel with a machine.

7/32

Table of Contents

Higher layers

8/32

TLS (Transport Layer Security), layer 5-6

- Communicating in plaintext is risky! (passwords, credit cards...)

- Guarantees: integrity, authenticity, confidentiality

« HTTP + TLS = HTTPS. https://.

- Uses asymmetric cryptography

- Does not protect all metadata, possible side channels (size, etc.)
- Ongoing push towards HTTPS (+HSTS), marking HTTP as insecure

Treatment of HTTP pages

Current (Chrome 67) @® example.com

July 2018 (Chrome 68) @ Not secure example.com

https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

9/32

https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

Let’s Encrypt vs extended validation

- Let's Encrypt: automated
check (ACME protocol) and
signature of an HTTPS
certificate

Web Server | __— B"" ~——
Let's &

Admin
Software \@/ Encrypt

10/32

https://letsencrypt.org/how-it-works/

Let’s Encrypt vs extended validation

- Let's Encrypt: automated + Extended Validation
check (ACME protocol) and certificates: manual identify
signature of an HTTPS check by trusted parties
certificate a—+

@ C © & Wikimedia Foundation, Inc.(US) | https;//payments wikimedia.org/i

& Wikimedia Foundation, Inc.
A () Secure Connection
Web Server | _— ow You are securely connected to this site,

Admin Let’s KB WIKIMEDL owned by:

p E founbaTioN
Software ncrypt Wikimedia Foundation, Inc.
San Francisco

[503) california, US)
P [cass] [s303] [eass] Verified by: Globalsign nv-ca ’:thCh feve
M nas 1re

L : More Information 10W|Edg€

[| —Jimmy W,

10/32

https://letsencrypt.org/how-it-works/

Let’s Encrypt vs extended validation

- Let's Encrypt: automated + Extended Validation
check (ACME protocol) and certificates: manual identify
signature of an HTTPS check by trusted parties
certificate a—+

@ C © & Wikimedia Foundation, Inc.(US) | https;//payments wikimedia.org/i

& Wikimedia Foundation, Inc.
A () Secure Connection
Web Server | _— b You are securely connected to this site,

Admin Let’s KB WIKIMEDL owned by:

p E founbaTioN
Software ncrypt Wikimedia Foundation, Inc.
San Francisco

[503) california, US)
Pt easa | 5303 [eass | Verified by: Globalsign nv-ca ’:thCh feve
M nas 1re

L : More Information 10W|Edg€

R : —Jimmy W.
— We have an encrypted channel between two machines

https://letsencrypt.org/how-it-works/

Wikimedia_donation_page_with_extended_validation_certificate_in_firefox.png on Wikimedia commons

10/32

https://letsencrypt.org/how-it-works/

HTTP (HyperText Transfer Protocol), layer 7

- The World Wide Web (WWW)
- Protocol for Web browsing

— Summary: we have
- the client machine
- a client software: the Web browser
- a server machine
- a server software: the Web server
- areliable, encrypted communication channel

1/32

Table of Contents

HTTP

12/32

- Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

- Official standard: RFC 2616 (114 pages, 1999, + followups)

’https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

- Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

- Official standard: RFC 2616 (114 pages, 1999, + followups)
- Extensions : WebSockets, new headers, etc.

’https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

- Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

- Official standard: RFC 2616 (114 pages, 1999, + followups)

- Extensions : WebSockets, new headers, etc.

- New version: HTTP/2 (originally SPDY by Google)

- Official standard: RFC 7540 (96 pages, 2015)
- Used by 32% of websites?

’https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

- Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)
- Official standard: RFC 2616 (114 pages, 1999, + followups)
- Extensions : WebSockets, new headers, etc.
- New version: HTTP/2 (originally SPDY by Google)
- Official standard: RFC 7540 (96 pages, 2015)
- Used by 32% of websites?

- Development version: HTTP/3 (November 2018) from a Google
plan to make TCP faster (QUIC)

https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

HTTP queries (1)

- From client to server, TCP connection (+TLS)
GET /wiki/Telecom_ParisTech HTTP/1.1
Host: en.wikipedia.org

— http://en.wikipedia.org/wiki/Telecom_ParisTech

Method Several choices:
GET Most common
POST Forms, side effects
HEAD Only metadata
others PUT, DELETE...
Path That of the URL
Version Here, 11
Headers More info (cf. later)
Body Give some parameters (with POST)

14/32

http://en.wikipedia.org/wiki/Telecom_ParisTech

HTTP responses

- From server to client, in the same connection

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<!DOCTYPE html>
<html>
<head>
...
- Status code and explanations
- Headers

- Response (e.g., page content)

15/32

Most common status codes

2XX Success
< 200: OK
3xx Redirection
- 301: permanent
- 302: temporary
4xx Client error
- 400: syntax error
- 401: authentication required
- 403: forbidden
- 404: not found
5XX Server error
- 500: internal server error

16/32

Paths and parameters

- Paths are typically hierarchical (separator: /)

- Unix conventions: https://en.wikipedia.org/./wiki/../

- Can add key-value parameters

- Example : https://www.google.com/search?q=telecom&ie=
utf-8&oe=utf-8&client=iceweasel-a

- Percent-encoding for special characters:
https://fr.wikipedia.org/wiki/
T%C3%A91%C3%A9com_ParisTech

17132

https://en.wikipedia.org/./wiki/../
https://www.google.com/search?q=telecom&ie=utf-8&oe=utf-8&client=iceweasel-a
https://www.google.com/search?q=telecom&ie=utf-8&oe=utf-8&client=iceweasel-a

Table of Contents

Headers

18/32

Client Host header

- Indicate again the original domain name
- Find the correct virtual host

Host: en.wikipedia.org

19/32

Other main client headers

- User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

20/32

Other main client headers

- User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

- Accept and Accept-*: give preferred filetype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8
Accept-Language: en-US,en;q=0.5

20/32

Other main client headers

- User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

- Accept and Accept-*: give preferred filetype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8
Accept-Language: en-US,en;q=0.5

- Referer: declare the previous webpage

Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

20/32

Other main client headers

- User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

- Accept and Accept-*: give preferred filetype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8
Accept-Language: en-US,en;q=0.5

- Referer: declare the previous webpage
Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

- Range: request only part of content (e.g.,, resume a download)

20/32

Main server headers

- Server: declare the server software

- Content-Type and Content-Length: declare the file type,
encoding, size (progress bar)

21/32

Table of Contents

Other HTTP notions

22/32

Basic and digest authentication

- HTTP can authenticate the client with a password (in cleartext)

Authentication Required

https://svn.a3nm.net is requesting your username and password. The site says:
“a3nm.net version control”

User Name:

Password:

Cancel oK

- Insecure unless HTTPS is used

- Also a Digest authentication where the password is not
exchanged in cleartext

— Still not very flexible for websites

23/32

- Proxy: do or relay queries for someone else

- Can be on the server side or client side

- Main uses:
- Filter or censor content (employer, authoritarian states, schools,
parents, etc.)
- Log the activity, keep a cache
- Anonymize the query. Example: Tor anonymization network

- Difficult with HTTPS (the proxy no longer sees the content!)

24/32

Content delivery networks (CDNs)

- Ensure that static content can be widely and reliably distributed
- e.g, JSDelivr, BootstrapCDN, Cloudflare, Google Hosted Libraries,
Google Fonts

- Often work together with Internet Service Providers (ISPs)

- Optimize the connection between the CDN datacenter and
content provider

- Often provide bot filtering, DDOS protection, etc.
- Security implications and subresource integrity

- Also: Facebook’s Instant Articles, and Google AMP

25/32

- Save the result of a query to avoid doing the query again
- Web browsers usually have a cache

- The server can indicate whether a response should be cached

and for how long

Cache-Control Indicates whether to cache

Expires Expiry date
ETag Version identifier
- Client:
If-Modified-Since Get the content if modified since some
date
If-None-Match Get the content if the ETag has changed

26/32

- No sessions in HTTP

- The server can ask the client to store a value:
Set-Cookie: mname=value; optionl; option2:
- expires: expiry date (can be in the distant future)
- can limit the scope (domain, path), etc.
- The client will provide the value with every query:

Cookie: mname=value

- Of course the client can decide to alter cookies or remove them

27/32

- Storing an opaque session identifier
- Ensuring that the user remains logged in for a long time
- Privacy risk: can track a user (hence: EU cookie consent)

- Security risk: with a stolen cookie, you can impersonate the user

28/32

Table of Contents

HTTP 1vs HTTP 2

29/32

Compression

- With HTTP 11, compression is possible if
both the client and server support it
Accept-Encoding: gzip, deflate

30/32

Compression

- With HTTP 11, compression is possible if
both the client and server support it
Accept-Encoding: gzip, deflate

- With HTTP 2, even headers can be compressed

30/32

Connection type

- HTTP 1.0 used to close the connection after one query: inefficient!

31/32

Connection type

- HTTP 1.0 used to close the connection after one query: inefficient!

- HTTP 1.2: the connection stays open by default (until timeout)
Connection: keep-alive
- Pipelining: send multiple queries and get responses in order
— Not commonly used because badly supported in practice

31/32

Connection type

- HTTP 1.0 used to close the connection after one query: inefficient!
- HTTP 1.2: the connection stays open by default (until timeout)
Connection: keep-alive
- Pipelining: send multiple queries and get responses in order
— Not commonly used because badly supported in practice
- With HTTP 2 you can do multiplexing: send many queries and get
responses in arbitrary order

- With HTTP 2, the server can also push resources to the client
before it requests them

31/32

- Matériel de cours inspiré de notes par Pierre Senellart et Georges
Gouriten

- Merci a Pierre Senellart pour sa relecture

32/32

	OSI model
	

	Low layers
	

	Higher layers
	

	HTTP
	

	Headers
	

	Other HTTP notions
	

	HTTP 1 vs HTTP 2
	

