
Internet and HTTP
MPRI 2.26.2: Web Data Management

Antoine Amarilli
Friday, December 7th

1/32

General idea

• Several scales (local vs global)
• Stack of protocols
• Embedded messages

To: 01:23:45:67:89:ab

To: 12.34.56.78

Page: 1 of 3

<html>
<head>

...
</head>
<body> ...

2/32

OSI model

Layer Examples Features

7 Application HTTP, FTP, SMTP high level task

4 Transport TCP, UDP, ICMP sessions, reliable data,
fragmentation

3 Network IPv4, IPv6 routing, addressing

2 Link Ethernet, 802.11 local addresses

1 Physical Ethernet, 802.11 physical exchange, unreliable

→ The outermost envelopes are for the lowest layers

3/32

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

4/32

IP (Internet Protocol), layer 3

• Gives addresses to computers
• Routes packets between these addresses
• Can get approximate geographic location for an IP

Year Example Addresses Tra�c

IPv4 1981 208.80.152.201 ≤ 232 77%
IPv6 1998 2620 :0 :860 :ed1a ::1 ≤ 2128 23%1

• Network Address Translation to get more IPv4 addresses

→ We can send messages to an address

1
https://www.google.com/intl/en/ipv6/statistics.html, May 2018

5/32

https://www.google.com/intl/en/ipv6/statistics.html

DNS (Domain Name System) – side note

• Convert names (www.wikipedia.org) to addresses (208.80.152.201)
• Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
• gTLDs, registrars, costs, e�ective TLDs

• Caching at several layers
• Security problems (authentication, poisoning)
• Special characters (IDN, Punycode...) and problems
• Useful indirection layer:

• Several addresses per domain name
(multiple services, load balancing)

• Multiple domain names per address (virtual host)
→ Political implications
→ Public DNSes, alternative roots, decentralized alternatives

(Namecoin...)

→ We can send messages to a named machine.

6/32

DNS (Domain Name System) – side note

• Convert names (www.wikipedia.org) to addresses (208.80.152.201)
• Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
• gTLDs, registrars, costs, e�ective TLDs
• Caching at several layers
• Security problems (authentication, poisoning)
• Special characters (IDN, Punycode...) and problems
• Useful indirection layer:

• Several addresses per domain name
(multiple services, load balancing)

• Multiple domain names per address (virtual host)

→ Political implications
→ Public DNSes, alternative roots, decentralized alternatives

(Namecoin...)

→ We can send messages to a named machine.

6/32

DNS (Domain Name System) – side note

• Convert names (www.wikipedia.org) to addresses (208.80.152.201)
• Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
• gTLDs, registrars, costs, e�ective TLDs
• Caching at several layers
• Security problems (authentication, poisoning)
• Special characters (IDN, Punycode...) and problems
• Useful indirection layer:

• Several addresses per domain name
(multiple services, load balancing)

• Multiple domain names per address (virtual host)
→ Political implications
→ Public DNSes, alternative roots, decentralized alternatives

(Namecoin...)

→ We can send messages to a named machine.
6/32

TCP (Transmission Control Protocol), layer 4

• IP is not reliable
→ TCP provides delivery receipts

• IP limits the packet size
→ TCP can fragment large data

• IP can mix packets
→ TCP ensures in-order delivery

• IP is not multiplexed
→ TCP has sessions and ports (e.g. 80 for the Web)

→ We can have a two-way communication channel with a machine.

7/32

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

8/32

TLS (Transport Layer Security), layer 5-6

• Communicating in plaintext is risky! (passwords, credit cards...)
• Guarantees: integrity, authenticity, con�dentiality
• HTTP + TLS = HTTPS. https://.
• Uses asymmetric cryptography
• Does not protect all metadata, possible side channels (size, etc.)
• Ongoing push towards HTTPS (+HSTS), marking HTTP as insecure

https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

9/32

https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

Let’s Encrypt vs extended validation

• Let’s Encrypt: automated
check (ACME protocol) and
signature of an HTTPS
certi�cate

• Extended Validation
certi�cates: manual identify
check by trusted parties

→ We have an encrypted channel between two machines

https://letsencrypt.org/how-it-works/

Wikimedia_donation_page_with_extended_validation_certificate_in_firefox.png on Wikimedia commons

10/32

https://letsencrypt.org/how-it-works/

Let’s Encrypt vs extended validation

• Let’s Encrypt: automated
check (ACME protocol) and
signature of an HTTPS
certi�cate

• Extended Validation
certi�cates: manual identify
check by trusted parties

→ We have an encrypted channel between two machines

https://letsencrypt.org/how-it-works/

Wikimedia_donation_page_with_extended_validation_certificate_in_firefox.png on Wikimedia commons

10/32

https://letsencrypt.org/how-it-works/

Let’s Encrypt vs extended validation

• Let’s Encrypt: automated
check (ACME protocol) and
signature of an HTTPS
certi�cate

• Extended Validation
certi�cates: manual identify
check by trusted parties

→ We have an encrypted channel between two machines

https://letsencrypt.org/how-it-works/

Wikimedia_donation_page_with_extended_validation_certificate_in_firefox.png on Wikimedia commons
10/32

https://letsencrypt.org/how-it-works/

HTTP (HyperText Transfer Protocol), layer 7

• The World Wide Web (WWW)
• Protocol for Web browsing

→ Summary: we have
• the client machine
• a client software: the Web browser
• a server machine
• a server software: the Web server
• a reliable, encrypted communication channel

11/32

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

12/32

Overview

• Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

• O�cial standard: RFC 2616 (114 pages, 1999, + followups)

• Extensions : WebSockets, new headers, etc.
• New version: HTTP/2 (originally SPDY by Google)

• O�cial standard: RFC 7540 (96 pages, 2015)
• Used by 32% of websites2

• Development version: HTTP/3 (November 2018) from a Google
plan to make TCP faster (QUIC)

2https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

Overview

• Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

• O�cial standard: RFC 2616 (114 pages, 1999, + followups)
• Extensions : WebSockets, new headers, etc.

• New version: HTTP/2 (originally SPDY by Google)
• O�cial standard: RFC 7540 (96 pages, 2015)
• Used by 32% of websites2

• Development version: HTTP/3 (November 2018) from a Google
plan to make TCP faster (QUIC)

2https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

Overview

• Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

• O�cial standard: RFC 2616 (114 pages, 1999, + followups)
• Extensions : WebSockets, new headers, etc.
• New version: HTTP/2 (originally SPDY by Google)

• O�cial standard: RFC 7540 (96 pages, 2015)
• Used by 32% of websites2

• Development version: HTTP/3 (November 2018) from a Google
plan to make TCP faster (QUIC)

2https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

Overview

• Standardized by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C)

• O�cial standard: RFC 2616 (114 pages, 1999, + followups)
• Extensions : WebSockets, new headers, etc.
• New version: HTTP/2 (originally SPDY by Google)

• O�cial standard: RFC 7540 (96 pages, 2015)
• Used by 32% of websites2

• Development version: HTTP/3 (November 2018) from a Google
plan to make TCP faster (QUIC)

2https://w3techs.com/technologies/details/ce-http2/all/all, November 2018
13/32

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all

HTTP queries (1.1)

• From client to server, TCP connection (+TLS)
GET /wiki/Telecom_ParisTech HTTP/1.1
Host: en.wikipedia.org

→ http://en.wikipedia.org/wiki/Telecom_ParisTech

Method Several choices:
GET Most common

POST Forms, side e�ects
HEAD Only metadata

others PUT, DELETE...
Path That of the URL

Version Here, 1.1
Headers More info (cf. later)

Body Give some parameters (with POST)
14/32

http://en.wikipedia.org/wiki/Telecom_ParisTech

HTTP responses

• From server to client, in the same connection
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<!DOCTYPE html>
<html>

<head>
(...)

• Status code and explanations
• Headers
• Response (e.g., page content)

15/32

Most common status codes

2xx Success
• 200: OK

3xx Redirection
• 301: permanent
• 302: temporary

4xx Client error
• 400: syntax error
• 401: authentication required
• 403: forbidden
• 404: not found

5xx Server error
• 500: internal server error

16/32

Paths and parameters

• Paths are typically hierarchical (separator: /)
• Unix conventions: https://en.wikipedia.org/./wiki/../
• Can add key-value parameters
• Example : https://www.google.com/search?q=telecom&ie=
utf-8&oe=utf-8&client=iceweasel-a

• Percent-encoding for special characters:
https://fr.wikipedia.org/wiki/
T%C3%A9l%C3%A9com_ParisTech

17/32

https://en.wikipedia.org/./wiki/../
https://www.google.com/search?q=telecom&ie=utf-8&oe=utf-8&client=iceweasel-a
https://www.google.com/search?q=telecom&ie=utf-8&oe=utf-8&client=iceweasel-a

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

18/32

Client Host header

• Indicate again the original domain name
• Find the correct virtual host
Host: en.wikipedia.org

19/32

Other main client headers

• User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

• Accept and Accept-*: give preferred �letype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8

Accept-Language: en-US,en;q=0.5

• Referer: declare the previous webpage

Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

• Range: request only part of content (e.g., resume a download)

20/32

Other main client headers

• User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

• Accept and Accept-*: give preferred �letype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8

Accept-Language: en-US,en;q=0.5

• Referer: declare the previous webpage

Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

• Range: request only part of content (e.g., resume a download)

20/32

Other main client headers

• User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

• Accept and Accept-*: give preferred �letype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8

Accept-Language: en-US,en;q=0.5

• Referer: declare the previous webpage

Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

• Range: request only part of content (e.g., resume a download)

20/32

Other main client headers

• User-Agent: declare which browser is used

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:17.0)
Gecko/20130810 Firefox/17.0 Iceweasel/17.0.8

• Accept and Accept-*: give preferred �letype and language

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,\alert{/};q=0.8

Accept-Language: en-US,en;q=0.5

• Referer: declare the previous webpage

Referer: https://en.wikipedia.org/wiki/Telecom_ParisTech

• Range: request only part of content (e.g., resume a download)
20/32

Main server headers

• Server: declare the server software
• Content-Type and Content-Length: declare the �le type,
encoding, size (progress bar)

21/32

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

22/32

Basic and digest authentication

• HTTP can authenticate the client with a password (in cleartext)

• Insecure unless HTTPS is used
• Also a Digest authentication where the password is not
exchanged in cleartext

→ Still not very �exible for websites
23/32

Proxies

• Proxy: do or relay queries for someone else
• Can be on the server side or client side
• Main uses:

• Filter or censor content (employer, authoritarian states, schools,
parents, etc.)

• Log the activity, keep a cache
• Anonymize the query. Example: Tor anonymization network

• Di�cult with HTTPS (the proxy no longer sees the content!)

24/32

Content delivery networks (CDNs)

• Ensure that static content can be widely and reliably distributed
• e.g., JSDelivr, BootstrapCDN, Cloud�are, Google Hosted Libraries,
Google Fonts

• Often work together with Internet Service Providers (ISPs)
• Optimize the connection between the CDN datacenter and
content provider

• Often provide bot �ltering, DDOS protection, etc.
• Security implications and subresource integrity
• Also: Facebook’s Instant Articles, and Google AMP

25/32

Caching

• Save the result of a query to avoid doing the query again
• Web browsers usually have a cache
• The server can indicate whether a response should be cached
and for how long
Cache-Control Indicates whether to cache

Expires Expiry date
ETag Version identi�er

• Client :
If-Modified-Since Get the content if modi�ed since some

date
If-None-Match Get the content if the ETag has changed

26/32

Cookies

• No sessions in HTTP
• The server can ask the client to store a value:
Set-Cookie: name=value; option1; option2:

• expires: expiry date (can be in the distant future)
• can limit the scope (domain, path), etc.

• The client will provide the value with every query:
Cookie: name=value

• Of course the client can decide to alter cookies or remove them

27/32

Using cookies

• Storing an opaque session identi�er
• Ensuring that the user remains logged in for a long time
• Privacy risk: can track a user (hence: EU cookie consent)
• Security risk: with a stolen cookie, you can impersonate the user

28/32

Table of Contents

OSI model

Low layers

Higher layers

HTTP

Headers

Other HTTP notions

HTTP 1 vs HTTP 2

29/32

Compression

• With HTTP 1.1, compression is possible if
both the client and server support it
Accept-Encoding: gzip, deflate

• With HTTP 2, even headers can be compressed

30/32

Compression

• With HTTP 1.1, compression is possible if
both the client and server support it
Accept-Encoding: gzip, deflate

• With HTTP 2, even headers can be compressed

30/32

Connection type

• HTTP 1.0 used to close the connection after one query: ine�cient!

• HTTP 1.1: the connection stays open by default (until timeout)
Connection: keep-alive

• Pipelining: send multiple queries and get responses in order
→ Not commonly used because badly supported in practice

• With HTTP 2 you can do multiplexing: send many queries and get
responses in arbitrary order

• With HTTP 2, the server can also push resources to the client
before it requests them

31/32

Connection type

• HTTP 1.0 used to close the connection after one query: ine�cient!
• HTTP 1.1: the connection stays open by default (until timeout)
Connection: keep-alive

• Pipelining: send multiple queries and get responses in order
→ Not commonly used because badly supported in practice

• With HTTP 2 you can do multiplexing: send many queries and get
responses in arbitrary order

• With HTTP 2, the server can also push resources to the client
before it requests them

31/32

Connection type

• HTTP 1.0 used to close the connection after one query: ine�cient!
• HTTP 1.1: the connection stays open by default (until timeout)
Connection: keep-alive

• Pipelining: send multiple queries and get responses in order
→ Not commonly used because badly supported in practice

• With HTTP 2 you can do multiplexing: send many queries and get
responses in arbitrary order

• With HTTP 2, the server can also push resources to the client
before it requests them

31/32

Credits

• Matériel de cours inspiré de notes par Pierre Senellart et Georges
Gouriten

• Merci à Pierre Senellart pour sa relecture

32/32

	OSI model
	

	Low layers
	

	Higher layers
	

	HTTP
	

	Headers
	

	Other HTTP notions
	

	HTTP 1 vs HTTP 2
	

