

Uncertain Data Management Relational Probabilistic Database Models

Antoine Amarilli¹, Silviu Maniu²

December 12th, 2016

¹Télécom ParisTech

²LRI

TID

BID

pc-tables

Conclusion

- Fix a finite set of **possible tuples** of same arity
- A possible world: a subset of the possible tuples
- A (finite) uncertain relation: set of possible worlds

- Fix a finite set of **possible tuples** of same arity
- A possible world: a subset of the possible tuples
- A (finite) uncertain relation: set of possible worlds

	<i>U</i> ₁			U ₂				
date	teacher	room	date	teacher	room			
04	Silviu	C017	04	Silviu	C017			
04	Antoine	C017	04	Antoine	C017			
04	Antoine	C47	04	Antoine	C47			
11	Silviu	C017	11	Silviu	C017			
11	Silviu	C47	11	Silviu	C47			
11	Antoine	C017	11	Antoine	C017			

 $\cdot \; \underset{\text{Support } \mathcal{U}: \; \text{uncertain relation} }{\text{Support } \mathcal{U}: \; \text{uncertain relation} }$

- \cdot Support $\mathcal{U}:$ uncertain relation
- Probability distribution π on \mathcal{U} :

- $\cdot \; \underset{\text{Support } \mathcal{U}: \; \text{uncertain relation} }{\text{Support } \mathcal{U}: \; \text{uncertain relation} }$
- Probability distribution π on \mathcal{U} :
 - + Function from ${\mathcal U}$ to reals in [0,1]
 - It must sum up to 1: $\sum_{I \in \mathcal{U}} \pi(I) = 1$

- $\cdot \; \underset{\text{Support } \mathcal{U}: \; \text{uncertain relation} }{\text{Support } \mathcal{U}: \; \text{uncertain relation} }$
- Probability distribution π on \mathcal{U} :
 - + Function from ${\mathcal U}$ to reals in [0,1]
 - It must sum up to 1: $\sum_{I \in \mathcal{U}} \pi(I) = 1$

	U ₁			U ₂				
date	teacher	room	date	teacher	room			
04	Silviu	C017	04	Silviu	C017			
04	Antoine	C017	04	Antoine	C017			
04	Antoine	C47	04	Antoine	C47			
11	Silviu	C017	11	Silviu	C017			
11	Silviu	C47	11	Silviu	C47			
11	Antoine	C017	11	Antoine	C017			

- $\cdot \; \underset{\text{Support } \mathcal{U}: \; \text{uncertain relation} }{\text{Support } \mathcal{U}: \; \text{uncertain relation} }$
- Probability distribution π on \mathcal{U} :
 - + Function from ${\mathcal U}$ to reals in [0,1]
 - It must sum up to 1: $\sum_{I \in \mathcal{U}} \pi(I) = 1$

	U ₁			U ₂				
date	teacher	room	date	teacher	room			
04	Silviu	C017	04	Silviu	C017			
04	Antoine	C017	04	Antoine	C017			
04	Antoine	C47	04	Antoine	C47			
11	Silviu	C017	11	Silviu	C017			
11	Silviu	C47	11	Silviu	C47			
11	Antoine	C017	11	Antoine	C017			
$\pi(U_1)=$ 0.8				$\pi(U_2)=$ 0.2				

Remember that last time we saw:

- Codd-tables and v-tables and c-tables, with NULLS
- Boolean c-tables, with NULLS only in conditions
 - \rightarrow Boolean variables

Remember that last time we saw:

- Codd-tables and v-tables and c-tables, with NULLS
- Boolean c-tables, with NULLS only in conditions
 - \rightarrow Boolean variables
- $\rightarrow\,$ We focus for probabilities on models like Boolean c-tables
- → Easier to define probabilities on a **finite** space!

- Extend relational algebra operators to **uncertain instances**
- The possible worlds of the result should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

- Extend relational algebra operators to uncertain instances
- The **possible worlds** of the **result** should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

U ₁							
04	S.	C017					
11	S.	C47					
U ₂							
11	А.	C017					

- Extend relational algebra operators to uncertain instances
- The **possible worlds** of the **result** should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

- Extend relational algebra operators to uncertain instances
- The possible worlds of the result should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

- Extend relational algebra operators to uncertain instances
- The possible worlds of the result should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

- Extend relational algebra operators to uncertain instances
- The possible worlds of the result should be...
 - take all **possible worlds** in the supports of the inputs
 - apply the operation and get the **possible outputs**

- Let's adapt relational algebra to probabilistic instances
- The **possible worlds** of the **result** should be...

- Let's adapt relational algebra to **probabilistic instances**
- The **possible worlds** of the **result** should be...
 - take all **possible worlds** of the inputs
 - apply the operation and get a **possible output**

- Let's adapt relational algebra to probabilistic instances
- The **possible worlds** of the **result** should be...
 - take all **possible worlds** of the inputs
 - apply the operation and get a **possible output**
- The **probability** of each possible world should be...
 - consider all input possible worlds that give it
 - sum up their probabilities

	U ₁	I	
04	S.	C017	
11	S.	C47	
	U_2		
11	A.	C017	

	U 1	I	_
04	S.	C017	
11	S.	C47	
			U
	U ₂		
11	Α.	C017	

U ₁		V ₁				
04 S. C017		• 1				
11 S. C47						
$\pi(U_1) = 0.8$	U	$\pi(V_1)=$ 0.9				
U ₂	-	V ₂				
11 A. CO17		11 A. CO17				
$\pi(U_2) = 0.2$		$\pi(V_2) = 0.1$				

<i>U</i> ₁		V ₁	
04 S. C017		v 1	
11 S. C47			
$\pi(U_1) = 0.8$	·	$\pi(V_1)=$ 0.9	_
U ₂	-	V ₂	
11 A. CO17		11 A. CO17	
		$\pi(V_2) = 0.1$	
$\pi(U_2)=$ 0.2		(-/	

					l	<i>N</i> ₁
				04	S.	C017
U ₁				11	S.	C47
		V ₁	-			
04 S. C017						
11 S. C47		$\pi(V_1) = 0.9$	-			
$\pi(U_1)=$ 0.8	\bigcup		=			
U_2		V ₂	-			
11 A. CO17		11 A. Co17				
TT A. COT/		$\pi(V_2) = 0.1$	-			
$\pi(U_2)=$ 0.2						

					l	<i>N</i> ₁
				04	S.	C017
11				11	S.	C47
<u> </u>		V ₁				
04 S. C017			-		V	V ₂
11 S. C47		$\pi(V_1) = 0.9$	-	04	S.	C017
$\pi(U_1)=$ 0.8	\cup		=	11	S.	C47
U_2		V ₂	_	11	А.	C017
		11 A. CO17				
11 A. CO17		$\pi(V_2) = 0.1$	-			
$\pi(U_2)=$ 0.2		<i>(</i> (<i>v</i> ₂) = 0.1				

				W ₁		
				04	S.	C017
U ₁				11	S.	C47
U ₁		V ₁				
04 S. C017			-		l	N_2
11 S. C47		$\pi(V_1) = 0.9$	-	0/	ς	C017
$\pi(U_1) = 0.8$	IJ	$\pi(v_1) = 0.9$	=			C017 C47
U_2	0	V ₂	_			C017
		11 A. CO17				
11 A. CO17		$\pi(V_2) = 0.1$	-		I	N ₃
$\pi(U_2) = 0.2$		(- /		11	A.	C017

				W ₁		
				04	S.	C017
U ₁				11	S.	C47
01		V ₁		π(Ν	V ₁) =	= 0.8 · 0.9
04 S. C017			-		ĺ	V_2
11 S. C47		$\pi(V_1) = 0.9$	-	04	S	C017
$\pi(U_1) = 0.8$	\bigcup	n(0,1) = 0.9	=			C47
U ₂		V ₂	_			CO17
11 A. CO17		11 A. CO17				
		$\pi(V_2) = 0.1$	-		l	N ₃
$\pi(U_2) = 0.2$		< - <i>/</i>		11	А.	C017

				<i>W</i> ₁
				04 S. C017
U ₁				11 S. C47
<u> </u>		<i>V</i> ₁		$\pi(W_1) = 0.8 \cdot 0.9$
04 S. C017			-	W ₂
11 S. C47		()	-	
$\pi(U_1) = 0.8$		$\pi(V_1)=$ 0.9		04 S. C017
$\pi(0_1) = 0.0$	\cup		=	11 S. C47
U_2		V ₂	_	11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1) = 0.8 \cdot 0.1$
		$\pi(V_2) = 0.1$	-	W ₃
$\pi(U_2) = 0.2$				11 A. CO17

				<i>W</i> ₁
				04 S. C017
U ₁				11 S. C47
		V ₁		$\pi(W_1) = 0.8 \cdot 0.9$
04 S. C017			-	W ₂
11 S. C47		$\pi(V_1) = 0.9$	-	04 S. C017
$\pi(U_1)=$ 0.8	\cup		=	11 S. C47
U ₂		V ₂	_	11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1) = 0.8 \cdot 0.1$
		$\pi(V_2) = 0.1$	-	W ₃
$\pi(U_2) = 0.2$		~ ~		11 A. CO17
				$\pi(W_1) = 0.2 \cdot 0.9$

				W ₁
				04 S. C017
U ₁				11 S. C47
01		V ₁		$\pi(W_1) = 0.8 \cdot 0.9$
04 S. C017			-	W ₂
11 S. C47	 U	$\pi(V_1) = 0.9$		04 S. C017
$\pi(U_1)=$ 0.8				11 S. C47
U ₂		V ₂	-	11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1) = 0.8 \cdot 0.1$
		$\pi(V_2) = 0.1$	-	<i>W</i> ₃
$\pi(U_2) = 0.2$				11 A. Co17
				$\pi(W_1) = 0.2 \cdot 0.9$
				+0.2 · 0.1

• Remember that if we have **N** possible tuples

- $\cdot\,$ Remember that if we have N possible tuples
 - \rightarrow there are 2^N possible instances

Representation system

- $\cdot\,$ Remember that if we have N possible tuples
 - $\rightarrow\,$ there are $\mathbf{2^{\textit{N}}}$ possible instances
 - $\rightarrow\,$ there are $\mathbf{2^{2^{N}}}$ possible uncertain instances
- Remember that if we have **N** possible tuples
 - $\rightarrow\,$ there are $\mathbf{2^{\textit{N}}}$ possible instances
 - $\rightarrow\,$ there are $\mathbf{2^{2^{N}}}$ possible uncertain instances
 - $\rightarrow~writing~out$ an uncertain instance is exponential

- Remember that if we have **N** possible tuples
 - $\rightarrow\,$ there are $\mathbf{2^{\textit{N}}}$ possible instances
 - $\rightarrow\,$ there are $\mathbf{2^{2^{N}}}$ possible uncertain instances
 - $\rightarrow~writing~out$ an uncertain instance is exponential
- → Last time we saw **Boolean c-tables** as a **concise way** to **represent** uncertain instances

- Remember that if we have **N** possible tuples
 - $\rightarrow\,$ there are $\mathbf{2^{\textit{N}}}$ possible instances
 - \rightarrow there are 2^{2^N} possible uncertain instances
 - \rightarrow writing out an uncertain instance is exponential
- → Last time we saw Boolean c-tables as a concise way to represent uncertain instances
 - For probabilistic instances:
 - $\rightarrow\,$ there are <code>infinitely many</code> possible instances
 - $\rightarrow\mbox{ writing out}$ a probabilistic instance is still exponential

- Remember that if we have **N** possible tuples
 - $\rightarrow\,$ there are $\mathbf{2^{\textit{N}}}$ possible instances
 - \rightarrow there are 2^{2^N} possible uncertain instances
 - $\rightarrow~writing~out$ an uncertain instance is exponential
- → Last time we saw Boolean c-tables as a concise way to represent uncertain instances
 - For probabilistic instances:
 - $\rightarrow\,$ there are <code>infinitely many</code> possible instances
 - $\rightarrow~\text{writing out}$ a probabilistic instance is still exponential
- → How to **represent** probabilistic instances?

Probabilistic instances

TID

BID

pc-tables

Conclusion

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

	U	
date	teacher	room
04	Silviu	C017
04	Antoine	C017
11	Silviu	C017

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

	U		
date	teacher	room	
04	Silviu	C017	0.8
04	Antoine	C017	0.2
11	Silviu	C017	1

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

	U		
date	teacher	room	
04	Silviu	C017	0.8
04	Antoine	C017	0.2
11	Silviu	C017	1

→ Assume independence between tuples (Silviu and Antoine may teach at the same time)

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U		
date	teacher	room	
04	Silviu	C017	0.8
04	Antoine	C017	0.2
11	Silviu	C017	1

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U		U			
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8			
04	Antoine	C017	0.2			
11	Silviu	C017	1			

- Each tuple is kept or discarded with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2			
11	Silviu	C017	1			

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1			

- Each tuple is kept or discarded with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

- Each tuple is kept or discarded with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

What's the **probability** of this outcome?

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

What's the **probability** of this outcome?

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

What's the **probability** of this outcome?

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

What's the **probability** of this outcome?

0.8 imes (1 - 0.2)

- Each tuple is **kept** or **discarded** with the probability
- Probabilistic choices are **independent** across tuples

	U				U	
date	teacher	room		date	teacher	room
04	Silviu	C017	0.8	04	Silviu	C017
04	Antoine	C017	0.2	04	Antoine	C017
11	Silviu	C017	1	11	Silviu	C017

What's the **probability** of this outcome?

 $0.8\times(1-0.2)\times1$

- The semantics of a TID instance is a probabilistic instance...
 - \rightarrow the **possible worlds** are the subsets

The semantics of a TID instance is a probabilistic instance...

- \rightarrow the **possible worlds** are the subsets
 - ightarrow always keeping tuples with probability 1

The semantics of a TID instance is a probabilistic instance...

- $\rightarrow\,$ the <code>possible worlds</code> are the subsets
 - $\rightarrow\,$ always keeping tuples with probability 1

Formally, for a TID instance *I*, the **probability** of *J*:

The semantics of a TID instance is a probabilistic instance...

- ightarrow the **possible worlds** are the subsets
 - ightarrow always keeping tuples with probability 1

Formally, for a TID instance *I*, the **probability** of *J*:

- we must have $J \subseteq I$
- product of pt for each tuple t kept in J
- product of $1 p_t$ for each tuple **t** not kept in J

• o tuples: vacuous

- o tuples: vacuous
- 1 tuple: p + (1 p) = 1

- o tuples: vacuous
- 1 tuple: p + (1 p) = 1
- 2 tuples: $p_1p_2 + p_1(1-p_2) + (1-p_1)p_2 + (1-p_1)(1-p_2)$

- o tuples: vacuous
- 1 tuple: p + (1 p) = 1
- 2 tuples: $p_1p_2 + p_1(1-p_2) + (1-p_1)p_2 + (1-p_1)(1-p_2)$ $\rightarrow p_1(p_2 + (1-p_2)) + (1-p_1)(p_2 + (1-p_2))$

- o tuples: vacuous
- 1 tuple: p + (1 p) = 1

• 2 tuples:
$$p_1p_2 + p_1(1-p_2) + (1-p_1)p_2 + (1-p_1)(1-p_2)$$

 $\rightarrow p_1(p_2 + (1-p_2)) + (1-p_1)(p_2 + (1-p_2))$
 $\rightarrow p_1 \times 1 + (1-p_1) \times 1$

• o tuples: vacuous

• 1 tuple:
$$p + (1 - p) = 1$$

· 2 tuples:
$$p_1p_2 + p_1(1 - p_2) + (1 - p_1)p_2 + (1 - p_1)(1 - p_2)$$

→ $p_1(p_2 + (1 - p_2)) + (1 - p_1)(p_2 + (1 - p_2))$
→ $p_1 \times 1 + (1 - p_1) \times 1$
→ 1

• o tuples: vacuous

• 1 tuple:
$$p + (1 - p) = 1$$

• 2 tuples:
$$p_1p_2 + p_1(1 - p_2) + (1 - p_1)p_2 + (1 - p_1)(1 - p_2)$$

 $\rightarrow p_1(p_2 + (1 - p_2)) + (1 - p_1)(p_2 + (1 - p_2))$
 $\rightarrow p_1 \times 1 + (1 - p_1) \times 1$
 $\rightarrow 1$

• More tuples: $p_1(\cdots) + (1 - p_1)(\cdots)$ and induction hypothesis

Uncertain instance: set of possible worlds

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language,
Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework,

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query can also be represented in the framework.

Uncertain instance: set of possible worlds Uncertainty framework: concise way to represent uncertain instances Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query can also be represented in the framework.

$\rightarrow\,$ Are TID instances a strong representation system?

U				
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1

 $\sigma_{\text{teacher}="Silviu"}(U)$ date teacher room

U				
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	

$\sigma_{ t teacher="Silviu"}(U)$				
date	teacher	room		
04	Silviu	C47	0.8	
11	Silviu	C47	1	

U				
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	

$\sigma_{ t teacher="Silviu"}(U)$				
date	teacher	room		
04	Silviu	C47	0.8	
11	Silviu	C47	1	

 $\rightarrow\,$ Is this correct? ...

U				
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	

$\sigma_{ t teacher="Silviu"}(oldsymbol{U})$				
date	teacher	room		
04	Silviu	C47	0.8	
11	Silviu	C47	1	

 $\rightarrow\,$ Is this correct? ... So far, so good.

U				
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	
11	Antoine	C47	0.1	
18	Silviu	C47	0.9	

	U			
date	teacher	room		
04	Silviu	C47	0.8	
04	Antoine	C47	0.2	
11	Silviu	C47	1	
11	Antoine	C47	0.1	
18	Silviu	C47	0.9	
$\pi_{date}(U)$				
date				

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{\rm date}$ ((U)	
date			
04			
11			
18			

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{ m date}$ ((U)	
date			
04			
11			
18	0.9		

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{ m date}$ ((U)	
date			
04			
11	1		
18	0.9		

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{ m date}$ ((U)	
date			
04	1 - (1 - 0	D.2) · (1 -	- 0.8)
11	1		
18	0.9		

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{ m date}$ ((U)	
date			
04	1 - (1 - 0).2) · (1 -	- 0.8)
11	1		
18	0.9		

 $\rightarrow\,$ Is this correct? ...

	U		
date	teacher	room	
04	Silviu	C47	0.8
04	Antoine	C47	0.2
11	Silviu	C47	1
11	Antoine	C47	0.1
18	Silviu	C47	0.9
	$\pi_{ m date}$ ((U)	
date			
04	1 - (1 - 0).2) · (1 -	- 0.8)
11	1		
18	0.9		

 $\rightarrow\,$ Is this correct? ... So far, so good.

U					
date	teacher	room			
04	Silviu	C47	0.8		
04	Antoine	C47	0.2		

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		
04	Antoine	C47	0.2		

U × Repair

date teacher room cause

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

U imes Repair

date	teacher	room	cause
04	Silviu	C47	leopard
04	Antoine	C47	leopard

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

date	teacher	room	cause	
04	Silviu	C47	leopard	0.8 imes 0.1
04	Antoine	C47	leopard	0.2 imes 0.1

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

$U \times \text{Repair}$

date	teacher	room	cause	
04	Silviu	C47	leopard	0.8 × 0.1
04	Antoine	C47	leopard	0.2 imes 0.1

 $\rightarrow\,$ Is this correct?

Implementing product ... OR NOT!

U			Repair		
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

$U \times \text{Repair}$

date	teacher	room	cause	
04	Silviu	C47	leopard	0.8 × 0.1
04	Antoine	C47	leopard	0.2 imes 0.1

 $\rightarrow\,$ Is this correct?

 \rightarrow It's **WRONG**!

Why is it wrong?

U					
date	teacher	room			
04	Silviu	C47	1		
04	Antoine	C47	1		

U			Repair			
date	teacher	room		room	cause	
04	Silviu	C47	1	C47	leopard	1/2
04	Antoine	C47	1			

U			Repair			
date	teacher	room		room	cause	
04	Silviu	C47	1	C47	leopard	1/2
04	Antoine	C47	1			

date	teacher	room	cause
04	Silviu	C47	leopard
04	Antoine	C47	leopard

U			Repair			
date	teacher	room		room	cause	
04	Silviu	C47	1	C47	leopard	1/2
04	Antoine	C47	1			

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

U			Repair			
date	teacher	room		room	cause	
04	Silviu	C47	1	C47	leopard	1/2
04	Antoine	C47	1			

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

- $\rightarrow~$ The two tuples are not independent!
- $\rightarrow\,$ The first is there iff the second is there.

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

$U \times \text{Repair}$

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

 $\pi_{room}(U \times \text{Repair})$

room

C47

U × Repair

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

 $\pi_{\text{room}}(U \times \text{Repair})$

room

C47 $1 - (1 - 1/2) \times (1 - 1/2)$

U × Repair

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

 $\pi_{\text{room}}(U \times \text{Repair})$

room

C47
$$1 - (1 - 1/2) \times (1 - 1/2)$$

 \rightarrow Probability of 3/4...

U × Repair

date	teacher	room	cause	
04	Silviu	C47	leopard	1/2
04	Antoine	C47	leopard	1/2

 $\pi_{\mathbf{room}}(U \times \text{Repair})$

room

C47 $1 - (1 - 1/2) \times (1 - 1/2)$

- \rightarrow Probability of 3/4...
- \rightarrow But the leopard had probability 1/2!

- Remember how Codd tables required named nulls?
- The result of a query on TID may **not** be a TID
- $\rightarrow\,$ We will see that the correlations can be ${\rm complex}$

- Remember how Codd tables required named nulls?
- The result of a query on TID may **not** be a TID
- ightarrow We will see that the correlations can be complex
 - How to **evaluate** queries on a TID then?
- $\rightarrow\,$ List all <code>possible worlds</code> and count the probabilities
| | U | | |
|------|---------|------|-----|
| date | teacher | room | |
| 04 | Silviu | C47 | 0.8 |
| 04 | Antoine | C47 | 0.2 |

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

 $\pi_{\text{room}}(U \times \text{Repair})$

room

C47

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

 $\pi_{\mathbf{room}}(U \times \operatorname{Repair})$

room

C47 ???

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

$\pi_{\mathbf{room}}(\mathbf{U} imes Repair)$					
room					
C47	???				

• Either there is no leopard and then no result...

	U					Repair
date	teacher	room		I	room	cause
04	Silviu	C47	0.8	(C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2	_		

π room(U × Repair)					
room					
C47	???				

- Either there is no leopard and then no result...
- Or there is a leopard and then...

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

π_{room}(U × Repair) room C47 ???

- Either there is no leopard and then no result...
- Or there is a leopard and then...
 - · Non-empty result:

	U			_		Repair
date	teacher	room			room	cause
04	Silviu	C47	0.8	-	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2	-		

π_{room}(U × Repair) room C47 ???

- Either there is no leopard and then no result...
- Or there is a leopard and then...

• Non-empty result: 1 - (1 - 0.8)(1 - 0.2)

	U				Repair
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

 $\frac{\pi_{room}(U \times \text{Repair})}{room}$

- Either there is no leopard and then no result...
- Or there is a leopard and then...

• Non-empty result: 1 - (1 - 0.8)(1 - 0.2) = 0.84

	U			_		Repair
date	teacher	room			room	cause
04	Silviu	C47	0.8	-	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2	-		

 $\pi_{\mathbf{room}}(U \times \operatorname{Repair})$

room

C47

- Either there is no leopard and then no result...
- Or there is a leopard and then...
 - Non-empty result: 1 (1 0.8)(1 0.2) = 0.84
- The query probability is:

U				Repair	
date	teacher	room		room	cause
04	Silviu	C47	0.8	C47	leopard <mark>0.1</mark>
04	Antoine	C47	0.2		

π_{room}(U × Repair) room C47 0.084

- Either there is no leopard and then no result...
- Or there is a leopard and then...
 - Non-empty result: 1 (1 0.8)(1 0.2) = 0.84
- \cdot The query probability is: 0.1 \times 0.84

Expressiveness of TID

Can we represent **all** probabilistic instances with TID?

"The class is taught by Antoine or Silviu or no one but **not both**"

U₁ teacher Silviu

 $\pi(U_1) = 0.8$

U ₁	U ₂
teacher	teacher
Silviu	Antoine
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$

<i>U</i> ₁	U ₂	U_3	
teacher	teacher	teacher	
Silviu	Antoine		
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$	

<u> </u>	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Silviu	Antoine	
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$
		U
	teac	:her
	Anto	pine
	Silvi	u

<u> </u>	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Silviu	Antoine	
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3)=$ 0.1
		U
	tea	cher
	Ant Silv	oine <mark>0.1</mark> iu

<u> </u>	U_2		U ₃	
teacher	teacher	te	teacher	
Silviu	Antoine			
$\pi(U_1) = 0.8$	$\pi(U_2) =$	0.1 π	$(U_3) =$	0.1
		U		
		teacher		
		Antoine	0.1	
		Silviu	0.8	

"The class is taught by Antoine or Silviu or no one but **not both**"

<u> </u>	U ₂		<i>U</i> ₃	
teacher	teacher	t	teacher	
Silviu	Antoine			
$\pi(U_1) = 0.8$	$\pi(U_2) =$	0.1 π	$(U_3) =$	0.1
		U		_
		teacher		
		Antoine	0.1	-
		Silviu	0.8	

 \rightarrow We **cannot** forbid that both teach the class!

Probabilistic instances

TID

BID

pc-tables

Conclusion

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
mon	day	teacher	room
Jan	04	Silviu	C017
Jan	04	Antoine	C017
Jan	11	Silviu	C47
Jan	11	Antoine	C017

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
mon	day	teacher	room
Jan	04	Silviu	C017
Jan	04	Antoine	C017
Jan	11	Silviu	C47
Jan	11	Antoine	C017

• The **blocks** are the sets of tuples with the same key

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
mon	day	teacher	room
Jan	04	Silviu	C017
Jan	04	Antoine	C017
Jan	11	Silviu	C47
Jan	11	Antoine	C017

- The **blocks** are the sets of tuples with the same key
- Each tuple has a probability

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	0.9
Jan	04	Antoine	C017	0.1
Jan	11	Silviu	C47	0.8
Jan	11	Antoine	C017	0.1

- The **blocks** are the sets of tuples with the same key
- Each tuple has a probability

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	0.9
Jan	04	Antoine	C017	0.1
Jan	11	Silviu	C47	0.8
Jan	11	Antoine	C017	0.1

- The **blocks** are the sets of tuples with the same key
- Each tuple has a probability
- Probabilities must sum to \leq 1 in each block

U

mon	day	teacher	room	
Jan	04	Silviu	C017	0.9
Jan	04	Antoine	C017	0.1
Jan	11	Silviu	C47	0.8
Jan	11	Antoine	C017	0.1

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	0.9
Jan	04	Antoine	C017	0.1
Jan	11	Silviu	C47	0.8
Jan	11	Antoine	C017	0.1

• For each **block**:

U								
mon	day	teacher	room					
Jan	04	Silviu	C017	0.9				
Jan	04	Antoine	C017	0.1				
Jan	11	Silviu	C47	0.8				
Jan	11	Antoine	C017	0.1				

- For each **block**:
 - Pick **one** tuple according to probabilities

U								
mon	day	teacher	room					
Jan	04	Silviu	C017	0.9				
Jan	04	Antoine	C017	0.1				
Jan	11	Silviu	C47	0.8				
Jan	11	Antoine	C017	0.1				

- For each **block**:
 - Pick **one** tuple according to probabilities
 - + Possibly **no** tuple if probabilities are < 1

U							
mon	day	teacher	room				
Jan	04	Silviu	C017	0.9			
Jan	04	Antoine	C017	0.1			
Jan	11	Silviu	C47	0.8			
Jan	11	Antoine	C017	0.1			

- For each **block**:
 - Pick **one** tuple according to probabilities
 - Possibly **no** tuple if probabilities are < 1
- ightarrow Do choices **independently** in each block

		U					U	
mon	day	teacher	room		mon	day	teacher	room
Jan Jan	-	Silviu Antoine		-				
Jan Jan Jan	11	Silviu Antoine	C47					

- For each **block**:
 - Pick one tuple according to probabilities
 - Possibly **no** tuple if probabilities are < 1
- $\rightarrow\,$ Do choices independently in each block

		U					U	
mon	day	teacher	room		mon	day	teacher	room
Jan		Silviu						C017
Jan	04	Antoine	C017	0.1	Jan	04	Antoine	C017
Jan	11	Silviu	C47	0.8				
Jan	11	Antoine	C017	0.1				

- For each **block**:
 - Pick **one** tuple according to probabilities
 - Possibly **no** tuple if probabilities are < 1
- $\rightarrow\,$ Do choices independently in each block

		U		 		U	
mon	day	teacher	room	mon	day	teacher	room
Jan Jan		Silviu Antoine				Silviu Antoine	CO17 CO17
Jan Jan	11 11					Silviu Antoine	

- For each **block**:
 - Pick **one** tuple according to probabilities
 - Possibly **no** tuple if probabilities are < 1
- $\rightarrow\,$ Do choices independently in each block

• Each TID can be expressed as a BID...
- $\cdot\,$ Each TID can be expressed as a BID...
 - \rightarrow Take <u>all attributes</u> as **key**
 - $\rightarrow~$ Each block contains a single tuple

- $\cdot\,$ Each TID can be expressed as a BID...
 - \rightarrow Take <u>all attributes</u> as **key**
 - $\rightarrow~$ Each block contains a single tuple

U			
<u>date</u>	late <u>teacher</u> roo		
04	Silviu	C017	0.8
04	Antoine	C017	0.2
11	Silviu	C017	1

Expressiveness of BID

Can we represent **all** probabilistic instances with BID?

"The class is taught by exactly two among Antoine, Silviu, Fabian."

 U_{1} **teacher**Silviu
Fabian $\pi(U_{1}) = 0.8$

<u> </u>	U ₂
teacher	teacher
Silviu	Antoine
Fabian	Fabian
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$

<u> </u>	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Silviu	Antoine	Antoine
Fabian	Fabian	Silviu
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$

"The class is taught by exactly two among Antoine, Silviu, Fabian."

U ₁	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Silviu	Antoine	Antoine
Fabian	Fabian	Silviu
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$

 \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**

U ₁	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Silviu	Antoine	Antoine
Fabian	Fabian	Silviu
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one tuple**

<u> </u>	U ₂	U_3
teacher	teacher	teacher
Silviu	Antoine	Antoine
Fabian	Fabian	Silviu
$\pi(U_1) = 0.8$	$\pi(U_2) = 0.1$	$\pi(U_3) = 0.1$

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one tuple**
- ightarrow We cannot represent this probabilistic instance as a BID

Probabilistic instances

TID

BID

pc-tables

Conclusion

Remember Boolean c-tables:

- Set of Boolean variables x_1, x_2, \ldots
- Each tuple has a condition: Variables, Boolean operators

Remember Boolean c-tables:

- Set of Boolean variables x_1, x_2, \ldots
- Each tuple has a condition: Variables, Boolean operators

date	teacher	room	
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \wedge \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg X_2 \land X_1$

- **x**₁ Silviu is sick
- x_2 Projector in CO17 is working

- A Boolean valuation ν of the x_i maps each to o or 1
 - + Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations

- A Boolean valuation ν of the x_i maps each to o or 1
 - + Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations
- The **probability** of valuation ν is:

- A Boolean valuation ν of the x_i maps each to o or 1
 - Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations
- The **probability** of valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$

- A Boolean valuation ν of the x_i maps each to o or 1
 - Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations
- The **probability** of valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$

- A Boolean valuation ν of the x_i maps each to o or 1
 - Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations
- The **probability** of valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - Sounds familiar?

Formally:

- A Boolean valuation ν of the x_i maps each to o or 1
 - Possible world of the Boolean c-instance under ν
 - The **possible worlds** are the worlds over all valuations
- The **probability** of valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - Sounds familiar?

 \rightarrow Yeah, it's like TID instances!

date	teacher	room	
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \wedge \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg x_2 \land x_1$

date	teacher	room	
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \wedge \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg x_2 \land x_1$

x₁ Silviu is sick

 x_2 Projector in CO17 is working

date	teacher	room	
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \wedge \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg X_2 \land X_1$

- x₁ Silviu is sick
 - \rightarrow Probability 0.1
- x_2 Projector in CO17 is working
 - \rightarrow Probability 0.2

date	teacher	room	<i>X</i> ₁ : 0.1, <i>X</i> ₂ : 0.2
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \land \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg X_2 \land X_1$

date	teacher	room	<i>X</i> ₁ : 0.1, <i>X</i> ₂ : 0.2
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \land \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg x_2 \wedge x_1$

• Take ν mapping x_1 to 0 and x_2 to 1

date	teacher	room	<i>X</i> ₁ : 0.1, <i>X</i> ₂ : 0.2
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \land \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg X_2 \land \neg X_1$
11	Antoine	C47	$\neg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν :

date	teacher	room	X ₁ : 0.1, X ₂ : 0.2
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \wedge \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg x_2 \land \neg x_1$
11	Antoine	C47	$\neg X_2 \land X_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : $(1 0.1) \times 0.2 = 0.18$

date	teacher	room	X_1 : 0.1, X_2 : 0.2
04	Silviu	C42	$\neg X_1$
04	Antoine	C42	<i>X</i> ₁
11	Silviu	C017	$X_2 \land \neg X_1$
11	Antoine	C017	$X_2 \wedge X_1$
11	Silviu	C47	$\neg x_2 \land \neg x_1$
11	Antoine	C47	$\neg X_2 \land X_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : $(1 0.1) \times 0.2 = 0.18$
- Evaluate the **conditions**

date	teacher	room	X_1 : 0.1, X_2 : 0.2	date	teacher	room
04	Silviu	C42	$\neg X_1$	04	Silviu	C42
04	Antoine	C42	<i>X</i> ₁	04	Antoine	C42
11	Silviu	C017	$X_2 \land \neg X_1$	11	Silviu	C017
11	Antoine	C017	$X_2 \wedge X_1$	11	Antoine	C017
11	Silviu	C47	$\neg X_2 \land \neg X_1$	11	Silviu	C47
11	Antoine	C47	$\neg X_2 \land X_1$	11	Antoine	C47

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : $(1 0.1) \times 0.2 = 0.18$
- Evaluate the **conditions**

date	teacher	room	<i>X</i> ₁ : 0.1, <i>X</i> ₂ : 0.2	date	teacher	room
04	Silviu	C42	$\neg X_1$	04	Silviu	C42
04	Antoine	C42	<i>X</i> ₁	04	Antoine	C42
11	Silviu	C017	$X_2 \land \neg X_1$	11	Silviu	C017
11	Antoine	C017	$X_2 \wedge X_1$	11	Antoine	C017
11	Silviu	C47	$\neg X_2 \land \neg X_1$	11	Silviu	C47
11	Antoine	C47	$\neg x_2 \land x_1$	11	Antoine	C47

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : $(1 0.1) \times 0.2 = 0.18$
- Evaluate the conditions
- \rightarrow Probability of possible world: sum over the valuations

date	teacher	room	<i>X</i> ₁ : 0.1, <i>X</i> ₂ : 0.2	date	teacher	room
04	Silviu	C42	$\neg X_1$	04	Silviu	C42
04	Antoine	C42	<i>X</i> ₁	04	Antoine	C42
11	Silviu	C017	$X_2 \land \neg X_1$	11	Silviu	C017
11	Antoine	C017	$X_2 \wedge X_1$	11	Antoine	C017
11	Silviu	C47	$\neg X_2 \land \neg X_1$	11	Silviu	C47
11	Antoine	C47	$\neg x_2 \land x_1$	11	Antoine	C47

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : $(1 0.1) \times 0.2 = 0.18$
- Evaluate the conditions
- \rightarrow Probability of possible world: sum over the valuations
 - ightarrow Here: **only** this valuation, 0.18

Give each tuple its **own** variable:

U					
date	teacher	room			
04	Silviu	C017			
04	Antoine	C017			
11	Silviu	C017			

Give each tuple its **own** variable:

U					
date	teacher	room			
04	Silviu	C017	Х ₁		
04	Antoine	C017	X ₂		
11	Silviu	C017	<i>X</i> ₃		

Give each tuple its own variable:

	U		
date	teacher	room	
04	Silviu	C017	<i>X</i> ₁
04	Antoine	C017	X ₂
11	Silviu	C017	<i>X</i> ₃

 \rightarrow Give each variable the probability of the tuple

pc-tables capture mutually exclusive

• Remember non-Boolean c-tables

• Remember non-Boolean c-tables

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>X</i> = 1
Jan	04	Antoine	C017	<i>X</i> = 2
Jan	04	Fabian	C017	X = 3
Remember non-Boolean c-tables

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>X</i> = 1
Jan	04	Antoine	C017	<i>X</i> = 2
Jan	04	Fabian	C017	X = 3

• Give a probability to each value of x, summing up to 1

Remember non-Boolean c-tables

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>X</i> = 1
Jan	04	Antoine	C017	<i>X</i> = 2
Jan	04	Fabian	C017	X = 3

- Give a probability to each value of x, summing up to 1 \rightarrow Example: x has probability:
 - 0.8 to be 1
 - 0.1 to be 2
 - 0.1 to be 3

Remember non-Boolean c-tables

U				
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>X</i> = 1
Jan	04	Antoine	C017	<i>X</i> = 2
Jan	04	Fabian	C017	X = 3

- Give a probability to each value of x, summing up to 1 \rightarrow Example: x has probability:
 - **0.8** to be 1
 - 0.1 to be 2
 - 0.1 to be 3
- Remember our rewriting from non-Boolean to Boolean...

Reminder: rewriting non-Boolean to Boolean

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>X</i> = 00
Jan	04	Antoine	C017	<i>X</i> = 01
Jan	04	Fabian	C017	<i>X</i> = 10

Reminder: rewriting non-Boolean to Boolean

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>x</i> = 00
Jan	04	Antoine	C017	<i>X</i> = 01
Jan	04	Fabian	C017	<i>X</i> = 10

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	$\neg X_1 \land \neg X_2$
Jan	04	Antoine	C017	$\neg x_1 \wedge x_2$
Jan	04	Fabian	C017	$X_1 \wedge \neg X_2$

Reminder: rewriting non-Boolean to Boolean

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	<i>x</i> = 00
Jan	04	Antoine	C017	<i>X</i> = 01
Jan	04	Fabian	C017	<i>X</i> = 10

		U		
mon	day	teacher	room	
Jan	04	Silviu	C017	$\neg X_1 \land \neg X_2$
Jan	04	Antoine	C017	$\neg X_1 \land X_2$
Jan	04	Fabian	C017	$X_1 \land \neg X_2$

 \rightarrow How to choose the **probabilities?**

• We start with the **probabilities**:

- x = oo has probability 0.8
- x = 01 has probability 0.1
- x = 10 has probability 0.1
- $\cdot x = 11$ has probability o

- We start with the **probabilities**:
 - x = oo has probability 0.8
 - x = 01 has probability 0.1
 - x = 10 has probability 0.1
 - x = 11 has probability o
- See the rewriting as a **decision tree**: **Either** the first bit is 0 **or** it is 1:
 - if the first bit is 0, then **either** the second is 0 or it is 1
 - if the first bit is 1, then **either** the second is 0 or it is 1

- We start with the **probabilities**:
 - x = oo has probability 0.8
 - x = 01 has probability 0.1
 - x = 10 has probability 0.1
 - x = 11 has probability o
- See the rewriting as a **decision tree**: **Either** the first bit is 0 **or** it is 1:
 - if the first bit is 0, then **either** the second is 0 or it is 1
 - if the first bit is 1, then **either** the second is 0 or it is 1
- Use variable x_1 for the first choice, proba 0.1
 - If $x_1 = 0$ use variable x_2 for the second choice, proba...

- We start with the **probabilities**:
 - x = oo has probability 0.8
 - x = 01 has probability 0.1
 - x = 10 has probability 0.1
 - x = 11 has probability o
- See the rewriting as a **decision tree**: **Either** the first bit is 0 **or** it is 1:
 - if the first bit is 0, then **either** the second is 0 or it is 1
 - if the first bit is 1, then **either** the second is 0 or it is 1
- Use variable x₁ for the first choice, proba 0.1
 - If $x_1 = 0$ use variable x_2 for the second choice, proba... 1/9

- We start with the **probabilities**:
 - x = oo has probability 0.8
 - x = 01 has probability 0.1
 - x = 10 has probability 0.1
 - x = 11 has probability o
- See the rewriting as a **decision tree**: **Either** the first bit is 0 **or** it is 1:
 - if the first bit is 0, then **either** the second is 0 or it is 1
 - if the first bit is 1, then **either** the second is 0 or it is 1
- Use variable x₁ for the first choice, proba 0.1
 - If $x_1 = 0$ use variable x_2 for the second choice, proba... 1/9
 - If $x_1 = 1$ use variable x'_2 for the second choice, proba...

- We start with the **probabilities**:
 - x = oo has probability 0.8
 - x = 01 has probability 0.1
 - x = 10 has probability 0.1
 - x = 11 has probability o
- See the rewriting as a **decision tree**: **Either** the first bit is 0 **or** it is 1:
 - if the first bit is 0, then **either** the second is 0 or it is 1
 - if the first bit is 1, then **either** the second is 0 or it is 1
- Use variable x₁ for the first choice, proba 0.1
 - If $x_1 = 0$ use variable x_2 for the second choice, proba... 1/9
 - If $x_1 = 1$ use variable x'_2 for the second choice, proba... O

Converting mutually exclusive to pc-tables

mon	day	teacher	room	
Jan	04	Silviu	C017	<i>x</i> = 00
Jan	04	Antoine	C017	<i>X</i> = 01
Jan	04	Fabian	C017	<i>X</i> = 10

• Probabilities: x has proba 0.8 to be 1, 0.1 to be 2, 0.1 to be 3 \rightarrow Rewriting:

Converting mutually exclusive to pc-tables

mon	day	teacher	room	
Jan	04	Silviu	C017	<i>x</i> = 00
Jan	04	Antoine	C017	<i>X</i> = 01
Jan	04	Fabian	C017	<i>X</i> = 10

• Probabilities: x has proba 0.8 to be 1, 0.1 to be 2, 0.1 to be 3 \rightarrow Rewriting:

mon	day	teacher	room	
Jan	04	Silviu	C017	$\neg X_1 \land \neg X_2$
Jan	04	Antoine	C017	$\neg X_1 \land X_2$
Jan	04	Fabian	C017	$X_1 \wedge \neg X_2'$

 $\rightarrow\,x_1$ has proba 1/9, x_2 has proba 1/2, x_2^\prime has proba 0

• This process generalizes: create decision trees

- This process generalizes: create decision trees
- We can capture **BID** by doing this in each block

- This process generalizes: create decision trees
- \cdot We can capture ${\small {\rm BID}}$ by doing this in each block

day	teacher	room	
04	Silviu	C017	0.9
04	Antoine	C017	0.1
11	Silviu	C47	0.8
11	Antoine	C017	0.1

- This process generalizes: create decision trees
- \cdot We can capture ${\small {\rm BID}}$ by doing this in each block

day	teacher	room		day	teacher	room	
04	Silviu	C017	0.9	04	Silviu	C017	$\neg X_1$
04	Antoine	C017	0.1	04	Antoine	C017	X ₁
11	Silviu	C47	0.8	11	Silviu	C47	$\neg y_1 \land \neg y_2$
11	Antoine	C017	0.1	11	Antoine	C017	$\neg y_1 \wedge y_2$

- This process generalizes: create decision trees
- \cdot We can capture ${\small {BID}}$ by doing this in each block

day	teacher	room		day	teacher	room	
-			-	-	Silviu Antoine		·
					Silviu Antoine		$ eg y_1 \wedge \neg y_2$ $ eg y_1 \wedge y_2$

- x₁ has probability 0.1
- y₁ has probability 0.1
- y_2 has probability 1/9

- Remember from last class:
 Boolean c-tables are a strong representation system
 - ... because **c-tables** are

- Remember from last class:
 Boolean c-tables are a strong representation system
 - ... because **c-tables** are
- Further, each valuation of the output is the output for the same valuation of the inputs
 - ightarrow assuming that variables in the input relations are different
 - $\rightarrow \,$ this preserves probabilities

- Remember from last class:
 Boolean c-tables are a strong representation system
 - ... because **c-tables** are
- Further, each valuation of the output is the output for the same valuation of the inputs
 - \rightarrow assuming that variables in the input relations are different
 - $\rightarrow\,$ this preserves probabilities
- \rightarrow pc-tables are a strong representation system

- Remember:
 - Support \mathcal{U} : uncertain relation
 - Here, set of subsets of a finite set of tuples
 - + Probability distribution π on $\mathcal U$

- Remember:
 - Support U: uncertain relation
 - Here, set of subsets of a finite set of tuples
 - Probability distribution π on $\mathcal U$

 $\rightarrow\,$ Can any probabilistic instance be represented by a pc-table?

Remember from last time:

- Number the **possible worlds** in binary
- For each tuple, write the possible worlds where it appears

Remember from last time:

- Number the **possible worlds** in binary
- For each tuple, write the possible worlds where it appears

C	0)1	1	10			1
v	w	v	w	v	w		v	w
а	d	а	d	а	d		а	d
b	е	b	е	b	е		b	е
С	f	С	f	С	f		С	f

Remember from last time:

- Number the **possible worlds** in binary
- For each **tuple**, write the **possible worlds** where it appears

	00)1	10			11		
	v	w	v	w		v	w	v	w	
	а	d	а	d		а	d	а	d	
	b	е	b	е		b	е	b	е	
	С	f	С	f		С	f	С	f	
V	V	V								
а	С	l x	= 00	∨ x =	= (D1 ∨	X = X	10 V X	x = 11	
b	e)		<i>X</i> =	= 0	01				
C	f			<i>X</i> =	= 0	01 ∨	X = 1	I0 ∨ <i>x</i>	= 11	

Remember from last time:

- Number the **possible worlds** in binary
- For each **tuple**, write the **possible worlds** where it appears

	00		C)1		10			1	11	
	v	W	v	w		v	w		v	W	
	а	d	а	d		а	d		а	d	
	b	е	b	е		b	е		b	е	
	С	f	С	f		С	f		С	f	
v	N	N									_
a	(x t	= 00	∨ x =	= (01 \/	x =	10) ∨ x	(= 11	_
b	е	j		<i>X</i> =	= 0	D1					
С	f			<i>X</i> =	= (D1 ∨	<i>x</i> =	10	$\vee x$	= 11	_

ightarrow We can **also** do this with pc-tables

Remember: the **second step** was to **reduce** to binary:

v	w	
а	d	$x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
b	е	<i>X</i> = 01
С	f	$X = 01 \lor X = 10 \lor X = 11$

Remember: the **second step** was to **reduce** to binary:

	v	w	
	а	d	$x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
	b	е	X = 01
	С	f	$x = 01 \lor x = 10 \lor x = 11$
v	W		
а	d		$x_1 \wedge \neg x_2 \vee \neg x_1 \wedge x_2 \vee x_1 \wedge \neg x_2 \vee x_1 \wedge x_2$
b	е		$\neg X_1 \land X_2$
С	f		$ eg X_1 \wedge X_2 \vee X_1 \wedge eg X_2 \vee X_1 \wedge X_2$

Remember: the **second step** was to **reduce** to binary:

_	V	W	
	а	d	$x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
	b	е	X = 01
	С	f	$x = 01 \lor x = 10 \lor x = 11$
-			
v	w		
а	d	-γ	$x_1 \wedge \neg x_2 \vee \neg x_1 \wedge x_2 \vee x_1 \wedge \neg x_2 \vee x_1 \wedge x_2$
b	е		$\neg x_1 \land x_2$
C	f		$\neg X_1 \land X_2 \lor X_1 \land \neg X_2 \lor X_1 \land X_2$

For pc-instances, how to choose the probabilities?

Remember: the **second step** was to **reduce** to binary:

	v	w	
	а	d	$x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
	b	е	<i>X</i> = 01
	С	f	$x = 01 \lor x = 10 \lor x = 11$
v	W		
а	d	_	$\overline{x_1 \wedge \neg x_2 \vee \neg x_1 \wedge x_2 \vee x_1 \wedge \neg x_2 \vee x_1 \wedge x_2}$
b	е		$\neg x_1 \land x_2$
С	f		$ eg x_1 \wedge x_2 \lor x_1 \wedge eg x_2 \lor x_1 \wedge x_2$

- For pc-instances, how to choose the probabilities?
- \rightarrow We have seen this: this is encoding a mutually exclusive choice_{43/48}

Probabilistic instances

TID

BID

pc-tables

Conclusion

We have seen **relational** formalisms for **probabilistic** instances:

- TID, a simple model with **independent probabilities** on tuples
- BID, adding **blocks** with mutually exclusive choices
- pc-tables, i.e., Boolean c-tables with probabilities on variables
- \rightarrow pc-tables can capture **any** probabilistic instance

We have seen **relational** formalisms for **probabilistic** instances:

- TID, a simple model with **independent probabilities** on tuples
- BID, adding **blocks** with mutually exclusive choices
- pc-tables, i.e., Boolean c-tables with probabilities on variables
- \rightarrow pc-tables can capture **any** probabilistic instance
 - In the next class: how to evaluate **queries** efficiently
 - Let's see a few advanced topics

Conditioning

- With probabilities, conditioning is a common operation
 - What is the probability that it rains given that the grass is wet?
- With probabilities, conditioning is a common operation
 - What is the probability that it rains given that the grass is wet?
- **Conditioning** a pc-table (the **distribution** on possible worlds):
 - \rightarrow **Easy** to condition by $x_1 = 1$
 - \rightarrow Hard to condition on "this tuple is there"

- With probabilities, **conditioning** is a common operation
 - What is the probability that it rains given that the grass is wet?
- **Conditioning** a pc-table (the **distribution** on possible worlds):
 - \rightarrow **Easy** to condition by $x_1 = 1$
 - \rightarrow Hard to condition on "this tuple is there"
- Idea: pc-table with global condition

- With probabilities, **conditioning** is a common operation
 - What is the probability that it rains given that the grass is wet?
- **Conditioning** a pc-table (the **distribution** on possible worlds):
 - \rightarrow **Easy** to condition by $x_1 = 1$
 - \rightarrow Hard to condition on "this tuple is there"
- Idea: pc-table with global condition

$X_1 \lor X_2 \lor$	' X 3
teacher	
Antoine	<i>X</i> ₁
Fabian	X ₂
Silviu	<i>X</i> ₃

- With probabilities, **conditioning** is a common operation
 - What is the probability that it rains given that the grass is wet?
- **Conditioning** a pc-table (the **distribution** on possible worlds):
 - \rightarrow **Easy** to condition by $x_1 = 1$
 - \rightarrow Hard to condition on "this tuple is there"
- Idea: pc-table with global condition

$X_1 \lor X_2 \lor$	x ₃
teacher	
Antoine	Х ₁
Fabian	X ₂
Silviu	<i>X</i> ₃

 \rightarrow Semantics: ignore valuations that violate the global condition \rightarrow Easier to add things to the global condition

Other models

- We will see **non-relational** models of uncertainty
- \rightarrow There are also other **relational** models

Other models

- We will see **non-relational** models of uncertainty
- \rightarrow There are also other **relational** models
 - Possibilistic databases:
 - Do not consider the **probability** that a fact is true but the **degree of surprise** caused by a fact
 - The **possibility** of a world is its **highest** degree of surprise
 - Also, **fuzzy databases:** facts can be any intermediate value between true (1) and false (0)

Other models

- We will see **non-relational** models of uncertainty
- \rightarrow There are also other **relational** models
 - Possibilistic databases:
 - Do not consider the **probability** that a fact is true but the **degree of surprise** caused by a fact
 - The **possibility** of a world is its **highest** degree of surprise
 - Also, **fuzzy databases:** facts can be any intermediate value between true (1) and false (0)
 - **Continuous distributions:** impose conditions like "this value follows a normal distribution"
 - Usually intractable to reason with
 - MCDBs: Monte Carlo DataBases: use sampling

• Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance

- Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance
 - $\rightarrow\,$ Choose the world and join with the table of the worlds

- Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance
 - $\rightarrow\,$ Choose the world and join with the table of the worlds
- Any probabilistic relation can be obtained with a relational algebra query on a TID instance

- Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance
 - $\rightarrow\,$ Choose the world and join with the table of the worlds
- Any probabilistic relation can be obtained with a relational algebra query on a TID instance
 - \rightarrow Code **mutually exclusive** with TID + RA ("largest value")

- Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance
 - $\rightarrow\,$ Choose the world and join with the table of the worlds
- Any probabilistic relation can be obtained with a relational algebra query on a TID instance
 - \rightarrow Code **mutually exclusive** with TID + RA ("largest value")
- TID instances plus UCQ do not suffice

- Any probabilistic relation can be obtained with a CQ on a (single-block) BID instance
 - $\rightarrow\,$ Choose the world and join with the table of the worlds
- Any probabilistic relation can be obtained with a relational algebra query on a TID instance
 - \rightarrow Code **mutually exclusive** with TID + RA ("largest value")
- TID instances plus UCQ do not suffice
 - $\rightarrow\,$ Always a maximal world for inclusion

Abiteboul, S., Hull, R., and Vianu, V. (1995). **Foundations of Databases.** Addison-Wesley. http://webdam.inria.fr/Alice/pdfs/all.pdf.

🔋 Barbará, D., Garcia-Molina, H., and Porter, D. (1992).

The management of probabilistic data.

IEEE Transactions on Knowledge and Data Engineering, 4(5). http:

//www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/ Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf.

References II

Dalvi, N. N. and Suciu, D. (2007).
Efficient query evaluation on probabilistic databases.
VLDB Journal.
http://www.vldb.org/conf/2004/RS22P1.PDF.
Course T. L. and Tanagan M (2006)

Green, T. J. and Tannen, V. (2006). **Models for incomplete and probabilistic information.** *IEEE Data Eng. Bull.* http://sites.computer.org/debull/A06mar/green.ps.

Huang, J., Antova, L., Koch, C., and Olteanu, D. (2009).
MayBMS: a probabilistic database management system.
In SIGMOD.
https://www.cs.ox.ac.uk/dan.olteanu/papers/hako-sigmod09.pdf.

References III

F

Lakshmanan, L. V. S., Leone, N., Ross, R. B., and Subrahmanian, V. S. (1997).

ProbView: A flexible probabilistic database system.

ACM Transactions on Database Systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53. 293&rep=rep1&type=pdf.

Ré, C. and Suciu, D. (2007). Materialized views in probabilistic databases: for information exchange and query optimization.

In VLDB.

http://www.cs.stanford.edu/people/chrismre/papers/prob_ materialized_views_TR.pdf.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011). Probabilistic Databases.

Morgan & Claypool. Unavailable online.