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Incompleteness

• We have an instance I
• The true state of the world is W
• We may have I 6= W

• I may be correct: I ⊆ W
• I may be complete: W ⊆ I
→ Today, I is correct but not complete
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Incompleteness and query evaluation

• We know: evaluate a query Q on I
• We want: evaluate Q on W

• We don’t have W
→ What can we do?!
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Constraints to the rescue!

• We know that I ⊆ W (correct)
• We know that W satisfies some logical constraints Θ

• Q is entailed if W |= Q for all W ⊇ I such that W |= Θ

Definition (Open-World Query Answering – OWQA)
Given an instance I, Boolean CQ Q, and constraints Θ, decide whether
all W ⊇ I that satisfy Θ also satisfy Q.

Combined complexity. Input is I, Θ, Q
Data complexity. Input is I
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Example

Relation Class in I

date teacher resp name num

2016-11-28 Antoine Fabian Uncert. Data Mgmt 2
2016-12-05 Antoine Fabian Uncert. Data Mgmt 3

Book in I

date room prof

2016-12-05 E242 John

Θ : ∀date, prof, r, n, i, Class(date,prof, r,n, i)⇒
∃room, Book(date, room,prof)

“Every class has a booking.”

Q : ∃t r Book(“2016-11-28”, t, r)
“Is there a room booked on Nov 28th?”
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Logical satisfiability

OWQA is equivalent to:

is I ∧Θ ∧ ¬Q satisfiable?

Is it just logical satisfiability then?!

• I is where we want to scale
• Θ and Q are usually different languages...
• ... if we express both in the same language,
it will be hard to achieve good complexities!
(or even decidability...)
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Repairing the database

Class

date teacher resp name num

2016-11-28 Antoine Fabian Uncert. Data Mgmt 2
2016-12-05 Antoine Fabian Uncert. Data Mgmt 3
2016-12-12 Antoine Fabian Uncert. Data Mgmt 4
2017-01-09 Silviu Fabian Uncert. Data Mgmt 5

? Fabian ? ? ?
? ? ? ? 1

Constraints:
• The responsible for a class must teach some class
• Every class must have a first session
→ What can we deduce?

→ Q is true iff it is true on all completions
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But why deal with broken databases?

• The data may have come from a different source
• The constraints may have been imposed after the fact
• User input may be incorrect
• You want a resilient system...
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Reasoning (AI)

• Artificial reasoning: draw consequences from what you know
• I contains the facts
• Θ are the reasoning rules
• Q is what we want to figure out

→ Can we deduce Q from I using Θ?
→ Is Q certain to hold?
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Data integration

• I contains I1, . . . , In, the course databases of all D&K schools
• We want to create a virtual global database I of classes

• Fix a relation Class for the global database
• Θ: whenever some Ii contains a class, create it in R

Class1

date name

2016-11-28 UDM
2016-12-05 UDM
2016-12-12 UDM
2017-01-14 UDM

Class

date teacher resp name num

2016-11-28 ? ? UDM ?
2016-12-05 ? ? UDM ?
2016-12-12 ? ? UDM ?
2017-01-14 ? ? UDM ?
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Ontology-based data access

• In general: use a common schema for reasoning
• I contains heterogeneous data sources
• Θ describes mappings from sources to common schema
and reasoning rules and constraints on the common schema

• Q is the query posed the common schema
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First-order logic

All constraints for Θ are in first-order logic (FO):

• contains atoms R(x, y, z)
• closed under Boolean AND, OR, NOT
• existential quantification ∃x φ(x)

• universal quantification ∀x φ(x)

→ Why not just use FO for constraints then?!
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FO is undecidable!

Given an input FO formula Θ, is it satisfiable?
(i.e., OWQA with I = ∅ and Q : False).

→ This problem is undecidable!
• Proof: Encode a tiling system, or
encode transition rules for a Turing machine

→ We consider weaker languages
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Tuple-generating dependencies

Tuple-generating dependencies (TGDs), classical database rules:

∀x Q′(x)⇒ ∃y Q′′(x, y)

where Q′ and Q′′ are CQs.

∀date, prof, r, n, i, Class(date,prof, r,n, i)⇒
∃room, Book(date, room,prof)

Intuition: facts cause more facts to be created

Useful for:

• Integrity constraints: see above
• Schema mappings: copy facts from I1 to I
• Reasoning: ∀x Human(x)⇒ Mortal(x)
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OWQA for TGDs is undecidable!

• Satisfiability of TGDs Θ is trivial...

→ take W = ∅
• Satisfiability of TGDs Θ and instance I is easy...
→ always possible – infinite repair of violations

(the chase – see later)

• OWQA for I, Θ and Q is undecidable!
from [Chandra et al., 1981, Beeri and Vardi, 1981]

→ We need less expressive languages
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Inclusion dependencies

Inclusion dependencies (IDs), classical database rules:

∀x A′(x)⇒ ∃y A′′(x, y)

where A and A′ are atoms rather than CQs.

The TGD example was in fact also an ID:

∀date, prof, r, n, i, Class(date,prof, r,n, i)⇒
∃room, Book(date, room,prof)
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OWQA for IDs is decidable

• Satisfiability for IDs is still trivial

• OWQA: determine whether Q is implied by I and IDs Θ?

• Decidable!
• PSPACE-complete combined complexity [Johnson and Klug, 1984]
• Data complexity is PTIME, even AC0
→ Intuition: we can rewrite the query Q

→ We will study other decidable classes of TGDs
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Chase example

Class

date teacher resp name num

2016-12-05 Antoine Fabian Uncert. Data Mgmt 3
2016-12-12 Antoine Fabian Uncert. Data Mgmt 4

∀date, prof, r, n, i, Class(date,prof, r,n, i)⇒
∃room, Book(date, room,prof)

Book

date room prof

2016-12-05

?1

Antoine
2016-12-12

?2

Antoine
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Chase

• OWQA: test if instance I and TGDs Θ entail query Q
• The chase: a most generic repair of I by Θ

• Iterative process: start with I
• At each stage, find violations of each TGD in Θ

• TGD ∀x Q′(x)⇒ ∃y Q′′(x, y)

• find a such that Q′(a) but not Q′′(a,b) for any b

• Create new elements b
• Create new facts to make Q′(a,b) true
→ Take the infinite result of this process
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Infinite chase example

∀t u Mentor(t,u)⇒ ∃s Mentor(s, t)

Mentor

master padawan

Antoine Arthur Dent
Silviu Arthur Dent
?1 Antoine
?2 Silviu
?3 ?1
?4 ?2
?5 ?3
?6 ?4
...

...
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Chase universality

• The chase is the most generic completion
• Can be shown using homomorphisms

→ A query is true in the chase iff it is entailed

Theorem
For any instance I, TGDs Θ, Boolean CQ Q,
the following are equivalent:

• I and Θ entail Q
• the chase of I by Θ satisfies Q

→ How to reason about this infinite chase?
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Chase termination

• Sometimes, the chase of I by Θ is finite
• We can then decide whether a query Q is entailed:

• Construct the chase
• Evaluate Q on the chase

→ When is the chase finite?
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Full dependencies

• If no TGD has an ∃, then the chase is finite
→ No new elements are created

• Good: ∀d r p Book(d, r,p)⇒ Room(r)
• Bad: ∀x Mentor(x)⇒ ∃y Mentor(x, y)
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Acyclicity

• Simple sufficient condition for finite chase:
If a relation name occurs at the left of a TGD
then it does not occur at the right

• Good: ∀x Class(x)⇒ ∃y Book(x)

• Bad: ∀x Mentor(x)⇒ ∃y Mentor(x, y)

• More general acyclicity conditions
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Infinite chase

• What can we do if the chase is infinite?
• Bounded derivation depth: we can truncate the chase:

• we fix Θ and look at the size of Q
• bound the maximal depth in the chase
where Q can be made true

• Bounded treewidth: the chase is like a tree:
• we can reason about infinite and regular trees
• use tree automata, following Courcelle’s theorem
• some rules preserve this, e.g., the guarded fragments
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Query rewriting

• The chase: reason about consequences of I under Θ

• Other option: reason about how to prove Q

Θ : ∀date, prof, r, n, i, Class(date,prof, r,n, i)⇒
∃room, Book(date, room,prof)

Q : ∃t r Book(“2016-11-28”, t, r)

Q2 : ∃prof, r, n, i, Class(“2016-11-28”,prof, r,n, i)
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Query rewriting and inclusion dependencies

• To show that OWQA for inclusion dependencies is decidable...

∀x A′(x)⇒ ∃y A′′(x, y)

• Rewrite all atoms in the query in all possible ways
→ Each atom rewritten by only one atom
→ The query size does not increase

• Replace Q by a union of conjunctive queries
→ OWQA for IDs is decidable
→ OWQA for IDs has tractable data complexity
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Description logics

• TGDs cannot express everything

∀x Q′(x)⇒ ∃y Q′′(x, y)

• Disjunction: if A then B or C
• Negation: you cannot have both A and B

→ Description logics: expressive rules
• signature must have arity at most 2
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Description logics (2)

• Description logics have a specific syntax

Teacher v Prof t (∃Advisor−.Prof)

• Description logics exist in many variants
• Idea: precise complexity of OWQA depending on variant

Complexity

Languages UNA Combined complexity Data complexity

Satisfiability Instance checking Query answering

DL-Lite[ |H]
core NLogSpace ≥ [A] in AC0 in AC0

DL-Lite
[ |H]
horn yes/no

P ≤ [Th.8.2] ≥ [A] in AC0 in AC0 ≤ [C]

DL-Lite
[ |H]
krom NLogSpace ≤ [Th.8.2] in AC0 coNP ≥ [B]

DL-Lite
[ |H]
bool NP ≤ [Th.8.2] ≥ [A] in AC0 ≤ [Th.8.3] coNP

DL-Lite[F|N|(HF)|(HN )]
core NLogSpace in AC0 in AC0

DL-Lite
[F|N|(HF)|(HN )]
horn yes

P ≤ [Th.5.8, 5.13] in AC0 in AC0 ≤ [Th.7.1]

DL-Lite
[F|N|(HF)|(HN )]
krom NLogSpace ≤ [Th.5.7,5.13] in AC0 coNP

DL-Lite
[F|N|(HF)|(HN )]
bool NP ≤ [Th.5.6, 5.13] in AC0 ≤ [Cor.6.2] coNP

DL-Lite
[F|(HF)]
core/horn P ≤ [Cor.8.8] ≥ [Th.8.7] P ≥ [Th.8.7] P

DL-Lite
[F|(HF)]
krom P ≤ [Cor.8.8] P coNP

DL-Lite
[F|(HF)]
bool no NP P ≤ [Cor.8.8] coNP

DL-Lite
[N|(HN )]
core/horn NP ≥ [Th.8.4] coNP ≥ [Th.8.4] coNP

DL-Lite
[N|(HN )]
krom/bool NP ≤ [Th.8.5] coNP coNP

DL-LiteHFcore/horn ExpTime ≥ [Th.5.10] P ≥ [Th.6.7] P ≤ [D]

DL-LiteHFkrom/bool yes/no
ExpTime coNP ≥ [Th.6.5] coNP

DL-LiteHNcore/horn ExpTime coNP ≥ [Th.6.6] coNP

DL-LiteHNkrom/bool ExpTime ≤ [F] coNP coNP ≤ [E]
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Equality-generating dependencies

• Another important constraint for Θ: functional dependencies
• There can’t be two bookings for one room at the same time
• There can’t be two rooms for one session

• Functional dependencies can be added to Θ for OWQA
• Decidable for description logics
• Undecidable with inclusion dependencies
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Finite models

Definition (Open-World Query Answering – OWQA)
Given an instance I, Boolean CQ Q, and constraints Θ, decide whether
all

finite

W ⊇ I that satisfy Θ satisfy Q.

• The world W is actually finite
• Shouldn’t we reflect this?

• If the chase is infinite, it no longer works
• Imposing finiteness may make a difference

→ Very hard to reason about FOWQA!
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Partial completeness

• We have assumed that I was incomplete
• Sometimes, we know which relations are complete

• e.g., the list of rooms may be complete
• the list of classes may be incomplete

→ Partially complete databases [Razniewski et al., 2015]

• We may know other things:
• If I know the lecturer of a class, then I know all lecturers
• If I know one session of a class, I know all sessions

→ Partial completeness assumption [Galárraga et al., 2013]
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