

Uncertain Data Management Open-World Query Answering

Antoine Amarilli¹, Silviu Maniu²

November 28th, 2016

¹Télécom ParisTech

²LRI

Table of contents

Basics

Contexts

Languages

Chase

Advanced topics

Incompleteness

- We have an instance I
- The true state of the world is W
- We may have $I \neq W$

Incompleteness

- · We have an instance I
- The true state of the world is W
- We may have $I \neq W$
- I may be correct: $I \subseteq W$
- I may be complete: $W \subseteq I$

Incompleteness

- We have an instance I
- The true state of the world is W
- We may have $I \neq W$
- I may be correct: $I \subseteq W$
- I may be complete: $W \subseteq I$
- → Today, I is correct but not complete

Incompleteness and query evaluation

- · We know: evaluate a query Q on I
- · We want: evaluate Q on W

Incompleteness and query evaluation

- We know: evaluate a query Q on I
- · We want: evaluate Q on W
- · We don't have W
- \rightarrow What can we do?!

- We know that $I \subseteq W$ (correct)
- \cdot We know that **W** satisfies some logical constraints Θ

- We know that $I \subseteq W$ (correct)
- We know that W satisfies some logical constraints Θ
- Q is entailed if $W \models Q$ for all $W \supseteq I$ such that $W \models \Theta$

- We know that $I \subseteq W$ (correct)
- We know that W satisfies some logical constraints Θ
- Q is entailed if $W \models Q$ for all $W \supseteq I$ such that $W \models \Theta$

Definition (Open-World Query Answering – OWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all $W \supseteq I$ that satisfy Θ also satisfy Q.

- We know that $I \subseteq W$ (correct)
- We know that **W** satisfies some logical constraints ⊖
- Q is entailed if $W \models Q$ for all $W \supseteq I$ such that $W \models \Theta$

Definition (Open-World Query Answering - OWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all $W \supseteq I$ that satisfy Θ also satisfy Q.

Combined complexity. Input is I, Θ , Q Data complexity. Input is I

Example

Relation Class in I

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3

Book in I

date	room	prof
2016-12-05	E242	John

Example

Relation Class in I

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3

Book in I

date	room	prof
2016-12-05	E242	John

 Θ : \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof) "Every class has a booking."

Example

Relation Class in I

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3

Book in *I*

date	room	prof
2016-12-05	E242	John

 Θ : \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow

∃room, Book(date, room, prof)

"Every class has a booking."

 $Q: \exists t \ r \ Book("2016-11-28", t, r)$

"Is there a room booked on Nov 28th?"

Table of contents

Basics

Contexts

Languages

Chase

Advanced topics

OWQA is equivalent to:

is $I \wedge \Theta \wedge \neg Q$ satisfiable?

OWQA is equivalent to:

is $I \wedge \Theta \wedge \neg Q$ satisfiable?

Is it just logical satisfiability then?!

OWQA is equivalent to:

is $I \wedge \Theta \wedge \neg Q$ satisfiable?

Is it just logical satisfiability then?!

• Lis where we want to scale

OWQA is equivalent to:

is $I \wedge \Theta \wedge \neg Q$ satisfiable?

Is it just logical satisfiability then?!

- · I is where we want to scale
- \cdot Θ and \emph{Q} are usually different languages...

OWQA is equivalent to:

is $I \wedge \Theta \wedge \neg O$ satisfiable?

Is it just logical satisfiability then?!

- · I is where we want to scale
- \cdot Θ and \emph{Q} are usually different languages...
- ... if we express both in the same language, it will be hard to achieve good complexities! (or even decidability...)

Class

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4
2017-01-09	Silviu	Fabian	Uncert. Data Mgmt	5

Class

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4
2017-01-09	Silviu	Fabian	Uncert. Data Mgmt	5

- The responsible for a class must teach some class
- Every class must have a first session
- → What can we deduce?

Class

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4
2017-01-09	Silviu	Fabian	Uncert. Data Mgmt	5
?	Fabian	?	?	?

- The responsible for a class must teach some class
- Every class must have a first session
- → What can we deduce?

Class

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4
2017-01-09	Silviu	Fabian	Uncert. Data Mgmt	5
?	Fabian	?	?	?
?	?	?	?	1

- The responsible for a class must teach some class
- Every class must have a first session
- → What can we deduce?

Class

date	teacher	resp	name	num
2016-11-28	Antoine	Fabian	Uncert. Data Mgmt	2
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4
2017-01-09	Silviu	Fabian	Uncert. Data Mgmt	5
?	Fabian	?	?	?
?	?	?	?	1

- The responsible for a class must teach some class
- · Every class must have a first session
- → What can we deduce?
- \rightarrow Q is true iff it is true on all completions

But why deal with broken databases?

- The data may have come from a different source
- The constraints may have been imposed after the fact
- User input may be incorrect
- · You want a resilient system...

But why deal with broken databases?

- The data may have come from a different source
- The constraints may have been imposed after the fact
- User input may be incorrect
- · You want a resilient system...

Date	créneau	Туре	Sigle	Titre de l'activité pédagogique	Groupe	Equipe enseignante	Salle
27/10/2015	13:30 - 16:45	Leçon	INF922	ISC651 Technologies Applicatives	1	Jean DUPONT	C47
03/11/2015	09:00 - 12:00	Leçon	INF922	Integration dapplications (EAI, SOA) Ph Bron	1	Δ	C46
03/11/2015	13:30 - 16:45	Leçon	INF922	ISC651 Cloud Computing Ph Bron;	1	Δ	C46
	00.30			INEGO: ingénierie des			

Reasoning (AI)

- · Artificial reasoning: draw consequences from what you know
 - I contains the facts
 - \cdot Θ are the reasoning rules
 - · Q is what we want to figure out

Reasoning (AI)

- · Artificial reasoning: draw consequences from what you know
 - I contains the facts
 - ⊖ are the reasoning rules
 - Q is what we want to figure out
- \rightarrow Can we **deduce Q** from **I** using Θ ?
- \rightarrow Is **Q** certain to hold?

- I contains I_1, \ldots, I_n , the course databases of all D&K schools
- We want to create a virtual **global** database *I* of classes

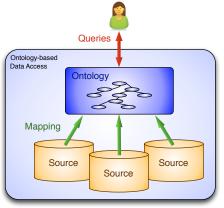
- I contains I_1, \ldots, I_n , the course databases of all D&K schools
- We want to create a virtual **global** database *I* of classes
- Fix a relation Class for the global database
- Θ : whenever some I_i contains a class, create it in R

Class₁

date	name
2016-11-28	UDM
2016-12-05	UDM
2016-12-12	UDM
2017-01-14	UDM

- I contains I_1, \ldots, I_n , the course databases of all D&K schools
- We want to create a virtual **global** database *I* of classes
- Fix a relation Class for the global database
- Θ : whenever some I_i contains a class, create it in R

Class1		Class				
date	name	date	teacher	resp	name	
2016-11-28	UDM					
2016-12-05	UDM					
2016-12-12	UDM					
2017-01-14	UDM					


- I contains I_1, \ldots, I_n , the course databases of all D&K schools
- We want to create a virtual **global** database *I* of classes
- Fix a relation Class for the global database
- Θ : whenever some I_i contains a class, create it in R

Class1 Class

date	name	date	teacher	resp	name	num
2016-11-28	UDM	2016-11-28	?	?	UDM	?
2016-12-05	UDM	2016-12-05	?	?	UDM	?
2016-12-12	UDM	2016-12-12	?	?	UDM	?
2017-01-14	UDM	2017-01-14	?	?	UDM	?

Ontology-based data access

- In general: use a common schema for reasoning
- I contains heterogeneous data sources
- Θ describes mappings from sources to common schema and reasoning rules and constraints on the common schema
- \cdot **Q** is the query posed the common schema

Table of contents

Basics

Contexts

Languages

Chase

Advanced topics

First-order logic

All constraints for Θ are in first-order logic (FO):

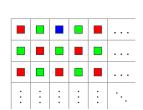
- contains atoms R(x, y, z)
- · closed under Boolean AND, OR, NOT
- existential quantification $\exists x \ \phi(x)$
- universal quantification $\forall x \phi(x)$

First-order logic

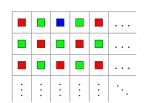
All constraints for Θ are in first-order logic (FO):

- contains atoms R(x, y, z)
- · closed under Boolean AND, OR, NOT
- existential quantification $\exists x \ \phi(x)$
- universal quantification $\forall x \phi(x)$
- → Why not just use FO for constraints then?!

Given an input FO formula Θ , is it satisfiable? (i.e., OWQA with $I = \emptyset$ and Q: False).


Given an input FO formula Θ , is it satisfiable? (i.e., OWQA with $I = \emptyset$ and Q: False).

→ This problem is undecidable!


Given an input FO formula Θ , is it satisfiable? (i.e., OWQA with $I = \emptyset$ and Q: False).

 Proof: Encode a tiling system, or encode transition rules for a Turing machine

Given an input FO formula Θ , is it satisfiable? (i.e., OWQA with $I = \emptyset$ and Q: False).

- → This problem is **undecidable**!
 - Proof: Encode a tiling system, or encode transition rules for a Turing machine
- → We consider weaker languages

Tuple-generating dependencies

Tuple-generating dependencies (TGDs), classical database rules:

$$\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$$

where Q' and Q'' are CQs.

Tuple-generating dependencies

Tuple-generating dependencies (TGDs), classical database rules:

$$\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$$

where Q' and Q'' are CQs.

$$\forall \, date, \, prof, \, r, \, n, \, i, \, \frac{Class}{date, prof, r, n, i)} \Rightarrow \\ \exists room, \, \frac{Book}{date, room, prof}$$

Intuition: facts cause more facts to be created

Tuple-generating dependencies

Tuple-generating dependencies (TGDs), classical database rules:

$$\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$$

where Q' and Q'' are CQs.

$$\forall$$
 date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

Intuition: facts cause more facts to be created

Useful for:

- · Integrity constraints: see above
- Schema mappings: copy facts from I_1 to I
- Reasoning: $\forall x \; \text{Human}(x) \Rightarrow \text{Mortal}(x)$

• Satisfiability of TGDs Θ is trivial...

- Satisfiability of TGDs Θ is trivial...
 - \rightarrow take $W = \emptyset$

- Satisfiability of TGDs Θ is trivial...
 - \rightarrow take $W = \emptyset$
- Satisfiability of TGDs Θ and instance I is easy...

- · Satisfiability of TGDs ⊖ is trivial...
 - \rightarrow take $W = \emptyset$
- Satisfiability of TGDs Θ and instance I is easy...
 - → always possible infinite repair of violations (the chase – see later)

- Satisfiability of TGDs Θ is trivial...
 - \rightarrow take $W = \emptyset$
- Satisfiability of TGDs Θ and instance I is easy...
 - → always possible infinite repair of violations (the chase – see later)
- OWQA for I,
 ⊕ and Q is undecidable!
 from [Chandra et al., 1981, Beeri and Vardi, 1981]

- Satisfiability of TGDs Θ is trivial...
 - \rightarrow take $W = \emptyset$
- Satisfiability of TGDs Θ and instance I is easy...
 - → always possible infinite repair of violations (the chase – see later)
- OWQA for I,
 ⊕ and Q is undecidable!
 from [Chandra et al., 1981, Beeri and Vardi, 1981]
- → We need less expressive languages

Inclusion dependencies

Inclusion dependencies (IDs), classical database rules:

$$\forall \mathbf{x} \ A'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ A''(\mathbf{x}, \mathbf{y})$$

where A and A' are atoms rather than CQs.

Inclusion dependencies

Inclusion dependencies (IDs), classical database rules:

$$\forall \mathbf{x} \ A'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ A''(\mathbf{x}, \mathbf{y})$$

where A and A' are atoms rather than CQs.

The TGD example was in fact also an ID:

 \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

- · Satisfiability for IDs is still trivial
- OWQA: determine whether Q is implied by I and IDs Θ ?

- · Satisfiability for IDs is still trivial
- OWQA: determine whether Q is implied by I and IDs Θ ?
 - · Decidable!
 - PSPACE-complete combined complexity [Johnson and Klug, 1984]
 - Data complexity is PTIME, even AC^o

- · Satisfiability for IDs is still trivial
- OWQA: determine whether Q is implied by I and IDs Θ ?
 - · Decidable!
 - · PSPACE-complete combined complexity [Johnson and Klug, 1984]
 - Data complexity is PTIME, even AC^o
 - \rightarrow Intuition: we can rewrite the query Q

- · Satisfiability for IDs is still trivial
- OWQA: determine whether Q is implied by I and IDs Θ ?
 - · Decidable!
 - · PSPACE-complete combined complexity [Johnson and Klug, 1984]
 - · Data complexity is PTIME, even ACo
 - \rightarrow Intuition: we can rewrite the guery Q
- → We will study other **decidable classes** of TGDs

Table of contents

Basics

Contexts

Languages

Chase

Advanced topics

Class

date	teacher	resp	name	num
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4

Class

date	teacher	resp	name	num
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4

$$\forall$$
 date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

Class

date	teacher	resp	name	num
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4

$$\forall \, date, \, prof, \, r, \, n, \, i, \, \frac{Class}{date, prof, r, n, i)} \Rightarrow \\ \exists room, \, \frac{Book}{date, room, prof)}$$

	Book	
date	room	prof

Class

date	teacher	resp	name	num
2016-12-05	Antoine	Fabian	Uncert. Data Mgmt	3
2016-12-12	Antoine	Fabian	Uncert. Data Mgmt	4

 \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

Book

date	room	prof
2016-12-05	?1	Antoine
2016-12-12	?2	Antoine

- OWQA: test if instance I and TGDs Θ entail query Q
- The chase: a most generic repair of I by Θ

- OWQA: test if instance I and TGDs Θ entail query Q
- The chase: a most generic repair of I by Θ
- Iterative process: start with I
- \cdot At each stage, find violations of each TGD in Θ

- OWQA: test if instance I and TGDs Θ entail query Q
- The chase: a most generic repair of I by Θ
- Iterative process: start with I
- \cdot At each stage, find violations of each TGD in Θ
 - · TGD $\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$
 - find \mathbf{a} such that $Q'(\mathbf{a})$ but not $Q''(\mathbf{a}, \mathbf{b})$ for any \mathbf{b}

- OWQA: test if instance I and TGDs Θ entail query Q
- The chase: a most generic repair of I by Θ
- Iterative process: start with I
- \cdot At each stage, find violations of each TGD in Θ
 - · TGD $\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$
 - find **a** such that $Q'(\mathbf{a})$ but not $Q''(\mathbf{a}, \mathbf{b})$ for any **b**
- · Create new elements **b**
- Create new facts to make $Q'(\mathbf{a}, \mathbf{b})$ true

- OWQA: test if instance I and TGDs Θ entail query Q
- The chase: a most generic repair of I by Θ
- Iterative process: start with I
- \cdot At each stage, find violations of each TGD in Θ
 - · TGD $\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$
 - find **a** such that $Q'(\mathbf{a})$ but not $Q''(\mathbf{a}, \mathbf{b})$ for any **b**
- Create new elements b
- Create new facts to make $Q'(\mathbf{a}, \mathbf{b})$ true
- → Take the **infinite result** of this process

 $\forall t u \; \mathsf{Mentor}(t, u) \Rightarrow \exists s \; \mathsf{Mentor}(s, t)$

Mentor master padawan

Mentor		
master padawan		
Antoine	Arthur Dent	
Silviu	Arthur Dent	

Mentor		
master	padawan	
Antoine	Arthur Dent	
Silviu	Arthur Dent	
?1	Antoine	
?2	Silviu	

Mentor		
master	padawan	
Antoine	Arthur Dent	
Silviu	Arthur Dent	
?1	Antoine	
?2	Silviu	
?3	?1	
?4	?2	

Mentor		
master	padawan	
Antoine	Arthur Dent	
Silviu	Arthur Dent	
?1	Antoine	
?2	Silviu	
?3	?1	
?4	?2	
?5	?3	
?6	?4	

Mentor		
master	padawan	
Antoine	Arthur Dent	
Silviu	Arthur Dent	
?1	Antoine	
?2	Silviu	
?3	?1	
?4	?2	
?5	?3	
?6	?4	
:	:	

- The chase is the **most generic** completion
 - Can be shown using homomorphisms

- The chase is the most generic completion
 - Can be shown using homomorphisms
- \rightarrow A query is true in the chase **iff** it is entailed

- The chase is the most generic completion
 - Can be shown using homomorphisms
- \rightarrow A query is true in the chase **iff** it is entailed

Theorem

For any instance I, TGDs Θ , Boolean CQ Q, the following are equivalent:

- · I and ⊖ entail Q
- the chase of I by Θ satisfies Q

- The chase is the most generic completion
 - Can be shown using homomorphisms
- \rightarrow A query is true in the chase **iff** it is entailed

Theorem

For any instance I, TGDs Θ , Boolean CQ Q, the following are equivalent:

- · I and ⊖ entail Q
- the chase of I by Θ satisfies Q
- → How to reason about this infinite chase?

Chase termination

- Sometimes, the chase of I by Θ is finite
- We can then **decide** whether a query **Q** is entailed:

Chase termination

- Sometimes, the chase of I by Θ is finite
- We can then **decide** whether a query **Q** is entailed:
 - Construct the chase
 - Evaluate Q on the chase

Chase termination

- Sometimes, the chase of I by Θ is finite
- We can then **decide** whether a query **Q** is entailed:
 - · Construct the chase
 - Evaluate O on the chase
- → When is the chase **finite**?

Full dependencies

- If no TGD has an ∃, then the chase is **finite**
- → No **new elements** are created

Full dependencies

- · If no TGD has an ∃, then the chase is finite
- → No **new elements** are created
 - Good: $\forall d r p \operatorname{Book}(d, r, p) \Rightarrow \operatorname{Room}(r)$
 - Bad: $\forall x \text{ Mentor}(x) \Rightarrow \exists y \text{ Mentor}(x, y)$

Acyclicity

Simple sufficient condition for finite chase:
 If a relation name occurs at the left of a TGD then it does not occur at the right

Acyclicity

- Simple sufficient condition for finite chase:
 If a relation name occurs at the left of a TGD then it does not occur at the right
- Good: $\forall \mathbf{x} \ \mathsf{Class}(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ \mathsf{Book}(\mathbf{x})$
- Bad: $\forall x \; Mentor(x) \Rightarrow \exists y \; Mentor(x, y)$

Acyclicity

- Simple sufficient condition for finite chase:
 If a relation name occurs at the left of a TGD then it does not occur at the right
- Good: $\forall \mathbf{x} \ \mathsf{Class}(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ \mathsf{Book}(\mathbf{x})$
- Bad: $\forall \mathbf{x} \; \mathsf{Mentor}(\mathbf{x}) \Rightarrow \exists \mathbf{y} \; \mathsf{Mentor}(\mathbf{x}, \mathbf{y})$
- More general acyclicity conditions

Infinite chase

- · What can we do if the chase is **infinite?**
- · Bounded derivation depth: we can truncate the chase:
 - we fix Θ and look at the size of Q
 - bound the maximal depth in the chase where O can be made true

Infinite chase

- · What can we do if the chase is infinite?
- Bounded derivation depth: we can truncate the chase:
 - we fix Θ and look at the size of Q
 - bound the maximal depth in the chase where O can be made true

- · Bounded treewidth: the chase is like a tree:
 - · we can reason about infinite and regular trees
 - use tree automata, following Courcelle's theorem
 - · some rules preserve this, e.g., the guarded fragments

Table of contents

Basics

Contexts

Languages

Chase

Advanced topics

- The chase: reason about consequences of I under Θ
- Other option: reason about how to prove Q

- The chase: reason about consequences of I under Θ
- Other option: reason about how to prove Q

```
\Theta: \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \existsroom, Book(date, room, prof)
```

- The chase: reason about consequences of I under Θ
- Other option: reason about how to prove Q

$$\Theta$$
: \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

 $Q: \exists t \ r \ Book("2016-11-28", t, r)$

- The chase: reason about consequences of I under Θ
- Other option: reason about how to prove Q

$$\Theta$$
: \forall date, prof, r, n, i, Class(date, prof, r, n, i) \Rightarrow \exists room, Book(date, room, prof)

$$Q: \exists t \ r \ Book("2016-11-28", t, r)$$

 Q_2 : $\exists prof, r, n, i, Class("2016-11-28", prof, r, n, i)$

Query rewriting and inclusion dependencies

• To show that OWQA for inclusion dependencies is decidable...

$$\forall \mathbf{x} \ A'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ A''(\mathbf{x}, \mathbf{y})$$

Query rewriting and inclusion dependencies

To show that OWQA for inclusion dependencies is decidable...

$$\forall \mathbf{x} \ A'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ A''(\mathbf{x}, \mathbf{y})$$

- Rewrite all atoms in the query in all possible ways
 - → Each atom rewritten by only one atom
 - → The query size does not increase

Query rewriting and inclusion dependencies

To show that OWQA for inclusion dependencies is decidable...

$$\forall \mathbf{x} \ A'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ A''(\mathbf{x}, \mathbf{y})$$

- Rewrite all atoms in the query in all possible ways
 - → Each atom rewritten by only one atom
 - → The query size does not increase
- Replace Q by a union of conjunctive queries
 - → OWQA for IDs is decidable
 - → OWQA for IDs has tractable data complexity

Description logics

TGDs cannot express everything

$$\forall x \; Q'(x) \Rightarrow \exists y \; Q''(x,y)$$

Description logics

TGDs cannot express everything

$$\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$$

- · Disjunction: if A then B or C
- Negation: you cannot have both A and B

Description logics

TGDs cannot express everything

$$\forall \mathbf{x} \ Q'(\mathbf{x}) \Rightarrow \exists \mathbf{y} \ Q''(\mathbf{x}, \mathbf{y})$$

- · Disjunction: if A then B or C
- Negation: you cannot have both A and B
- → **Description logics:** expressive rules
 - signature must have arity at most 2

Description logics (2)

• Description logics have a specific **syntax**

Teacher □ Prof □ (∃Advisor⁻.Prof)

Description logics (2)

Description logics have a specific syntax

```
Teacher ☐ Prof ☐ (∃Advisor—.Prof)
```

- Description logics exist in many variants
 - Idea: precise complexity of OWQA depending on variant

Description logics (2)

Description logics have a specific syntax

Teacher ☐ Prof ☐ (∃Advisor—.Prof)

- Description logics exist in many variants
 - · Idea: precise complexity of OWQA depending on variant

	UNA	Complexity			
Languages		Combined complexity		Data complexity	
		Satisfiability	Instance checking	Query answering	
DL -Lite $_{core}^{[\ \mathcal{H}]}$	yes/no	$NLogSpace \ge [A]$	in AC ⁰	in AC ⁰	
DL -Lite $_{horn}^{[\ \mathcal{H}]}$		$P \leq [\mathrm{Th.8.2}] \ \geq [\mathrm{A}]$	in AC^0	in $AC^0 \le [C]$	
DL -Lite $_{krom}^{[\ \mathcal{H}]}$		$NLogSpace \leq [Th.8.2]$	in AC^0	$CONP \ge [B]$	
DL -Lite $_{bool}^{[\ \mathcal{H}]}$		$NP \leq [\mathrm{Th.8.2}] \ \geq [\mathrm{A}]$	in $AC^0 \le [Th.8.3]$	CONP	
DL-Lite $_{core}^{[F N (\mathcal{H}F) (\mathcal{H}N)]}$	yes	NLogSpace	in AC ⁰	in AC ⁰	
DL -Lite $_{horn}^{[\mathcal{F} \mathcal{N} (\mathcal{HF}) (\mathcal{HN})]}$		$P \le [Th.5.8, 5.13]$	in AC^0	in $AC^0 \le [Th.7.1]$	
$DL\text{-}Lite_{krom}^{[F N (\mathcal{HF}) (\mathcal{HN})]}$		$NLogSpace \le [Th.5.7,5.13]$	in AC^0	CONP	
$DL\text{-}Lite_{bool}^{[F N (\mathcal{HF}) (\mathcal{HN})]}$		$NP \le [Th.5.6, 5.13]$	in $AC^0 \leq [Cor.6.2]$	CONP	
DL -Lite $_{core/horn}^{[F (HF)]}$	no	$P \leq [\mathrm{Cor.8.8}] \ \geq [\mathrm{Th.8.7}]$	$P\geq [\mathrm{Th.8.7}]$	P	
DL -Lite $_{krom}^{[F (\mathcal{H}F)]}$		$P \leq [\mathrm{Cor.8.8}]$	P	CONP	
DL - $Lite_{bool}^{[F (HF)]}$		NP	$P \leq [Cor.8.8]$	CONP	
$DL\text{-}Lite^{[N (HN)]}_{core/horn}$		$NP \ge [Th.8.4]$	$CONP \ge [Th.8.4]$	CONP	
DL -Lite $_{krom/bool}^{[N (HN)]}$		$NP\leq [\mathrm{Th.8.5}]$	CONP	CONP	
DL -Lite $_{core/horn}^{HF}$	yes/no	ExpTime \geq [Th.5.10]	$P \ge [Th.6.7]$	$P \leq [D]$	
DL -Lite $_{krom/bool}^{\mathcal{HF}}$		EXPTIME	$CONP \ge [Th.6.5]$	CONP	
DL -Lite $_{core/horn}^{HN}$		EXPTIME	$CONP \ge [Th.6.6]$	CONP	
DL -Lite $_{krom/bool}^{HN}$		$ExpTime \leq [F]$	CONP	$conP \leq [\mathrm{E}]$	

Equality-generating dependencies

- Another important constraint for Θ: functional dependencies
 - There can't be two bookings for one room at the same time
 - There can't be two rooms for one session

Equality-generating dependencies

- Another important constraint for Θ: functional dependencies
 - There can't be two bookings for one room at the same time
 - · There can't be two rooms for one session
- Functional dependencies can be added to Θ for OWQA
 - · Decidable for description logics
 - Undecidable with inclusion dependencies

Definition (Open-World Query Answering - OWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all $W \supseteq I$ that satisfy Θ satisfy Q.

Definition (Open-World Query Answering - OWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all $W \supseteq I$ that satisfy Θ satisfy Q.

- The world W is actually finite
- · Shouldn't we reflect this?

Definition (Finite Open-World Query Answering - FOWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all finite $W \supseteq I$ that satisfy Θ satisfy Q.

- The world W is actually finite
- Shouldn't we reflect this?
- If the chase is infinite, it no longer works
- Imposing finiteness may make a difference

Definition (Finite Open-World Query Answering - FOWQA)

Given an instance I, Boolean CQ Q, and constraints Θ , decide whether all **finite** $W \supseteq I$ that satisfy Θ satisfy Q.

- The world W is actually finite
- Shouldn't we reflect this?
- If the chase is infinite, it no longer works
- · Imposing finiteness may make a difference

→ Very hard to reason about FOWQA!

- We have assumed that I was incomplete
- · Sometimes, we know which relations are complete
 - e.g., the list of rooms may be complete
 - the list of classes may be incomplete

- We have assumed that I was incomplete
- · Sometimes, we know which relations are complete
 - e.g., the list of rooms may be complete
 - the list of classes may be incomplete
- → Partially complete databases [Razniewski et al., 2015]

- We have assumed that I was incomplete
- · Sometimes, we know which relations are complete
 - e.g., the list of rooms may be complete
 - the list of classes may be incomplete
- → Partially complete databases [Razniewski et al., 2015]
 - We may know other things:
 - If I know the lecturer of a class, then I know all lecturers
 - If I know one session of a class, I know all sessions

- We have assumed that I was incomplete
- · Sometimes, we know which relations are complete
 - e.g., the list of rooms may be complete
 - the list of classes may be incomplete
- → Partially complete databases [Razniewski et al., 2015]
 - We may know other things:
 - If I know the lecturer of a class, then I know all lecturers
 - If I know one session of a class, I know all sessions
- → Partial completeness assumption [Galárraga et al., 2013]

Slide credits

- Slide 34:
 http://www.slideshare.net/MartnRezk/slides-swat4-ls,
 slide 17, licence CC-BY-SA 3.01
- Slides 16 and 36: Jaques Rouxel, Les Shadoks (reproduit en vertu du droit de citation)
- · Slide 34: [Artale et al., 2009], p 18

¹http://creativecommons.org/licenses/by-sa/3.0/

References I

Abiteboul, S., Hull, R., and Vianu, V. (1995).

Foundations of Databases.

Addison-Wesley.

http://webdam.inria.fr/Alice/pdfs/all.pdf.

Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009).

The DL-Lite family and relations.

Journal of artificial intelligence research.

https://www.jair.org/media/2820/live-2820-4662-jair.pdf.

References II

Beeri, C. and Vardi, M. Y. (1981).

The implication problem for data dependencies.

In Automata, Languages and Programming.

http://www.researchgate.net/publication/226509257_The_implication_problem_for_data_dependencies.

Calì, A., Gottlob, G., and Pieris, A. (2012).

Towards more expressive ontology languages: The query answering problem.

Artif. Intel., 193.

http://www.sciencedirect.com/science/article/pii/S0004370212001026.

References III

Calì, A., Lembo, D., and Rosati, R. (2003).

On the decidability and complexity of query answering over inconsistent and incomplete databases.

In Proc. PODS.

http://www.dis.uniroma1.it/~rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf.

Chandra, A. K., Lewis, H. R., and Makowsky, J. A. (1981).

Embedded implicational dependencies and their inference problem.

In *Proc. STOC.* ACM. Unavailable online

References IV

Galárraga, L. A., Teflioudi, C., Hose, K., and Suchanek, F. (2013).

AMIE: association rule mining under incomplete evidence in ontological knowledge bases.

In Proc. WWW.

http://luisgalarraga.de/docs/amie.pdf.

Johnson, D. S. and Klug, A. C. (1984).

Testing containment of conjunctive queries under functional and inclusion dependencies.

JCSS.

https://cs.uwaterloo.ca/~david/kbdb/johnstonandklug.pdf.

References V

Onet, A. (2013).

The chase procedure and its applications in data exchange.

In Data Exchange, Integration, and Streams, pages 1–37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

http://drops.dagstuhl.de/opus/volltexte/2013/4288/pdf/ch01-onet.pdf.

Razniewski, S., Korn, F., Nutt, W., and Srivastava, D. (2015).

Identifying the extent of completeness of query answers over partially complete databases.

In Proc. SIGMOD.

https:

//srazniewski.files.wordpress.com/2015/05/2015_sigmod.pdf.

References VI

Rosati, R. (2006).

On the decidability and finite controllability of query processing in databases with incomplete information.

In PODS.

http://www.sciencedirect.com/science/article/pii/S002200001000053X.