Exercise sheet for Session 2

Uncertain data management

Antoine Amarilli

December 7th, 2015

1 Exercise 1: Codd tables

Consider the following instance I:

Events				Class		Exam	
class	session	teacher	room	class	session	class	session
UDM	1	NULL	NULL	UDM	1	UDM	9
FOO	NULL	NULL	C42	FOO	NULL	FOO	NULL
UDM	9	NULL	NULL				
FOO	NULL	NULL	C43				

Question 1. Rephrase in plain English what we know about the UDM class, and what we know about the FOO class.

Question 2. Write a Boolean conjunctive query that asks whether some class has a scheduled session in the same room as the exam for that class. Write it in the relational algebra and in the relational calculus.

Question 3. Is this query *possible* on the instance? If yes, what is a witnessing possible world?

Question 4. Is this query *certain* on the instance? If no, what is a counterexample possible world?

Question 5. Write a tuple-generating dependency that says that whenever a class has a scheduled session then it has a scheduled exam with the same teacher (but possibly in a different room).

Question 6. Is there a possible world that satisfies this constraint? Do all possible worlds satisfy this constraint?

Question 7. Replace three pairs of NULLs by named NULLs to obtain a v-table where the constraint is always respected.

2 Exercise 2: v-tables and c-tables

Consider the following instance of a v-table:

Events								
class	session	teacher	room					
UDM	1	\mathtt{NULL}_1	\mathtt{NULL}_2					
$NULL_3$	2	\mathtt{NULL}_1	$NULL_4$					
FOO	1	John	\mathtt{NULL}_2					

Question 1. What is this relation saying in plain English?

Question 2. Write a query Q_1 in the relational algebra that returns the triples of a class *class* and two sessions $s_1 < s_2$ such that s_1 and s_2 are sessions of *class* that have the same teacher.

Question 3. Evaluate Q_1 on the instance to obtain a c-table R_1 .

Question 4. Write an analogous query Q_2 that returns the triples of a class and two sessions $s_1 < s_2$ of the class that take place in the same room (but may have different teachers).

Question 5. Evaluate Q_2 on the instance to obtain a c-table R_2 .

Question 6. Compute a c-table representation of the union R of R_1 and R_2 .

Question 7. How many rows may the possible worlds of *R* have?

3 Exercise 3: Boolean c-tables

Consider the following instance:

Classes								
session	date	\mathbf{prof}	room					
2	Nov 30	Antoine	C017					
3	Dec 7	Antoine	C47					
4	Dec 14	Silviu	C47					
5	Jan 4	Silviu	C47					
6	Jan 11	Silviu	C47					

Consider the following uncertain Boolean events:

• x_1 : Room C47 collapses. All UDM classes in room C47 must be canceled.

- x_2 : D&K students accept to return from vacation. If this does *not* happen, all UDM classes in January are cancelled.
- x_3 : Silviu wins the lottery and escapes to the Bahamas. All of Silviu's classes must be canceled.

Question 1. Annotate the rows of the instance to make a Boolean c-table that describes the correct outcome depending on the value of the events.

Question 2. How many possible worlds does the table have?

Question 3. Using only two Boolean variables x and y, create a different Boolean c-table on the same rows that describes the same set of possible outcomes.