Exercise sheet for Session 2

Uncertain data management

Antoine Amarilli

December 7th, 2015

1 Exercise 1: Codd tables

Consider the following instance I:

Events			Class		Exam		
class	session	teacher	room	class	session	class	session
UDM	1	NULL	NULL	UDM	1	UDM	9
FOO	NULL	NULL	C42	FOO	NULL	FOO	NULL
UDM	9	NULL	NULL		-		
FOO	NULL	NULL	C43				

Question 1. Rephrase in plain English what we know about the UDM class, and what we know about the FOO class.

Question 2. Write a Boolean conjunctive query that asks whether some class has a scheduled session in the same room as the exam for that class. Write it in the relational algebra and in the relational calculus.

Question 3. Is this query possible on the instance? If yes, what is a witnessing possible world?

Question 4. Is this query *certain* on the instance? If no, what is a counterexample possible world?

Question 5. Write a tuple-generating dependency that says that whenever a class has a scheduled session then it has a scheduled exam with the same teacher (but possibly in a different room).

Question 6. Is there a possible world that satisfies this constraint? Do all possible worlds satisfy this constraint?

Question 7. Replace three pairs of NULLs by named NULLs to obtain a v-table where the constraint is always respected.

2 Exercise 2: v-tables and c-tables

Consider the following instance of a v-table:

Events								
class	session	teacher	room					
UDM	1	\mathtt{NULL}_1	\mathtt{NULL}_2					
\mathtt{NULL}_3	2	\mathtt{NULL}_1	\mathtt{NULL}_4					
FOO	1	John	\mathtt{NULL}_2					

Question 1. What is this relation saying in plain English?

Question 2. Write a query Q_1 in the relational algebra that returns the triples of a class class and two sessions $s_1 < s_2$ such that s_1 and s_2 are sessions of class that have the same teacher.

Question 3. Evaluate Q_1 on the instance to obtain a c-table R_1 .

Question 4. Write an analogous query Q_2 that returns the triples of a class and two sessions $s_1 < s_2$ of the class that take place in the same room (but may have different teachers).

Question 5. Evaluate Q_2 on the instance to obtain a c-table R_2 .

Question 6. Compute a c-table representation of the union R of R_1 and R_2 .

Question 7. How many rows may the possible worlds of R have?

3 Exercise 3: Boolean c-tables

Consider the following instance:

Classes								
session	date	prof	room					
2	Nov 30	Antoine	C017					
3	Dec 7	Antoine	C47					
4	Dec 14	Silviu	C47					
5	Jan 4	Silviu	C47					
6	Jan 11	Silviu	C47					

Consider the following uncertain Boolean events:

- x_1 : Room C47 collapses. All UDM classes in room C47 must be canceled.
- x_2 : D&K students accept to return from vacation. If this does *not* happen, all UDM classes in January are cancelled.
- x_3 : Silviu wins the lottery and escapes to the Bahamas. All of Silviu's classes must be canceled.

Question 1. Annotate the rows of the instance to make a Boolean c-table that describes the correct outcome depending on the value of the events.

Question 2. How many possible worlds does the table have?

Question 3. Using only two Boolean variables x and y, create a different Boolean c-table on the same rows that describes the same set of possible outcomes.